]> git.zerfleddert.de Git - raggedstone/blob - ethernet/source/pci/pci_delayed_sync.v
progress
[raggedstone] / ethernet / source / pci / pci_delayed_sync.v
1 //////////////////////////////////////////////////////////////////////
2 //// ////
3 //// File name "delayed_sync.v" ////
4 //// ////
5 //// This file is part of the "PCI bridge" project ////
6 //// http://www.opencores.org/cores/pci/ ////
7 //// ////
8 //// Author(s): ////
9 //// - Miha Dolenc (mihad@opencores.org) ////
10 //// ////
11 //// All additional information is avaliable in the README ////
12 //// file. ////
13 //// ////
14 //// ////
15 //////////////////////////////////////////////////////////////////////
16 //// ////
17 //// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
18 //// ////
19 //// This source file may be used and distributed without ////
20 //// restriction provided that this copyright statement is not ////
21 //// removed from the file and that any derivative work contains ////
22 //// the original copyright notice and the associated disclaimer. ////
23 //// ////
24 //// This source file is free software; you can redistribute it ////
25 //// and/or modify it under the terms of the GNU Lesser General ////
26 //// Public License as published by the Free Software Foundation; ////
27 //// either version 2.1 of the License, or (at your option) any ////
28 //// later version. ////
29 //// ////
30 //// This source is distributed in the hope that it will be ////
31 //// useful, but WITHOUT ANY WARRANTY; without even the implied ////
32 //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
33 //// PURPOSE. See the GNU Lesser General Public License for more ////
34 //// details. ////
35 //// ////
36 //// You should have received a copy of the GNU Lesser General ////
37 //// Public License along with this source; if not, download it ////
38 //// from http://www.opencores.org/lgpl.shtml ////
39 //// ////
40 //////////////////////////////////////////////////////////////////////
41 //
42 // CVS Revision History
43 //
44 // $Log: pci_delayed_sync.v,v $
45 // Revision 1.1 2007-03-20 17:50:56 sithglan
46 // add shit
47 //
48 // Revision 1.3 2003/08/14 13:06:02 simons
49 // synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
50 //
51 // Revision 1.2 2003/03/26 13:16:18 mihad
52 // Added the reset value parameter to the synchronizer flop module.
53 // Added resets to all synchronizer flop instances.
54 // Repaired initial sync value in fifos.
55 //
56 // Revision 1.1 2003/01/27 16:49:31 mihad
57 // Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
58 //
59 // Revision 1.5 2002/09/25 09:54:50 mihad
60 // Added completion expiration test for WB Slave unit. Changed expiration signalling
61 //
62 // Revision 1.4 2002/03/05 11:53:47 mihad
63 // Added some testcases, removed un-needed fifo signals
64 //
65 // Revision 1.3 2002/02/01 15:25:12 mihad
66 // Repaired a few bugs, updated specification, added test bench files and design document
67 //
68 // Revision 1.2 2001/10/05 08:14:28 mihad
69 // Updated all files with inclusion of timescale file for simulation purposes.
70 //
71 // Revision 1.1.1.1 2001/10/02 15:33:46 mihad
72 // New project directory structure
73 //
74 //
75
76 // module provides synchronization mechanism between requesting and completing side of the bridge
77 `include "pci_constants.v"
78 `include "bus_commands.v"
79
80 // synopsys translate_off
81 `include "timescale.v"
82 // synopsys translate_on
83
84 module pci_delayed_sync
85 (
86 reset_in,
87 req_clk_in,
88 comp_clk_in,
89 req_in,
90 comp_in,
91 done_in,
92 in_progress_in,
93 comp_req_pending_out,
94 req_req_pending_out,
95 req_comp_pending_out,
96 comp_comp_pending_out,
97 addr_in,
98 be_in,
99 addr_out,
100 be_out,
101 we_in,
102 we_out,
103 bc_in,
104 bc_out,
105 status_in,
106 status_out,
107 comp_flush_out,
108 burst_in,
109 burst_out,
110 retry_expired_in
111 );
112
113 // system inputs
114 input reset_in, // reset input
115 req_clk_in, // requesting clock input
116 comp_clk_in ; // completing clock input
117
118 // request, completion, done and in progress indication inputs
119 input req_in, // request qualifier - when 1 it indicates that valid request data is provided on inputs
120 comp_in, // completion qualifier - when 1, completing side indicates that request has completed
121 done_in, // done input - when 1 indicates that requesting side of the bridge has completed a transaction on requesting bus
122 in_progress_in ; // in progress indicator - indicates that current completion is in progress on requesting side of the bridge
123
124 // pending indication outputs
125 output comp_req_pending_out, // completion side request output - resynchronized from requesting clock to completing clock
126 req_req_pending_out, // request pending output for requesting side
127 req_comp_pending_out, // completion pending output for requesting side of the bridge - it indicates when completion is ready for completing on requesting bus
128 comp_comp_pending_out ; // completion pending output for completing side of the bridge
129
130 // additional signals and wires for clock domain passage of signals
131 reg comp_req_pending,
132 req_req_pending,
133 req_comp_pending,
134 req_comp_pending_sample,
135 comp_comp_pending,
136 req_done_reg,
137 comp_done_reg_main,
138 comp_done_reg_clr,
139 req_rty_exp_reg,
140 req_rty_exp_clr,
141 comp_rty_exp_reg,
142 comp_rty_exp_clr ;
143
144 wire sync_comp_req_pending,
145 sync_req_comp_pending,
146 sync_comp_done,
147 sync_req_rty_exp,
148 sync_comp_rty_exp_clr ;
149
150 // inputs from requesting side - only this side can set address, bus command, byte enables, write enable and burst - outputs are common for both sides
151 // all signals that identify requests are stored in this module
152
153 input [31:0] addr_in ; // address bus input
154 input [3:0] be_in ; // byte enable input
155 input we_in ; // write enable input - read/write request indication 1 = write request / 0 = read request
156 input [3:0] bc_in ; // bus command input
157 input burst_in ; // burst indicator - qualifies operation as burst/single transfer 1 = burst / 0 = single transfer
158
159 // common request outputs used both by completing and requesting sides
160 // this outputs are not resynchronized, since flags determine the request status
161 output [31:0] addr_out ;
162 output [3:0] be_out ;
163 output we_out ;
164 output [3:0] bc_out ;
165 output burst_out ;
166
167 // completion side signals encoded termination status - 0 = normal completion / 1 = error terminated completion
168 input status_in ;
169 output status_out ;
170
171 // input signals that delayed transaction has been retried for max number of times
172 // on this signal request is ditched, otherwise it would cause a deadlock
173 // requestor can issue another request and procedure will be repeated
174 input retry_expired_in ;
175
176 // completion flush output - if in 2^^16 clock cycles transaction is not repeated by requesting agent - flush completion data
177 output comp_flush_out ;
178
179 // output registers for common signals
180 reg [31:0] addr_out ;
181 reg [3:0] be_out ;
182 reg we_out ;
183 reg [3:0] bc_out ;
184 reg burst_out ;
185
186 // delayed transaction information is stored only when request is issued and request nor completion are pending
187 wire new_request = req_in && ~req_comp_pending_out && ~req_req_pending_out ;
188 always@(posedge req_clk_in or posedge reset_in)
189 begin
190 if (reset_in)
191 begin
192 addr_out <= #`FF_DELAY 32'h0000_0000 ;
193 be_out <= #`FF_DELAY 4'h0 ;
194 we_out <= #`FF_DELAY 1'b0 ;
195 bc_out <= #`FF_DELAY `BC_RESERVED0 ;
196 burst_out <= #`FF_DELAY 1'b0 ;
197 end
198 else
199 if (new_request)
200 begin
201 addr_out <= #`FF_DELAY addr_in ;
202 be_out <= #`FF_DELAY be_in ;
203 we_out <= #`FF_DELAY we_in ;
204 bc_out <= #`FF_DELAY bc_in ;
205 burst_out <= #`FF_DELAY burst_in ;
206 end
207 end
208
209 // completion pending cycle counter
210 reg [16:0] comp_cycle_count ;
211
212 /*=================================================================================================================================
213 Passing of requests between clock domains:
214 request originates on requesting side. It's then synchronized with two flip-flops to cross to completing clock domain
215 =================================================================================================================================*/
216 // main request flip-flop triggered on requesting side's clock
217 // request is cleared whenever completion or retry expired is signalled from opposite side of the bridge
218 wire req_req_clear = req_comp_pending || (req_rty_exp_reg && ~req_rty_exp_clr) ;
219 always@(posedge req_clk_in or posedge reset_in)
220 begin
221 if ( reset_in )
222 req_req_pending <= #`FF_DELAY 1'b0 ;
223 else
224 if ( req_req_clear )
225 req_req_pending <= #`FF_DELAY 1'b0 ;
226 else
227 if ( req_in )
228 req_req_pending <= #`FF_DELAY 1'b1 ;
229 end
230
231 // interemediate stage request synchronization flip - flop - this one is prone to metastability
232 // and should have setup and hold times disabled during simulation
233 pci_synchronizer_flop #(1, 0) req_sync
234 (
235 .data_in (req_req_pending),
236 .clk_out (comp_clk_in),
237 .sync_data_out (sync_comp_req_pending),
238 .async_reset (reset_in)
239 ) ;
240
241 // wire for clearing completion side request flag - whenever completion or retry expired are signalled
242 wire comp_req_pending_clear = comp_req_pending && ( comp_in || retry_expired_in) ;
243
244 // wire for enabling request flip - flop - it is enabled when completion is not active and done is not active
245 wire comp_req_pending_ena = ~comp_comp_pending && ~comp_done_reg_main && ~comp_rty_exp_reg ;
246
247 // completion side request flip flop - gets a value from intermediate stage sync flip flop
248 always@(posedge comp_clk_in or posedge reset_in)
249 begin
250 if ( reset_in )
251 comp_req_pending <= #`FF_DELAY 1'b0 ;
252 else
253 if ( comp_req_pending_clear )
254 comp_req_pending <= #`FF_DELAY 1'b0 ;
255 else
256 if ( comp_req_pending_ena )
257 comp_req_pending <= #`FF_DELAY sync_comp_req_pending ;
258 end
259
260 // completion side request output assignment - when request ff is set and completion ff is not set
261 assign comp_req_pending_out = comp_req_pending ;
262
263 // requesting side request pending output
264 assign req_req_pending_out = req_req_pending ;
265 /*=================================================================================================================================
266 Passing of completions between clock domains:
267 completion originates on completing side. It's then synchronized with two flip-flops to cross to requesting clock domain
268 =================================================================================================================================*/
269 // main completion Flip - Flop - triggered by completing side's clock
270 // completion side completion pending flag is cleared when done flag propagates through clock domains
271 wire comp_comp_clear = comp_done_reg_main && ~comp_done_reg_clr ;
272 always@(posedge comp_clk_in or posedge reset_in)
273 begin
274 if ( reset_in )
275 comp_comp_pending <= #`FF_DELAY 1'b0 ;
276 else
277 if ( comp_comp_clear )
278 comp_comp_pending <= #`FF_DELAY 1'b0 ;
279 else
280 if ( comp_in && comp_req_pending )
281 comp_comp_pending <= #`FF_DELAY 1'b1 ;
282 end
283
284 assign comp_comp_pending_out = comp_comp_pending ;
285
286 // interemediate stage completion synchronization flip - flop - this one is prone to metastability
287 pci_synchronizer_flop #(1, 0) comp_sync
288 (
289 .data_in (comp_comp_pending),
290 .clk_out (req_clk_in),
291 .sync_data_out (sync_req_comp_pending),
292 .async_reset (reset_in)
293 ) ;
294
295 // request side completion pending flip flop is cleared whenever done is signalled or completion counter expires - 2^^16 clock cycles
296 wire req_comp_pending_clear = done_in || comp_cycle_count[16];
297
298 // request side completion pending flip flop is disabled while done flag is set
299 wire req_comp_pending_ena = ~req_done_reg ;
300
301 // request side completion flip flop - gets a value from intermediate stage sync flip flop
302 always@(posedge req_clk_in or posedge reset_in)
303 begin
304 if ( reset_in )
305 req_comp_pending <= #`FF_DELAY 1'b0 ;
306 else
307 if ( req_comp_pending_clear )
308 req_comp_pending <= #`FF_DELAY 1'b0 ;
309 else
310 if ( req_comp_pending_ena )
311 req_comp_pending <= #`FF_DELAY sync_req_comp_pending ;
312 end
313
314 // sampling FF - used for sampling incoming completion flag from completing side
315 always@(posedge req_clk_in or posedge reset_in)
316 begin
317 if ( reset_in )
318 req_comp_pending_sample <= #`FF_DELAY 1'b0 ;
319 else
320 req_comp_pending_sample <= #`FF_DELAY sync_req_comp_pending ;
321 end
322
323 // requesting side completion pending output assignment
324 assign req_comp_pending_out = req_comp_pending && ~req_req_pending ;
325
326 /*==================================================================================================================================
327 Passing of delayed transaction done signal between clock domains.
328 Done is signalled by requesting side of the bridge and is passed to completing side of the bridge
329 ==================================================================================================================================*/
330 // main done flip-flop triggered on requesting side's clock
331 // when completing side removes completion flag, done flag is also removed, so requests can proceede
332 wire req_done_clear = ~req_comp_pending_sample ;
333 always@(posedge req_clk_in or posedge reset_in)
334 begin
335 if ( reset_in )
336 req_done_reg <= #`FF_DELAY 1'b0 ;
337 else
338 if ( req_done_clear )
339 req_done_reg <= #`FF_DELAY 1'b0 ;
340 else
341 if ( done_in || comp_cycle_count[16] )
342 req_done_reg <= #`FF_DELAY 1'b1 ;
343 end
344
345 pci_synchronizer_flop #(1, 0) done_sync
346 (
347 .data_in (req_done_reg),
348 .clk_out (comp_clk_in),
349 .sync_data_out (sync_comp_done),
350 .async_reset (reset_in)
351 ) ;
352
353 always@(posedge comp_clk_in or posedge reset_in)
354 begin
355 if ( reset_in )
356 comp_done_reg_main <= #`FF_DELAY 1'b0 ;
357 else
358 comp_done_reg_main <= #`FF_DELAY sync_comp_done ;
359 end
360
361 always@(posedge comp_clk_in or posedge reset_in)
362 begin
363 if ( reset_in )
364 comp_done_reg_clr <= #`FF_DELAY 1'b0 ;
365 else
366 comp_done_reg_clr <= #`FF_DELAY comp_done_reg_main ;
367 end
368
369 /*=================================================================================================================================
370 Passing of retry expired signal between clock domains
371 Retry expiration originates on completing side. It's then synchronized with two flip-flops to cross to requesting clock domain
372 =================================================================================================================================*/
373 // main retry expired Flip - Flop - triggered by completing side's clock
374 wire comp_rty_exp_clear = comp_rty_exp_clr && comp_rty_exp_reg ;
375
376 // retry expired is a special case of transaction removal - retry expired propagates from completing
377 // clock domain to requesting clock domain to remove all pending requests and than propagates back
378 // to completing side to qualify valid new requests
379
380 always@(posedge comp_clk_in or posedge reset_in)
381 begin
382 if ( reset_in )
383 comp_rty_exp_reg <= #`FF_DELAY 1'b0 ;
384 else
385 if ( comp_rty_exp_clear )
386 comp_rty_exp_reg <= #`FF_DELAY 1'b0 ;
387 else
388 if ( retry_expired_in && comp_req_pending)
389 comp_rty_exp_reg <= #`FF_DELAY 1'b1 ;
390 end
391
392 // interemediate stage retry expired synchronization flip - flop - this one is prone to metastability
393 pci_synchronizer_flop #(1, 0) rty_exp_sync
394 (
395 .data_in (comp_rty_exp_reg),
396 .clk_out (req_clk_in),
397 .sync_data_out (sync_req_rty_exp),
398 .async_reset (reset_in)
399 ) ;
400
401 // request retry expired flip flop - gets a value from intermediate stage sync flip flop
402 always@(posedge req_clk_in or posedge reset_in)
403 begin
404 if ( reset_in )
405 req_rty_exp_reg <= #`FF_DELAY 1'b0 ;
406 else
407 req_rty_exp_reg <= #`FF_DELAY sync_req_rty_exp ;
408 end
409
410 always@(posedge req_clk_in or posedge reset_in)
411 begin
412 if ( reset_in )
413 req_rty_exp_clr <= #`FF_DELAY 1'b0 ;
414 else
415 req_rty_exp_clr <= #`FF_DELAY req_rty_exp_reg ;
416 end
417
418 pci_synchronizer_flop #(1, 0) rty_exp_back_prop_sync
419 (
420 .data_in (req_rty_exp_reg && req_rty_exp_clr),
421 .clk_out (comp_clk_in),
422 .sync_data_out (sync_comp_rty_exp_clr),
423 .async_reset (reset_in)
424 ) ;
425
426 always@(posedge comp_clk_in or posedge reset_in)
427 begin
428 if ( reset_in )
429 comp_rty_exp_clr <= #`FF_DELAY 1'b0 ;
430 else
431 comp_rty_exp_clr <= #`FF_DELAY sync_comp_rty_exp_clr ;
432 end
433
434 // completion status flip flop - if 0 when completion is signalled it's finished OK otherwise it means error
435 reg status_out ;
436 always@(posedge comp_clk_in or posedge reset_in)
437 begin
438 if (reset_in)
439 status_out <= #`FF_DELAY 1'b0 ;
440 else
441 if (comp_in && comp_req_pending)
442 status_out <= #`FF_DELAY status_in ;
443 end
444
445 // clocks counter - it counts how many clock cycles completion is present without beeing repeated
446 // if it counts to 2^^16 cycles the completion must be ditched
447
448 // wire for clearing this counter
449 wire clear_count = in_progress_in || ~req_comp_pending_out || comp_cycle_count[16] ;
450 always@(posedge req_clk_in or posedge reset_in)
451 begin
452 if (reset_in)
453 comp_cycle_count <= #`FF_DELAY 17'h0_0000 ;
454 else
455 if (clear_count)
456 comp_cycle_count <= #`FF_DELAY 17'h0_0000 ;
457 else
458 comp_cycle_count <= #`FF_DELAY comp_cycle_count + 1'b1 ;
459 end
460
461 // completion flush output - used for flushing fifos when counter expires
462 // if counter doesn't expire, fifo flush is up to WISHBONE slave or PCI target state machines
463 reg comp_flush_out ;
464 always@(posedge req_clk_in or posedge reset_in)
465 begin
466 if (reset_in)
467 comp_flush_out <= #`FF_DELAY 1'b0 ;
468 else
469 comp_flush_out <= #`FF_DELAY comp_cycle_count[16] ;
470 end
471
472 endmodule //delayed_sync
Impressum, Datenschutz