]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/lfops.c
Refactoring of BigBuf handling in order to prepare for more efficient memory allocati...
[proxmark3-svn] / armsrc / lfops.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
bd20f8f4 2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
15c4dc5a 6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10
e30c654b 11#include "proxmark3.h"
15c4dc5a 12#include "apps.h"
f7e3ed82 13#include "util.h"
15c4dc5a 14#include "hitag2.h"
15#include "crc16.h"
9ab7a6c7 16#include "string.h"
7db5f1ca 17#include "lfdemod.h"
15c4dc5a 18
b2256785
MHS
19
20/**
ba1a299c 21* Does the sample acquisition. If threshold is specified, the actual sampling
22* is not commenced until the threshold has been reached.
b2256785
MHS
23* @param trigger_threshold - the threshold
24* @param silent - is true, now outputs are made. If false, dbprints the status
25*/
f97d4e23 26void DoAcquisition125k_internal(int trigger_threshold,bool silent)
69d88ec4 27{
117d9ec2 28 uint8_t *dest = BigBuf_get_addr();
29 int n = BigBuf_max_trace_len();
ae8e8a43
MHS
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
69d88ec4 55}
b2256785 56/**
ba1a299c 57* Perform sample aquisition.
b2256785 58*/
f97d4e23 59void DoAcquisition125k(int trigger_threshold)
69d88ec4 60{
ae8e8a43 61 DoAcquisition125k_internal(trigger_threshold, false);
69d88ec4
MHS
62}
63
b2256785 64/**
ba1a299c 65* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66* if not already loaded, sets divisor and starts up the antenna.
b2256785
MHS
67* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68* 0 or 95 ==> 125 KHz
ba1a299c 69*
b2256785 70**/
b014c96d 71void LFSetupFPGAForADC(int divisor, bool lf_field)
15c4dc5a 72{
ae8e8a43
MHS
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85 // Give it a bit of time for the resonant antenna to settle.
86 SpinDelay(50);
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
15c4dc5a 89}
b2256785 90/**
ba1a299c 91* Initializes the FPGA, and acquires the samples.
b2256785 92**/
69d88ec4 93void AcquireRawAdcSamples125k(int divisor)
15c4dc5a 94{
ae8e8a43
MHS
95 LFSetupFPGAForADC(divisor, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
b014c96d 98}
b2256785 99/**
ba1a299c 100* Initializes the FPGA for snoop-mode, and acquires the samples.
b2256785
MHS
101**/
102
b014c96d 103void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
104{
ae8e8a43
MHS
105 LFSetupFPGAForADC(divisor, false);
106 DoAcquisition125k(trigger_threshold);
15c4dc5a 107}
108
f7e3ed82 109void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
15c4dc5a 110{
15c4dc5a 111
ae8e8a43
MHS
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 SpinDelay(2500);
e30c654b 116
b2256785 117
ae8e8a43
MHS
118 int divisor_used = 95; // 125 KHz
119 // see if 'h' was specified
b2256785 120
ae8e8a43
MHS
121 if (command[strlen((char *) command) - 1] == 'h')
122 divisor_used = 88; // 134.8 KHz
15c4dc5a 123
15c4dc5a 124
ae8e8a43
MHS
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
127 // Give it a bit of time for the resonant antenna to settle.
128 SpinDelay(50);
b2256785 129
ae8e8a43
MHS
130 // And a little more time for the tag to fully power up
131 SpinDelay(2000);
15c4dc5a 132
ae8e8a43
MHS
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
134 FpgaSetupSsc();
15c4dc5a 135
ae8e8a43
MHS
136 // now modulate the reader field
137 while(*command != '\0' && *command != ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
139 LED_D_OFF();
140 SpinDelayUs(delay_off);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
15c4dc5a 142
ae8e8a43
MHS
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
144 LED_D_ON();
145 if(*(command++) == '0')
146 SpinDelayUs(period_0);
147 else
148 SpinDelayUs(period_1);
149 }
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
151 LED_D_OFF();
152 SpinDelayUs(delay_off);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
15c4dc5a 154
ae8e8a43 155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
15c4dc5a 156
ae8e8a43
MHS
157 // now do the read
158 DoAcquisition125k(-1);
15c4dc5a 159}
160
161/* blank r/w tag data stream
162...0000000000000000 01111111
1631010101010101010101010101010101010101010101010101010101010101010
1640011010010100001
16501111111
166101010101010101[0]000...
167
168[5555fe852c5555555555555555fe0000]
169*/
170void ReadTItag(void)
171{
ae8e8a43
MHS
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
ba1a299c 176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
ae8e8a43 179
117d9ec2 180 signed char *dest = (signed char *)BigBuf_get_addr();
181 uint16_t n = BigBuf_max_trace_len();
ae8e8a43
MHS
182 // 128 bit shift register [shift3:shift2:shift1:shift0]
183 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
184
185 int i, cycles=0, samples=0;
186 // how many sample points fit in 16 cycles of each frequency
187 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
188 // when to tell if we're close enough to one freq or another
189 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
190
191 // TI tags charge at 134.2Khz
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
194
195 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
196 // connects to SSP_DIN and the SSP_DOUT logic level controls
197 // whether we're modulating the antenna (high)
198 // or listening to the antenna (low)
199 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
200
201 // get TI tag data into the buffer
202 AcquireTiType();
203
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
205
206 for (i=0; i<n-1; i++) {
207 // count cycles by looking for lo to hi zero crossings
208 if ( (dest[i]<0) && (dest[i+1]>0) ) {
209 cycles++;
210 // after 16 cycles, measure the frequency
211 if (cycles>15) {
212 cycles=0;
213 samples=i-samples; // number of samples in these 16 cycles
214
215 // TI bits are coming to us lsb first so shift them
216 // right through our 128 bit right shift register
217 shift0 = (shift0>>1) | (shift1 << 31);
218 shift1 = (shift1>>1) | (shift2 << 31);
219 shift2 = (shift2>>1) | (shift3 << 31);
220 shift3 >>= 1;
221
222 // check if the cycles fall close to the number
223 // expected for either the low or high frequency
224 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
225 // low frequency represents a 1
226 shift3 |= (1<<31);
227 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
228 // high frequency represents a 0
229 } else {
230 // probably detected a gay waveform or noise
231 // use this as gaydar or discard shift register and start again
232 shift3 = shift2 = shift1 = shift0 = 0;
233 }
234 samples = i;
235
236 // for each bit we receive, test if we've detected a valid tag
237
238 // if we see 17 zeroes followed by 6 ones, we might have a tag
239 // remember the bits are backwards
240 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
241 // if start and end bytes match, we have a tag so break out of the loop
242 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
243 cycles = 0xF0B; //use this as a flag (ugly but whatever)
244 break;
245 }
246 }
247 }
248 }
249 }
250
251 // if flag is set we have a tag
252 if (cycles!=0xF0B) {
253 DbpString("Info: No valid tag detected.");
254 } else {
255 // put 64 bit data into shift1 and shift0
256 shift0 = (shift0>>24) | (shift1 << 8);
257 shift1 = (shift1>>24) | (shift2 << 8);
258
259 // align 16 bit crc into lower half of shift2
260 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
261
262 // if r/w tag, check ident match
ba1a299c 263 if (shift3 & (1<<15) ) {
ae8e8a43
MHS
264 DbpString("Info: TI tag is rewriteable");
265 // only 15 bits compare, last bit of ident is not valid
ba1a299c 266 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
ae8e8a43
MHS
267 DbpString("Error: Ident mismatch!");
268 } else {
269 DbpString("Info: TI tag ident is valid");
270 }
271 } else {
272 DbpString("Info: TI tag is readonly");
273 }
274
275 // WARNING the order of the bytes in which we calc crc below needs checking
276 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
277 // bytes in reverse or something
278 // calculate CRC
279 uint32_t crc=0;
280
281 crc = update_crc16(crc, (shift0)&0xff);
282 crc = update_crc16(crc, (shift0>>8)&0xff);
283 crc = update_crc16(crc, (shift0>>16)&0xff);
284 crc = update_crc16(crc, (shift0>>24)&0xff);
285 crc = update_crc16(crc, (shift1)&0xff);
286 crc = update_crc16(crc, (shift1>>8)&0xff);
287 crc = update_crc16(crc, (shift1>>16)&0xff);
288 crc = update_crc16(crc, (shift1>>24)&0xff);
289
290 Dbprintf("Info: Tag data: %x%08x, crc=%x",
291 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
292 if (crc != (shift2&0xffff)) {
293 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
294 } else {
295 DbpString("Info: CRC is good");
296 }
297 }
15c4dc5a 298}
299
f7e3ed82 300void WriteTIbyte(uint8_t b)
15c4dc5a 301{
ae8e8a43
MHS
302 int i = 0;
303
304 // modulate 8 bits out to the antenna
305 for (i=0; i<8; i++)
306 {
307 if (b&(1<<i)) {
308 // stop modulating antenna
309 LOW(GPIO_SSC_DOUT);
310 SpinDelayUs(1000);
311 // modulate antenna
312 HIGH(GPIO_SSC_DOUT);
313 SpinDelayUs(1000);
314 } else {
315 // stop modulating antenna
316 LOW(GPIO_SSC_DOUT);
317 SpinDelayUs(300);
318 // modulate antenna
319 HIGH(GPIO_SSC_DOUT);
320 SpinDelayUs(1700);
321 }
322 }
15c4dc5a 323}
324
325void AcquireTiType(void)
326{
ae8e8a43
MHS
327 int i, j, n;
328 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
329 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
ba1a299c 330 #define TIBUFLEN 1250
ae8e8a43
MHS
331
332 // clear buffer
117d9ec2 333 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
334 memset(BigBuf,0,BigBuf_max_trace_len()/sizeof(uint32_t));
ae8e8a43
MHS
335
336 // Set up the synchronous serial port
337 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
338 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
345 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
346
347 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
348 // 48/2 = 24 MHz clock must be divided by 12
349 AT91C_BASE_SSC->SSC_CMR = 12;
350
351 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
352 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
353 AT91C_BASE_SSC->SSC_TCMR = 0;
354 AT91C_BASE_SSC->SSC_TFMR = 0;
355
356 LED_D_ON();
357
358 // modulate antenna
359 HIGH(GPIO_SSC_DOUT);
360
361 // Charge TI tag for 50ms.
362 SpinDelay(50);
363
364 // stop modulating antenna and listen
365 LOW(GPIO_SSC_DOUT);
366
367 LED_D_OFF();
368
369 i = 0;
370 for(;;) {
371 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
372 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
373 i++; if(i >= TIBUFLEN) break;
374 }
375 WDT_HIT();
376 }
377
378 // return stolen pin to SSP
379 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
380 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
381
117d9ec2 382 char *dest = (char *)BigBuf_get_addr();
ae8e8a43
MHS
383 n = TIBUFLEN*32;
384 // unpack buffer
385 for (i=TIBUFLEN-1; i>=0; i--) {
386 for (j=0; j<32; j++) {
387 if(BigBuf[i] & (1 << j)) {
388 dest[--n] = 1;
389 } else {
390 dest[--n] = -1;
391 }
392 }
393 }
15c4dc5a 394}
395
396// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
397// if crc provided, it will be written with the data verbatim (even if bogus)
398// if not provided a valid crc will be computed from the data and written.
f7e3ed82 399void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
15c4dc5a 400{
ae8e8a43
MHS
401 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
402 if(crc == 0) {
403 crc = update_crc16(crc, (idlo)&0xff);
404 crc = update_crc16(crc, (idlo>>8)&0xff);
405 crc = update_crc16(crc, (idlo>>16)&0xff);
406 crc = update_crc16(crc, (idlo>>24)&0xff);
407 crc = update_crc16(crc, (idhi)&0xff);
408 crc = update_crc16(crc, (idhi>>8)&0xff);
409 crc = update_crc16(crc, (idhi>>16)&0xff);
410 crc = update_crc16(crc, (idhi>>24)&0xff);
411 }
412 Dbprintf("Writing to tag: %x%08x, crc=%x",
413 (unsigned int) idhi, (unsigned int) idlo, crc);
414
415 // TI tags charge at 134.2Khz
416 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
417 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
418 // connects to SSP_DIN and the SSP_DOUT logic level controls
419 // whether we're modulating the antenna (high)
420 // or listening to the antenna (low)
421 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
422 LED_A_ON();
423
424 // steal this pin from the SSP and use it to control the modulation
425 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
426 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
427
428 // writing algorithm:
429 // a high bit consists of a field off for 1ms and field on for 1ms
430 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
431 // initiate a charge time of 50ms (field on) then immediately start writing bits
432 // start by writing 0xBB (keyword) and 0xEB (password)
433 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
434 // finally end with 0x0300 (write frame)
435 // all data is sent lsb firts
436 // finish with 15ms programming time
437
438 // modulate antenna
439 HIGH(GPIO_SSC_DOUT);
440 SpinDelay(50); // charge time
441
442 WriteTIbyte(0xbb); // keyword
443 WriteTIbyte(0xeb); // password
444 WriteTIbyte( (idlo )&0xff );
445 WriteTIbyte( (idlo>>8 )&0xff );
446 WriteTIbyte( (idlo>>16)&0xff );
447 WriteTIbyte( (idlo>>24)&0xff );
448 WriteTIbyte( (idhi )&0xff );
449 WriteTIbyte( (idhi>>8 )&0xff );
450 WriteTIbyte( (idhi>>16)&0xff );
451 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
452 WriteTIbyte( (crc )&0xff ); // crc lo
453 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
454 WriteTIbyte(0x00); // write frame lo
455 WriteTIbyte(0x03); // write frame hi
456 HIGH(GPIO_SSC_DOUT);
457 SpinDelay(50); // programming time
458
459 LED_A_OFF();
460
461 // get TI tag data into the buffer
462 AcquireTiType();
463
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
465 DbpString("Now use tiread to check");
15c4dc5a 466}
467
468void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
469{
ae8e8a43 470 int i;
117d9ec2 471 uint8_t *tab = BigBuf_get_addr();
ba1a299c 472
ae8e8a43
MHS
473 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
474 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
ba1a299c 475
ae8e8a43 476 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
ba1a299c 477
ae8e8a43
MHS
478 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
479 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
ba1a299c 480
15c4dc5a 481#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
482#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
ba1a299c 483
ae8e8a43
MHS
484 i = 0;
485 for(;;) {
486 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
487 if(BUTTON_PRESS()) {
488 DbpString("Stopped");
489 return;
490 }
491 WDT_HIT();
492 }
952a8bb5 493
ae8e8a43
MHS
494 if (ledcontrol)
495 LED_D_ON();
952a8bb5 496
ae8e8a43
MHS
497 if(tab[i])
498 OPEN_COIL();
499 else
500 SHORT_COIL();
952a8bb5 501
ae8e8a43
MHS
502 if (ledcontrol)
503 LED_D_OFF();
952a8bb5 504
ae8e8a43
MHS
505 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
506 if(BUTTON_PRESS()) {
507 DbpString("Stopped");
508 return;
509 }
510 WDT_HIT();
511 }
952a8bb5 512
ae8e8a43
MHS
513 i++;
514 if(i == period) {
515 i = 0;
516 if (gap) {
517 SHORT_COIL();
518 SpinDelayUs(gap);
519 }
520 }
521 }
15c4dc5a 522}
523
15c4dc5a 524#define DEBUG_FRAME_CONTENTS 1
525void SimulateTagLowFrequencyBidir(int divisor, int t0)
526{
15c4dc5a 527}
528
529// compose fc/8 fc/10 waveform
530static void fc(int c, int *n) {
117d9ec2 531 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
532 int idx;
533
534 // for when we want an fc8 pattern every 4 logical bits
535 if(c==0) {
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 }
545 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
546 if(c==8) {
547 for (idx=0; idx<6; idx++) {
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 }
557 }
558
559 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
560 if(c==10) {
561 for (idx=0; idx<5; idx++) {
562 dest[((*n)++)]=1;
563 dest[((*n)++)]=1;
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=0;
566 dest[((*n)++)]=0;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 }
573 }
15c4dc5a 574}
575
576// prepare a waveform pattern in the buffer based on the ID given then
577// simulate a HID tag until the button is pressed
578void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
579{
ae8e8a43
MHS
580 int n=0, i=0;
581 /*
582 HID tag bitstream format
583 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
584 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
585 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
586 A fc8 is inserted before every 4 bits
587 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
588 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
589 */
590
591 if (hi>0xFFF) {
592 DbpString("Tags can only have 44 bits.");
593 return;
594 }
595 fc(0,&n);
596 // special start of frame marker containing invalid bit sequences
597 fc(8, &n); fc(8, &n); // invalid
598 fc(8, &n); fc(10, &n); // logical 0
599 fc(10, &n); fc(10, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601
602 WDT_HIT();
603 // manchester encode bits 43 to 32
604 for (i=11; i>=0; i--) {
605 if ((i%4)==3) fc(0,&n);
606 if ((hi>>i)&1) {
607 fc(10, &n); fc(8, &n); // low-high transition
608 } else {
609 fc(8, &n); fc(10, &n); // high-low transition
610 }
611 }
612
613 WDT_HIT();
614 // manchester encode bits 31 to 0
615 for (i=31; i>=0; i--) {
616 if ((i%4)==3) fc(0,&n);
617 if ((lo>>i)&1) {
618 fc(10, &n); fc(8, &n); // low-high transition
619 } else {
620 fc(8, &n); fc(10, &n); // high-low transition
621 }
622 }
623
624 if (ledcontrol)
625 LED_A_ON();
626 SimulateTagLowFrequency(n, 0, ledcontrol);
627
628 if (ledcontrol)
629 LED_A_OFF();
15c4dc5a 630}
eb191de6 631
b3b70669 632// loop to get raw HID waveform then FSK demodulate the TAG ID from it
69d88ec4
MHS
633void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
634{
117d9ec2 635 uint8_t *dest = BigBuf_get_addr();
ae8e8a43 636
a1d17964 637 size_t size=sizeof(BigBuf);
ae8e8a43 638 uint32_t hi2=0, hi=0, lo=0;
a1d17964 639 int idx=0;
ae8e8a43
MHS
640 // Configure to go in 125Khz listen mode
641 LFSetupFPGAForADC(95, true);
642
643 while(!BUTTON_PRESS()) {
644
645 WDT_HIT();
646 if (ledcontrol) LED_A_ON();
647
648 DoAcquisition125k_internal(-1,true);
ae8e8a43 649 // FSK demodulator
117d9ec2 650 idx = HIDdemodFSK(dest, BigBuf_max_trace_len(), &hi2, &hi, &lo);
ae8e8a43 651 WDT_HIT();
a1d17964 652 size = sizeof(BigBuf);
ae8e8a43 653
a1d17964 654 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
655
ec75f5c1 656 if (idx>0 && lo>0){
ae8e8a43
MHS
657 // final loop, go over previously decoded manchester data and decode into usable tag ID
658 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
659 if (hi2 != 0){ //extra large HID tags
660 Dbprintf("TAG ID: %x%08x%08x (%d)",
661 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
662 }else { //standard HID tags <38 bits
663 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
664 uint8_t bitlen = 0;
665 uint32_t fc = 0;
666 uint32_t cardnum = 0;
ba1a299c 667 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
ae8e8a43
MHS
668 uint32_t lo2=0;
669 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
670 uint8_t idx3 = 1;
ba1a299c 671 while(lo2 > 1){ //find last bit set to 1 (format len bit)
672 lo2=lo2 >> 1;
ae8e8a43
MHS
673 idx3++;
674 }
ba1a299c 675 bitlen = idx3+19;
ae8e8a43
MHS
676 fc =0;
677 cardnum=0;
ba1a299c 678 if(bitlen == 26){
ae8e8a43
MHS
679 cardnum = (lo>>1)&0xFFFF;
680 fc = (lo>>17)&0xFF;
681 }
ba1a299c 682 if(bitlen == 37){
ae8e8a43
MHS
683 cardnum = (lo>>1)&0x7FFFF;
684 fc = ((hi&0xF)<<12)|(lo>>20);
685 }
ba1a299c 686 if(bitlen == 34){
ae8e8a43
MHS
687 cardnum = (lo>>1)&0xFFFF;
688 fc= ((hi&1)<<15)|(lo>>17);
689 }
ba1a299c 690 if(bitlen == 35){
ae8e8a43
MHS
691 cardnum = (lo>>1)&0xFFFFF;
692 fc = ((hi&1)<<11)|(lo>>21);
693 }
694 }
695 else { //if bit 38 is not set then 37 bit format is used
696 bitlen= 37;
697 fc =0;
698 cardnum=0;
699 if(bitlen==37){
700 cardnum = (lo>>1)&0x7FFFF;
701 fc = ((hi&0xF)<<12)|(lo>>20);
702 }
703 }
704 //Dbprintf("TAG ID: %x%08x (%d)",
705 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
706 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
707 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
708 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
709 }
710 if (findone){
711 if (ledcontrol) LED_A_OFF();
712 return;
713 }
714 // reset
715 hi2 = hi = lo = 0;
716 }
717 WDT_HIT();
ae8e8a43
MHS
718 }
719 DbpString("Stopped");
720 if (ledcontrol) LED_A_OFF();
eb191de6 721}
722
66707a3b 723void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
eb191de6 724{
117d9ec2 725 uint8_t *dest = BigBuf_get_addr();
ae8e8a43 726
ec75f5c1 727 size_t size=0, idx=0;
ae8e8a43
MHS
728 int clk=0, invert=0, errCnt=0;
729 uint64_t lo=0;
730 // Configure to go in 125Khz listen mode
731 LFSetupFPGAForADC(95, true);
732
733 while(!BUTTON_PRESS()) {
734
735 WDT_HIT();
736 if (ledcontrol) LED_A_ON();
737
738 DoAcquisition125k_internal(-1,true);
117d9ec2 739 size = BigBuf_max_trace_len();
ae8e8a43 740 //Dbprintf("DEBUG: Buffer got");
d91a31f9 741 //askdemod and manchester decode
742 errCnt = askmandemod(dest, &size, &clk, &invert);
ae8e8a43
MHS
743 //Dbprintf("DEBUG: ASK Got");
744 WDT_HIT();
745
746 if (errCnt>=0){
ec75f5c1 747 lo = Em410xDecode(dest, &size, &idx);
ae8e8a43 748 //Dbprintf("DEBUG: EM GOT");
ae8e8a43 749 if (lo>0){
d91a31f9 750 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
751 (uint32_t)(lo>>32),
752 (uint32_t)lo,
753 (uint32_t)(lo&0xFFFF),
754 (uint32_t)((lo>>16LL) & 0xFF),
755 (uint32_t)(lo & 0xFFFFFF));
ae8e8a43
MHS
756 }
757 if (findone){
758 if (ledcontrol) LED_A_OFF();
759 return;
760 }
761 } else{
762 //Dbprintf("DEBUG: No Tag");
763 }
764 WDT_HIT();
765 lo = 0;
766 clk=0;
767 invert=0;
768 errCnt=0;
769 size=0;
ae8e8a43
MHS
770 }
771 DbpString("Stopped");
772 if (ledcontrol) LED_A_OFF();
15c4dc5a 773}
69d88ec4 774
a1f3bb12 775void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
eb191de6 776{
117d9ec2 777 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
778 int idx=0;
779 uint32_t code=0, code2=0;
780 uint8_t version=0;
781 uint8_t facilitycode=0;
782 uint16_t number=0;
783 // Configure to go in 125Khz listen mode
784 LFSetupFPGAForADC(95, true);
785
786 while(!BUTTON_PRESS()) {
787 WDT_HIT();
788 if (ledcontrol) LED_A_ON();
789 DoAcquisition125k_internal(-1,true);
790 //fskdemod and get start index
791 WDT_HIT();
117d9ec2 792 idx = IOdemodFSK(dest, BigBuf_max_trace_len());
ae8e8a43
MHS
793 if (idx>0){
794 //valid tag found
795
796 //Index map
797 //0 10 20 30 40 50 60
798 //| | | | | | |
799 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
800 //-----------------------------------------------------------------------------
801 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
802 //
803 //XSF(version)facility:codeone+codetwo
804 //Handle the data
805 if(findone){ //only print binary if we are doing one
806 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
807 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
808 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
809 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
810 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
811 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
812 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
813 }
814 code = bytebits_to_byte(dest+idx,32);
815 code2 = bytebits_to_byte(dest+idx+32,32);
816 version = bytebits_to_byte(dest+idx+27,8); //14,4
817 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
818 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
819
820 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
821 // if we're only looking for one tag
822 if (findone){
823 if (ledcontrol) LED_A_OFF();
824 //LED_A_OFF();
825 return;
826 }
827 code=code2=0;
828 version=facilitycode=0;
829 number=0;
830 idx=0;
831 }
832 WDT_HIT();
833 }
834 DbpString("Stopped");
835 if (ledcontrol) LED_A_OFF();
eb191de6 836}
a1f3bb12 837
2d4eae76 838/*------------------------------
839 * T5555/T5557/T5567 routines
840 *------------------------------
841 */
842
843/* T55x7 configuration register definitions */
844#define T55x7_POR_DELAY 0x00000001
845#define T55x7_ST_TERMINATOR 0x00000008
846#define T55x7_PWD 0x00000010
847#define T55x7_MAXBLOCK_SHIFT 5
848#define T55x7_AOR 0x00000200
849#define T55x7_PSKCF_RF_2 0
850#define T55x7_PSKCF_RF_4 0x00000400
851#define T55x7_PSKCF_RF_8 0x00000800
852#define T55x7_MODULATION_DIRECT 0
853#define T55x7_MODULATION_PSK1 0x00001000
854#define T55x7_MODULATION_PSK2 0x00002000
855#define T55x7_MODULATION_PSK3 0x00003000
856#define T55x7_MODULATION_FSK1 0x00004000
857#define T55x7_MODULATION_FSK2 0x00005000
858#define T55x7_MODULATION_FSK1a 0x00006000
859#define T55x7_MODULATION_FSK2a 0x00007000
860#define T55x7_MODULATION_MANCHESTER 0x00008000
861#define T55x7_MODULATION_BIPHASE 0x00010000
862#define T55x7_BITRATE_RF_8 0
863#define T55x7_BITRATE_RF_16 0x00040000
864#define T55x7_BITRATE_RF_32 0x00080000
865#define T55x7_BITRATE_RF_40 0x000C0000
866#define T55x7_BITRATE_RF_50 0x00100000
867#define T55x7_BITRATE_RF_64 0x00140000
868#define T55x7_BITRATE_RF_100 0x00180000
869#define T55x7_BITRATE_RF_128 0x001C0000
870
871/* T5555 (Q5) configuration register definitions */
872#define T5555_ST_TERMINATOR 0x00000001
873#define T5555_MAXBLOCK_SHIFT 0x00000001
874#define T5555_MODULATION_MANCHESTER 0
875#define T5555_MODULATION_PSK1 0x00000010
876#define T5555_MODULATION_PSK2 0x00000020
877#define T5555_MODULATION_PSK3 0x00000030
878#define T5555_MODULATION_FSK1 0x00000040
879#define T5555_MODULATION_FSK2 0x00000050
880#define T5555_MODULATION_BIPHASE 0x00000060
881#define T5555_MODULATION_DIRECT 0x00000070
882#define T5555_INVERT_OUTPUT 0x00000080
883#define T5555_PSK_RF_2 0
884#define T5555_PSK_RF_4 0x00000100
885#define T5555_PSK_RF_8 0x00000200
886#define T5555_USE_PWD 0x00000400
887#define T5555_USE_AOR 0x00000800
888#define T5555_BITRATE_SHIFT 12
889#define T5555_FAST_WRITE 0x00004000
890#define T5555_PAGE_SELECT 0x00008000
891
892/*
893 * Relevant times in microsecond
894 * To compensate antenna falling times shorten the write times
895 * and enlarge the gap ones.
896 */
897#define START_GAP 250
898#define WRITE_GAP 160
899#define WRITE_0 144 // 192
900#define WRITE_1 400 // 432 for T55x7; 448 for E5550
901
902// Write one bit to card
903void T55xxWriteBit(int bit)
ec09b62d 904{
ae8e8a43
MHS
905 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
906 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
907 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
908 if (bit == 0)
909 SpinDelayUs(WRITE_0);
910 else
911 SpinDelayUs(WRITE_1);
912 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
913 SpinDelayUs(WRITE_GAP);
ec09b62d 914}
915
2d4eae76 916// Write one card block in page 0, no lock
54a942b0 917void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
ec09b62d 918{
ae8e8a43
MHS
919 //unsigned int i; //enio adjustment 12/10/14
920 uint32_t i;
921
922 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
923 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
924 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
925
926 // Give it a bit of time for the resonant antenna to settle.
927 // And for the tag to fully power up
928 SpinDelay(150);
929
930 // Now start writting
931 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
932 SpinDelayUs(START_GAP);
933
934 // Opcode
935 T55xxWriteBit(1);
936 T55xxWriteBit(0); //Page 0
937 if (PwdMode == 1){
938 // Pwd
939 for (i = 0x80000000; i != 0; i >>= 1)
940 T55xxWriteBit(Pwd & i);
941 }
942 // Lock bit
943 T55xxWriteBit(0);
944
945 // Data
54a942b0 946 for (i = 0x80000000; i != 0; i >>= 1)
ae8e8a43
MHS
947 T55xxWriteBit(Data & i);
948
949 // Block
950 for (i = 0x04; i != 0; i >>= 1)
951 T55xxWriteBit(Block & i);
952
953 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
954 // so wait a little more)
955 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
956 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
957 SpinDelay(20);
958 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ec09b62d 959}
960
54a942b0 961// Read one card block in page 0
962void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
ec09b62d 963{
117d9ec2 964 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
965 //int m=0, i=0; //enio adjustment 12/10/14
966 uint32_t m=0, i=0;
967 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
117d9ec2 968 m = BigBuf_max_trace_len();
ae8e8a43
MHS
969 // Clear destination buffer before sending the command
970 memset(dest, 128, m);
971 // Connect the A/D to the peak-detected low-frequency path.
972 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
973 // Now set up the SSC to get the ADC samples that are now streaming at us.
974 FpgaSetupSsc();
975
976 LED_D_ON();
977 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
978 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
979
980 // Give it a bit of time for the resonant antenna to settle.
981 // And for the tag to fully power up
982 SpinDelay(150);
983
984 // Now start writting
985 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
986 SpinDelayUs(START_GAP);
987
988 // Opcode
989 T55xxWriteBit(1);
990 T55xxWriteBit(0); //Page 0
991 if (PwdMode == 1){
992 // Pwd
993 for (i = 0x80000000; i != 0; i >>= 1)
994 T55xxWriteBit(Pwd & i);
995 }
996 // Lock bit
997 T55xxWriteBit(0);
998 // Block
999 for (i = 0x04; i != 0; i >>= 1)
1000 T55xxWriteBit(Block & i);
1001
1002 // Turn field on to read the response
1003 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1004 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1005
1006 // Now do the acquisition
1007 i = 0;
1008 for(;;) {
1009 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1010 AT91C_BASE_SSC->SSC_THR = 0x43;
1011 }
1012 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1013 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1014 // we don't care about actual value, only if it's more or less than a
1015 // threshold essentially we capture zero crossings for later analysis
1016 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1017 i++;
1018 if (i >= m) break;
1019 }
1020 }
1021
1022 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1023 LED_D_OFF();
1024 DbpString("DONE!");
54a942b0 1025}
2d4eae76 1026
54a942b0 1027// Read card traceability data (page 1)
1028void T55xxReadTrace(void){
117d9ec2 1029 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
1030 int m=0, i=0;
1031
1032 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
117d9ec2 1033 m = BigBuf_max_trace_len();
ae8e8a43
MHS
1034 // Clear destination buffer before sending the command
1035 memset(dest, 128, m);
1036 // Connect the A/D to the peak-detected low-frequency path.
1037 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1038 // Now set up the SSC to get the ADC samples that are now streaming at us.
1039 FpgaSetupSsc();
1040
1041 LED_D_ON();
1042 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1043 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1044
1045 // Give it a bit of time for the resonant antenna to settle.
1046 // And for the tag to fully power up
1047 SpinDelay(150);
1048
1049 // Now start writting
1050 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1051 SpinDelayUs(START_GAP);
1052
1053 // Opcode
1054 T55xxWriteBit(1);
1055 T55xxWriteBit(1); //Page 1
1056
1057 // Turn field on to read the response
1058 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1059 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1060
1061 // Now do the acquisition
1062 i = 0;
1063 for(;;) {
1064 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1065 AT91C_BASE_SSC->SSC_THR = 0x43;
1066 }
1067 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1068 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1069 i++;
1070 if (i >= m) break;
1071 }
1072 }
1073
1074 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1075 LED_D_OFF();
1076 DbpString("DONE!");
54a942b0 1077}
ec09b62d 1078
54a942b0 1079/*-------------- Cloning routines -----------*/
1080// Copy HID id to card and setup block 0 config
1081void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1082{
ae8e8a43
MHS
1083 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1084 int last_block = 0;
1085
1086 if (longFMT){
1087 // Ensure no more than 84 bits supplied
1088 if (hi2>0xFFFFF) {
1089 DbpString("Tags can only have 84 bits.");
1090 return;
1091 }
1092 // Build the 6 data blocks for supplied 84bit ID
1093 last_block = 6;
1094 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1095 for (int i=0;i<4;i++) {
1096 if (hi2 & (1<<(19-i)))
1097 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1098 else
1099 data1 |= (1<<((3-i)*2)); // 0 -> 01
1100 }
1101
1102 data2 = 0;
1103 for (int i=0;i<16;i++) {
1104 if (hi2 & (1<<(15-i)))
1105 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1106 else
1107 data2 |= (1<<((15-i)*2)); // 0 -> 01
1108 }
1109
1110 data3 = 0;
1111 for (int i=0;i<16;i++) {
1112 if (hi & (1<<(31-i)))
1113 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1114 else
1115 data3 |= (1<<((15-i)*2)); // 0 -> 01
1116 }
1117
1118 data4 = 0;
1119 for (int i=0;i<16;i++) {
1120 if (hi & (1<<(15-i)))
1121 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1122 else
1123 data4 |= (1<<((15-i)*2)); // 0 -> 01
1124 }
1125
1126 data5 = 0;
1127 for (int i=0;i<16;i++) {
1128 if (lo & (1<<(31-i)))
1129 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1130 else
1131 data5 |= (1<<((15-i)*2)); // 0 -> 01
1132 }
1133
1134 data6 = 0;
1135 for (int i=0;i<16;i++) {
1136 if (lo & (1<<(15-i)))
1137 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1138 else
1139 data6 |= (1<<((15-i)*2)); // 0 -> 01
1140 }
54a942b0 1141 }
ae8e8a43
MHS
1142 else {
1143 // Ensure no more than 44 bits supplied
1144 if (hi>0xFFF) {
1145 DbpString("Tags can only have 44 bits.");
1146 return;
1147 }
1148
1149 // Build the 3 data blocks for supplied 44bit ID
1150 last_block = 3;
1151
1152 data1 = 0x1D000000; // load preamble
1153
1154 for (int i=0;i<12;i++) {
1155 if (hi & (1<<(11-i)))
1156 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1157 else
1158 data1 |= (1<<((11-i)*2)); // 0 -> 01
1159 }
1160
1161 data2 = 0;
1162 for (int i=0;i<16;i++) {
1163 if (lo & (1<<(31-i)))
1164 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1165 else
1166 data2 |= (1<<((15-i)*2)); // 0 -> 01
1167 }
1168
1169 data3 = 0;
1170 for (int i=0;i<16;i++) {
1171 if (lo & (1<<(15-i)))
1172 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1173 else
1174 data3 |= (1<<((15-i)*2)); // 0 -> 01
1175 }
54a942b0 1176 }
ae8e8a43
MHS
1177
1178 LED_D_ON();
1179 // Program the data blocks for supplied ID
1180 // and the block 0 for HID format
1181 T55xxWriteBlock(data1,1,0,0);
1182 T55xxWriteBlock(data2,2,0,0);
1183 T55xxWriteBlock(data3,3,0,0);
1184
1185 if (longFMT) { // if long format there are 6 blocks
1186 T55xxWriteBlock(data4,4,0,0);
1187 T55xxWriteBlock(data5,5,0,0);
1188 T55xxWriteBlock(data6,6,0,0);
54a942b0 1189 }
ae8e8a43
MHS
1190
1191 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1192 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1193 T55x7_MODULATION_FSK2a |
1194 last_block << T55x7_MAXBLOCK_SHIFT,
1195 0,0,0);
1196
1197 LED_D_OFF();
1198
1199 DbpString("DONE!");
2d4eae76 1200}
ec09b62d 1201
a1f3bb12 1202void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1203{
ae8e8a43
MHS
1204 int data1=0, data2=0; //up to six blocks for long format
1205
a1f3bb12 1206 data1 = hi; // load preamble
1207 data2 = lo;
ba1a299c 1208
a1f3bb12 1209 LED_D_ON();
1210 // Program the data blocks for supplied ID
1211 // and the block 0 for HID format
1212 T55xxWriteBlock(data1,1,0,0);
1213 T55xxWriteBlock(data2,2,0,0);
ae8e8a43 1214
a1f3bb12 1215 //Config Block
1216 T55xxWriteBlock(0x00147040,0,0,0);
1217 LED_D_OFF();
ae8e8a43 1218
a1f3bb12 1219 DbpString("DONE!");
1220}
1221
2d4eae76 1222// Define 9bit header for EM410x tags
1223#define EM410X_HEADER 0x1FF
1224#define EM410X_ID_LENGTH 40
ec09b62d 1225
2d4eae76 1226void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1227{
ae8e8a43
MHS
1228 int i, id_bit;
1229 uint64_t id = EM410X_HEADER;
1230 uint64_t rev_id = 0; // reversed ID
1231 int c_parity[4]; // column parity
1232 int r_parity = 0; // row parity
1233 uint32_t clock = 0;
1234
1235 // Reverse ID bits given as parameter (for simpler operations)
1236 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1237 if (i < 32) {
1238 rev_id = (rev_id << 1) | (id_lo & 1);
1239 id_lo >>= 1;
1240 } else {
1241 rev_id = (rev_id << 1) | (id_hi & 1);
1242 id_hi >>= 1;
1243 }
1244 }
1245
1246 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1247 id_bit = rev_id & 1;
1248
1249 if (i % 4 == 0) {
1250 // Don't write row parity bit at start of parsing
1251 if (i)
1252 id = (id << 1) | r_parity;
1253 // Start counting parity for new row
1254 r_parity = id_bit;
1255 } else {
1256 // Count row parity
1257 r_parity ^= id_bit;
1258 }
1259
1260 // First elements in column?
1261 if (i < 4)
1262 // Fill out first elements
1263 c_parity[i] = id_bit;
1264 else
1265 // Count column parity
1266 c_parity[i % 4] ^= id_bit;
1267
1268 // Insert ID bit
1269 id = (id << 1) | id_bit;
1270 rev_id >>= 1;
1271 }
1272
1273 // Insert parity bit of last row
1274 id = (id << 1) | r_parity;
1275
1276 // Fill out column parity at the end of tag
1277 for (i = 0; i < 4; ++i)
1278 id = (id << 1) | c_parity[i];
1279
1280 // Add stop bit
1281 id <<= 1;
1282
1283 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1284 LED_D_ON();
1285
1286 // Write EM410x ID
1287 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1288 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1289
1290 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1291 if (card) {
1292 // Clock rate is stored in bits 8-15 of the card value
1293 clock = (card & 0xFF00) >> 8;
1294 Dbprintf("Clock rate: %d", clock);
1295 switch (clock)
1296 {
1297 case 32:
1298 clock = T55x7_BITRATE_RF_32;
1299 break;
1300 case 16:
1301 clock = T55x7_BITRATE_RF_16;
1302 break;
1303 case 0:
1304 // A value of 0 is assumed to be 64 for backwards-compatibility
1305 // Fall through...
1306 case 64:
1307 clock = T55x7_BITRATE_RF_64;
1308 break;
1309 default:
1310 Dbprintf("Invalid clock rate: %d", clock);
1311 return;
1312 }
1313
1314 // Writing configuration for T55x7 tag
1315 T55xxWriteBlock(clock |
1316 T55x7_MODULATION_MANCHESTER |
1317 2 << T55x7_MAXBLOCK_SHIFT,
1318 0, 0, 0);
1319 }
1320 else
1321 // Writing configuration for T5555(Q5) tag
1322 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1323 T5555_MODULATION_MANCHESTER |
1324 2 << T5555_MAXBLOCK_SHIFT,
1325 0, 0, 0);
1326
1327 LED_D_OFF();
1328 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1329 (uint32_t)(id >> 32), (uint32_t)id);
2d4eae76 1330}
2414f978 1331
1332// Clone Indala 64-bit tag by UID to T55x7
1333void CopyIndala64toT55x7(int hi, int lo)
1334{
2414f978 1335
ae8e8a43
MHS
1336 //Program the 2 data blocks for supplied 64bit UID
1337 // and the block 0 for Indala64 format
1338 T55xxWriteBlock(hi,1,0,0);
1339 T55xxWriteBlock(lo,2,0,0);
1340 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1341 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1342 T55x7_MODULATION_PSK1 |
1343 2 << T55x7_MAXBLOCK_SHIFT,
1344 0, 0, 0);
1345 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1346 // T5567WriteBlock(0x603E1042,0);
2414f978 1347
ae8e8a43 1348 DbpString("DONE!");
4118b74d 1349
ba1a299c 1350}
2414f978 1351
1352void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1353{
ae8e8a43 1354
ae8e8a43
MHS
1355 //Program the 7 data blocks for supplied 224bit UID
1356 // and the block 0 for Indala224 format
1357 T55xxWriteBlock(uid1,1,0,0);
1358 T55xxWriteBlock(uid2,2,0,0);
1359 T55xxWriteBlock(uid3,3,0,0);
1360 T55xxWriteBlock(uid4,4,0,0);
1361 T55xxWriteBlock(uid5,5,0,0);
1362 T55xxWriteBlock(uid6,6,0,0);
1363 T55xxWriteBlock(uid7,7,0,0);
1364 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1365 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1366 T55x7_MODULATION_PSK1 |
1367 7 << T55x7_MAXBLOCK_SHIFT,
1368 0,0,0);
1369 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1370 // T5567WriteBlock(0x603E10E2,0);
1371
1372 DbpString("DONE!");
4118b74d 1373
2414f978 1374}
54a942b0 1375
1376
1377#define abs(x) ( ((x)<0) ? -(x) : (x) )
1378#define max(x,y) ( x<y ? y:x)
1379
1380int DemodPCF7931(uint8_t **outBlocks) {
ae8e8a43
MHS
1381 uint8_t BitStream[256];
1382 uint8_t Blocks[8][16];
117d9ec2 1383 uint8_t *GraphBuffer = BigBuf_get_addr();
1384 int GraphTraceLen = BigBuf_max_trace_len();
ae8e8a43
MHS
1385 int i, j, lastval, bitidx, half_switch;
1386 int clock = 64;
1387 int tolerance = clock / 8;
1388 int pmc, block_done;
1389 int lc, warnings = 0;
1390 int num_blocks = 0;
1391 int lmin=128, lmax=128;
1392 uint8_t dir;
1393
1394 AcquireRawAdcSamples125k(0);
1395
1396 lmin = 64;
1397 lmax = 192;
1398
1399 i = 2;
1400
1401 /* Find first local max/min */
1402 if(GraphBuffer[1] > GraphBuffer[0]) {
1403 while(i < GraphTraceLen) {
1404 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1405 break;
1406 i++;
1407 }
1408 dir = 0;
54a942b0 1409 }
ae8e8a43
MHS
1410 else {
1411 while(i < GraphTraceLen) {
1412 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1413 break;
1414 i++;
1415 }
1416 dir = 1;
54a942b0 1417 }
ae8e8a43
MHS
1418
1419 lastval = i++;
1420 half_switch = 0;
1421 pmc = 0;
1422 block_done = 0;
1423
1424 for (bitidx = 0; i < GraphTraceLen; i++)
1425 {
1426 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1427 {
1428 lc = i - lastval;
1429 lastval = i;
1430
1431 // Switch depending on lc length:
1432 // Tolerance is 1/8 of clock rate (arbitrary)
1433 if (abs(lc-clock/4) < tolerance) {
1434 // 16T0
1435 if((i - pmc) == lc) { /* 16T0 was previous one */
1436 /* It's a PMC ! */
1437 i += (128+127+16+32+33+16)-1;
1438 lastval = i;
1439 pmc = 0;
1440 block_done = 1;
1441 }
1442 else {
1443 pmc = i;
1444 }
1445 } else if (abs(lc-clock/2) < tolerance) {
1446 // 32TO
1447 if((i - pmc) == lc) { /* 16T0 was previous one */
1448 /* It's a PMC ! */
1449 i += (128+127+16+32+33)-1;
1450 lastval = i;
1451 pmc = 0;
1452 block_done = 1;
1453 }
1454 else if(half_switch == 1) {
1455 BitStream[bitidx++] = 0;
1456 half_switch = 0;
1457 }
1458 else
1459 half_switch++;
1460 } else if (abs(lc-clock) < tolerance) {
1461 // 64TO
1462 BitStream[bitidx++] = 1;
1463 } else {
1464 // Error
1465 warnings++;
1466 if (warnings > 10)
1467 {
1468 Dbprintf("Error: too many detection errors, aborting.");
1469 return 0;
1470 }
1471 }
1472
1473 if(block_done == 1) {
1474 if(bitidx == 128) {
1475 for(j=0; j<16; j++) {
1476 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1477 64*BitStream[j*8+6]+
1478 32*BitStream[j*8+5]+
1479 16*BitStream[j*8+4]+
1480 8*BitStream[j*8+3]+
1481 4*BitStream[j*8+2]+
1482 2*BitStream[j*8+1]+
1483 BitStream[j*8];
1484 }
1485 num_blocks++;
1486 }
1487 bitidx = 0;
1488 block_done = 0;
1489 half_switch = 0;
1490 }
1491 if(i < GraphTraceLen)
1492 {
1493 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1494 else dir = 1;
1495 }
1496 }
1497 if(bitidx==255)
1498 bitidx=0;
1499 warnings = 0;
1500 if(num_blocks == 4) break;
1501 }
1502 memcpy(outBlocks, Blocks, 16*num_blocks);
1503 return num_blocks;
54a942b0 1504}
1505
1506int IsBlock0PCF7931(uint8_t *Block) {
ae8e8a43
MHS
1507 // Assume RFU means 0 :)
1508 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1509 return 1;
1510 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1511 return 1;
1512 return 0;
54a942b0 1513}
1514
1515int IsBlock1PCF7931(uint8_t *Block) {
ae8e8a43
MHS
1516 // Assume RFU means 0 :)
1517 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1518 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1519 return 1;
1520
1521 return 0;
54a942b0 1522}
d91a31f9 1523
54a942b0 1524#define ALLOC 16
1525
1526void ReadPCF7931() {
ae8e8a43
MHS
1527 uint8_t Blocks[8][17];
1528 uint8_t tmpBlocks[4][16];
1529 int i, j, ind, ind2, n;
1530 int num_blocks = 0;
1531 int max_blocks = 8;
1532 int ident = 0;
1533 int error = 0;
1534 int tries = 0;
1535
1536 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1537
1538 do {
1539 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1540 n = DemodPCF7931((uint8_t**)tmpBlocks);
1541 if(!n)
1542 error++;
1543 if(error==10 && num_blocks == 0) {
1544 Dbprintf("Error, no tag or bad tag");
1545 return;
54a942b0 1546 }
ae8e8a43
MHS
1547 else if (tries==20 || error==10) {
1548 Dbprintf("Error reading the tag");
1549 Dbprintf("Here is the partial content");
1550 goto end;
1551 }
1552
1553 for(i=0; i<n; i++)
1554 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1555 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1556 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1557 if(!ident) {
1558 for(i=0; i<n; i++) {
1559 if(IsBlock0PCF7931(tmpBlocks[i])) {
1560 // Found block 0 ?
1561 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1562 // Found block 1!
1563 // \o/
1564 ident = 1;
1565 memcpy(Blocks[0], tmpBlocks[i], 16);
1566 Blocks[0][ALLOC] = 1;
1567 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1568 Blocks[1][ALLOC] = 1;
1569 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1570 // Debug print
1571 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1572 num_blocks = 2;
1573 // Handle following blocks
1574 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1575 if(j==n) j=0;
1576 if(j==i) break;
1577 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1578 Blocks[ind2][ALLOC] = 1;
1579 }
1580 break;
1581 }
54a942b0 1582 }
ae8e8a43
MHS
1583 }
1584 }
1585 else {
1586 for(i=0; i<n; i++) { // Look for identical block in known blocks
1587 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1588 for(j=0; j<max_blocks; j++) {
1589 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1590 // Found an identical block
1591 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1592 if(ind2 < 0)
1593 ind2 = max_blocks;
1594 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1595 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1596 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1597 Blocks[ind2][ALLOC] = 1;
1598 num_blocks++;
1599 if(num_blocks == max_blocks) goto end;
1600 }
1601 }
1602 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1603 if(ind2 > max_blocks)
1604 ind2 = 0;
1605 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1606 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1607 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1608 Blocks[ind2][ALLOC] = 1;
1609 num_blocks++;
1610 if(num_blocks == max_blocks) goto end;
1611 }
1612 }
1613 }
1614 }
54a942b0 1615 }
54a942b0 1616 }
54a942b0 1617 }
ae8e8a43
MHS
1618 tries++;
1619 if (BUTTON_PRESS()) return;
1620 } while (num_blocks != max_blocks);
54a942b0 1621end:
ae8e8a43
MHS
1622 Dbprintf("-----------------------------------------");
1623 Dbprintf("Memory content:");
1624 Dbprintf("-----------------------------------------");
1625 for(i=0; i<max_blocks; i++) {
1626 if(Blocks[i][ALLOC]==1)
1627 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1628 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1629 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1630 else
1631 Dbprintf("<missing block %d>", i);
1632 }
1633 Dbprintf("-----------------------------------------");
1634
1635 return ;
54a942b0 1636}
1637
1638
1639//-----------------------------------
1640// EM4469 / EM4305 routines
1641//-----------------------------------
1642#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1643#define FWD_CMD_WRITE 0xA
1644#define FWD_CMD_READ 0x9
1645#define FWD_CMD_DISABLE 0x5
1646
1647
1648uint8_t forwardLink_data[64]; //array of forwarded bits
1649uint8_t * forward_ptr; //ptr for forward message preparation
1650uint8_t fwd_bit_sz; //forwardlink bit counter
1651uint8_t * fwd_write_ptr; //forwardlink bit pointer
1652
1653//====================================================================
1654// prepares command bits
1655// see EM4469 spec
1656//====================================================================
1657//--------------------------------------------------------------------
1658uint8_t Prepare_Cmd( uint8_t cmd ) {
ae8e8a43
MHS
1659 //--------------------------------------------------------------------
1660
1661 *forward_ptr++ = 0; //start bit
1662 *forward_ptr++ = 0; //second pause for 4050 code
1663
1664 *forward_ptr++ = cmd;
1665 cmd >>= 1;
1666 *forward_ptr++ = cmd;
1667 cmd >>= 1;
1668 *forward_ptr++ = cmd;
1669 cmd >>= 1;
1670 *forward_ptr++ = cmd;
1671
1672 return 6; //return number of emited bits
54a942b0 1673}
1674
1675//====================================================================
1676// prepares address bits
1677// see EM4469 spec
1678//====================================================================
1679
1680//--------------------------------------------------------------------
1681uint8_t Prepare_Addr( uint8_t addr ) {
ae8e8a43
MHS
1682 //--------------------------------------------------------------------
1683
1684 register uint8_t line_parity;
1685
1686 uint8_t i;
1687 line_parity = 0;
1688 for(i=0;i<6;i++) {
1689 *forward_ptr++ = addr;
1690 line_parity ^= addr;
1691 addr >>= 1;
1692 }
1693
1694 *forward_ptr++ = (line_parity & 1);
1695
1696 return 7; //return number of emited bits
54a942b0 1697}
1698
1699//====================================================================
1700// prepares data bits intreleaved with parity bits
1701// see EM4469 spec
1702//====================================================================
1703
1704//--------------------------------------------------------------------
1705uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
ae8e8a43
MHS
1706 //--------------------------------------------------------------------
1707
1708 register uint8_t line_parity;
1709 register uint8_t column_parity;
1710 register uint8_t i, j;
1711 register uint16_t data;
1712
1713 data = data_low;
1714 column_parity = 0;
1715
1716 for(i=0; i<4; i++) {
1717 line_parity = 0;
1718 for(j=0; j<8; j++) {
1719 line_parity ^= data;
1720 column_parity ^= (data & 1) << j;
1721 *forward_ptr++ = data;
1722 data >>= 1;
1723 }
1724 *forward_ptr++ = line_parity;
1725 if(i == 1)
1726 data = data_hi;
1727 }
1728
54a942b0 1729 for(j=0; j<8; j++) {
ae8e8a43
MHS
1730 *forward_ptr++ = column_parity;
1731 column_parity >>= 1;
54a942b0 1732 }
ae8e8a43
MHS
1733 *forward_ptr = 0;
1734
1735 return 45; //return number of emited bits
54a942b0 1736}
1737
1738//====================================================================
1739// Forward Link send function
1740// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1741// fwd_bit_count set with number of bits to be sent
1742//====================================================================
1743void SendForward(uint8_t fwd_bit_count) {
ae8e8a43
MHS
1744
1745 fwd_write_ptr = forwardLink_data;
1746 fwd_bit_sz = fwd_bit_count;
1747
1748 LED_D_ON();
1749
1750 //Field on
1751 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1752 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1753 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1754
1755 // Give it a bit of time for the resonant antenna to settle.
1756 // And for the tag to fully power up
1757 SpinDelay(150);
1758
1759 // force 1st mod pulse (start gap must be longer for 4305)
1760 fwd_bit_sz--; //prepare next bit modulation
1761 fwd_write_ptr++;
1762 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1763 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1764 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1765 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1766 SpinDelayUs(16*8); //16 cycles on (8us each)
1767
1768 // now start writting
1769 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1770 if(((*fwd_write_ptr++) & 1) == 1)
1771 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1772 else {
1773 //These timings work for 4469/4269/4305 (with the 55*8 above)
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1775 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1776 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1777 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1778 SpinDelayUs(9*8); //16 cycles on (8us each)
1779 }
54a942b0 1780 }
54a942b0 1781}
1782
1783void EM4xLogin(uint32_t Password) {
ae8e8a43
MHS
1784
1785 uint8_t fwd_bit_count;
1786
1787 forward_ptr = forwardLink_data;
1788 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1789 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1790
1791 SendForward(fwd_bit_count);
1792
1793 //Wait for command to complete
1794 SpinDelay(20);
1795
54a942b0 1796}
1797
1798void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
ae8e8a43
MHS
1799
1800 uint8_t fwd_bit_count;
117d9ec2 1801 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
1802 int m=0, i=0;
1803
1804 //If password mode do login
1805 if (PwdMode == 1) EM4xLogin(Pwd);
1806
1807 forward_ptr = forwardLink_data;
1808 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1809 fwd_bit_count += Prepare_Addr( Address );
1810
117d9ec2 1811 m = BigBuf_max_trace_len();
ae8e8a43
MHS
1812 // Clear destination buffer before sending the command
1813 memset(dest, 128, m);
1814 // Connect the A/D to the peak-detected low-frequency path.
1815 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1816 // Now set up the SSC to get the ADC samples that are now streaming at us.
1817 FpgaSetupSsc();
1818
1819 SendForward(fwd_bit_count);
1820
1821 // Now do the acquisition
1822 i = 0;
1823 for(;;) {
1824 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1825 AT91C_BASE_SSC->SSC_THR = 0x43;
1826 }
1827 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1828 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1829 i++;
1830 if (i >= m) break;
1831 }
54a942b0 1832 }
ae8e8a43
MHS
1833 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1834 LED_D_OFF();
54a942b0 1835}
1836
1837void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
ae8e8a43
MHS
1838
1839 uint8_t fwd_bit_count;
1840
1841 //If password mode do login
1842 if (PwdMode == 1) EM4xLogin(Pwd);
1843
1844 forward_ptr = forwardLink_data;
1845 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1846 fwd_bit_count += Prepare_Addr( Address );
1847 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1848
1849 SendForward(fwd_bit_count);
1850
1851 //Wait for write to complete
1852 SpinDelay(20);
1853 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1854 LED_D_OFF();
54a942b0 1855}
Impressum, Datenschutz