]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/lfops.c
NEW lf simpsk
[proxmark3-svn] / armsrc / lfops.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
bd20f8f4 2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
15c4dc5a 6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10
e30c654b 11#include "proxmark3.h"
15c4dc5a 12#include "apps.h"
f7e3ed82 13#include "util.h"
15c4dc5a 14#include "hitag2.h"
15#include "crc16.h"
9ab7a6c7 16#include "string.h"
7db5f1ca 17#include "lfdemod.h"
31abe49f 18#include "lfsampling.h"
15c4dc5a 19
b2256785
MHS
20
21/**
31abe49f
MHS
22 * Function to do a modulation and then get samples.
23 * @param delay_off
24 * @param period_0
25 * @param period_1
26 * @param command
7c676e72 27 */
f7e3ed82 28void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
15c4dc5a 29{
15c4dc5a 30
ae8e8a43
MHS
31 int divisor_used = 95; // 125 KHz
32 // see if 'h' was specified
b2256785 33
ae8e8a43
MHS
34 if (command[strlen((char *) command) - 1] == 'h')
35 divisor_used = 88; // 134.8 KHz
15c4dc5a 36
31abe49f
MHS
37 sample_config sc = { 0,0,1, divisor_used, 0};
38 setSamplingConfig(&sc);
15c4dc5a 39
31abe49f
MHS
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
43 SpinDelay(2500);
b2256785 44
31abe49f 45 LFSetupFPGAForADC(sc.divisor, 1);
15c4dc5a 46
31abe49f
MHS
47 // And a little more time for the tag to fully power up
48 SpinDelay(2000);
15c4dc5a 49
ae8e8a43
MHS
50 // now modulate the reader field
51 while(*command != '\0' && *command != ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
53 LED_D_OFF();
54 SpinDelayUs(delay_off);
31abe49f 55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
15c4dc5a 56
ae8e8a43
MHS
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
58 LED_D_ON();
59 if(*(command++) == '0')
60 SpinDelayUs(period_0);
61 else
62 SpinDelayUs(period_1);
63 }
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
65 LED_D_OFF();
66 SpinDelayUs(delay_off);
31abe49f 67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
15c4dc5a 68
ae8e8a43 69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
15c4dc5a 70
ae8e8a43 71 // now do the read
31abe49f 72 DoAcquisition_config(false);
15c4dc5a 73}
74
31abe49f
MHS
75
76
15c4dc5a 77/* blank r/w tag data stream
78...0000000000000000 01111111
791010101010101010101010101010101010101010101010101010101010101010
800011010010100001
8101111111
82101010101010101[0]000...
83
84[5555fe852c5555555555555555fe0000]
85*/
86void ReadTItag(void)
87{
ae8e8a43
MHS
88 // some hardcoded initial params
89 // when we read a TI tag we sample the zerocross line at 2Mhz
90 // TI tags modulate a 1 as 16 cycles of 123.2Khz
91 // TI tags modulate a 0 as 16 cycles of 134.2Khz
ba1a299c 92 #define FSAMPLE 2000000
93 #define FREQLO 123200
94 #define FREQHI 134200
ae8e8a43 95
117d9ec2 96 signed char *dest = (signed char *)BigBuf_get_addr();
f71f4deb 97 uint16_t n = BigBuf_max_traceLen();
ae8e8a43
MHS
98 // 128 bit shift register [shift3:shift2:shift1:shift0]
99 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
100
101 int i, cycles=0, samples=0;
102 // how many sample points fit in 16 cycles of each frequency
103 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
104 // when to tell if we're close enough to one freq or another
105 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
106
107 // TI tags charge at 134.2Khz
108 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
110
111 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
112 // connects to SSP_DIN and the SSP_DOUT logic level controls
113 // whether we're modulating the antenna (high)
114 // or listening to the antenna (low)
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
116
117 // get TI tag data into the buffer
118 AcquireTiType();
119
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
121
122 for (i=0; i<n-1; i++) {
123 // count cycles by looking for lo to hi zero crossings
124 if ( (dest[i]<0) && (dest[i+1]>0) ) {
125 cycles++;
126 // after 16 cycles, measure the frequency
127 if (cycles>15) {
128 cycles=0;
129 samples=i-samples; // number of samples in these 16 cycles
130
131 // TI bits are coming to us lsb first so shift them
132 // right through our 128 bit right shift register
133 shift0 = (shift0>>1) | (shift1 << 31);
134 shift1 = (shift1>>1) | (shift2 << 31);
135 shift2 = (shift2>>1) | (shift3 << 31);
136 shift3 >>= 1;
137
138 // check if the cycles fall close to the number
139 // expected for either the low or high frequency
140 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
141 // low frequency represents a 1
142 shift3 |= (1<<31);
143 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
144 // high frequency represents a 0
145 } else {
146 // probably detected a gay waveform or noise
147 // use this as gaydar or discard shift register and start again
148 shift3 = shift2 = shift1 = shift0 = 0;
149 }
150 samples = i;
151
152 // for each bit we receive, test if we've detected a valid tag
153
154 // if we see 17 zeroes followed by 6 ones, we might have a tag
155 // remember the bits are backwards
156 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
157 // if start and end bytes match, we have a tag so break out of the loop
158 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
159 cycles = 0xF0B; //use this as a flag (ugly but whatever)
160 break;
161 }
162 }
163 }
164 }
165 }
166
167 // if flag is set we have a tag
168 if (cycles!=0xF0B) {
169 DbpString("Info: No valid tag detected.");
170 } else {
171 // put 64 bit data into shift1 and shift0
172 shift0 = (shift0>>24) | (shift1 << 8);
173 shift1 = (shift1>>24) | (shift2 << 8);
174
175 // align 16 bit crc into lower half of shift2
176 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
177
178 // if r/w tag, check ident match
ba1a299c 179 if (shift3 & (1<<15) ) {
ae8e8a43
MHS
180 DbpString("Info: TI tag is rewriteable");
181 // only 15 bits compare, last bit of ident is not valid
ba1a299c 182 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
ae8e8a43
MHS
183 DbpString("Error: Ident mismatch!");
184 } else {
185 DbpString("Info: TI tag ident is valid");
186 }
187 } else {
188 DbpString("Info: TI tag is readonly");
189 }
190
191 // WARNING the order of the bytes in which we calc crc below needs checking
192 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
193 // bytes in reverse or something
194 // calculate CRC
195 uint32_t crc=0;
196
197 crc = update_crc16(crc, (shift0)&0xff);
198 crc = update_crc16(crc, (shift0>>8)&0xff);
199 crc = update_crc16(crc, (shift0>>16)&0xff);
200 crc = update_crc16(crc, (shift0>>24)&0xff);
201 crc = update_crc16(crc, (shift1)&0xff);
202 crc = update_crc16(crc, (shift1>>8)&0xff);
203 crc = update_crc16(crc, (shift1>>16)&0xff);
204 crc = update_crc16(crc, (shift1>>24)&0xff);
205
206 Dbprintf("Info: Tag data: %x%08x, crc=%x",
207 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
208 if (crc != (shift2&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
210 } else {
211 DbpString("Info: CRC is good");
212 }
213 }
15c4dc5a 214}
215
f7e3ed82 216void WriteTIbyte(uint8_t b)
15c4dc5a 217{
ae8e8a43
MHS
218 int i = 0;
219
220 // modulate 8 bits out to the antenna
221 for (i=0; i<8; i++)
222 {
223 if (b&(1<<i)) {
224 // stop modulating antenna
225 LOW(GPIO_SSC_DOUT);
226 SpinDelayUs(1000);
227 // modulate antenna
228 HIGH(GPIO_SSC_DOUT);
229 SpinDelayUs(1000);
230 } else {
231 // stop modulating antenna
232 LOW(GPIO_SSC_DOUT);
233 SpinDelayUs(300);
234 // modulate antenna
235 HIGH(GPIO_SSC_DOUT);
236 SpinDelayUs(1700);
237 }
238 }
15c4dc5a 239}
240
241void AcquireTiType(void)
242{
ae8e8a43
MHS
243 int i, j, n;
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
ba1a299c 246 #define TIBUFLEN 1250
ae8e8a43
MHS
247
248 // clear buffer
117d9ec2 249 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
f71f4deb 250 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
ae8e8a43
MHS
251
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
254 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
255
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
258 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
259
260 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
262
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC->SSC_CMR = 12;
266
267 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
269 AT91C_BASE_SSC->SSC_TCMR = 0;
270 AT91C_BASE_SSC->SSC_TFMR = 0;
271
272 LED_D_ON();
273
274 // modulate antenna
275 HIGH(GPIO_SSC_DOUT);
276
277 // Charge TI tag for 50ms.
278 SpinDelay(50);
279
280 // stop modulating antenna and listen
281 LOW(GPIO_SSC_DOUT);
282
283 LED_D_OFF();
284
285 i = 0;
286 for(;;) {
287 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
288 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
289 i++; if(i >= TIBUFLEN) break;
290 }
291 WDT_HIT();
292 }
293
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
296 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
297
117d9ec2 298 char *dest = (char *)BigBuf_get_addr();
ae8e8a43
MHS
299 n = TIBUFLEN*32;
300 // unpack buffer
301 for (i=TIBUFLEN-1; i>=0; i--) {
302 for (j=0; j<32; j++) {
303 if(BigBuf[i] & (1 << j)) {
304 dest[--n] = 1;
305 } else {
306 dest[--n] = -1;
307 }
308 }
309 }
15c4dc5a 310}
311
312// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
313// if crc provided, it will be written with the data verbatim (even if bogus)
314// if not provided a valid crc will be computed from the data and written.
f7e3ed82 315void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
15c4dc5a 316{
ae8e8a43
MHS
317 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
318 if(crc == 0) {
319 crc = update_crc16(crc, (idlo)&0xff);
320 crc = update_crc16(crc, (idlo>>8)&0xff);
321 crc = update_crc16(crc, (idlo>>16)&0xff);
322 crc = update_crc16(crc, (idlo>>24)&0xff);
323 crc = update_crc16(crc, (idhi)&0xff);
324 crc = update_crc16(crc, (idhi>>8)&0xff);
325 crc = update_crc16(crc, (idhi>>16)&0xff);
326 crc = update_crc16(crc, (idhi>>24)&0xff);
327 }
328 Dbprintf("Writing to tag: %x%08x, crc=%x",
329 (unsigned int) idhi, (unsigned int) idlo, crc);
330
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
338 LED_A_ON();
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb firts
352 // finish with 15ms programming time
353
354 // modulate antenna
355 HIGH(GPIO_SSC_DOUT);
356 SpinDelay(50); // charge time
357
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo )&0xff );
361 WriteTIbyte( (idlo>>8 )&0xff );
362 WriteTIbyte( (idlo>>16)&0xff );
363 WriteTIbyte( (idlo>>24)&0xff );
364 WriteTIbyte( (idhi )&0xff );
365 WriteTIbyte( (idhi>>8 )&0xff );
366 WriteTIbyte( (idhi>>16)&0xff );
367 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc )&0xff ); // crc lo
369 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
372 HIGH(GPIO_SSC_DOUT);
373 SpinDelay(50); // programming time
374
375 LED_A_OFF();
376
377 // get TI tag data into the buffer
378 AcquireTiType();
379
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
381 DbpString("Now use tiread to check");
15c4dc5a 382}
383
384void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
385{
ae8e8a43 386 int i;
117d9ec2 387 uint8_t *tab = BigBuf_get_addr();
ba1a299c 388
ae8e8a43
MHS
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
ba1a299c 391
ae8e8a43 392 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
ba1a299c 393
ae8e8a43
MHS
394 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
395 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
ba1a299c 396
abd6112f 397 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
398 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
ba1a299c 399
ae8e8a43
MHS
400 i = 0;
401 for(;;) {
402 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
403 if(BUTTON_PRESS()) {
404 DbpString("Stopped");
405 return;
406 }
407 WDT_HIT();
408 }
952a8bb5 409
ae8e8a43
MHS
410 if (ledcontrol)
411 LED_D_ON();
952a8bb5 412
ae8e8a43
MHS
413 if(tab[i])
414 OPEN_COIL();
415 else
416 SHORT_COIL();
952a8bb5 417
ae8e8a43
MHS
418 if (ledcontrol)
419 LED_D_OFF();
abd6112f 420 //wait for next sample time
ae8e8a43
MHS
421 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
422 if(BUTTON_PRESS()) {
423 DbpString("Stopped");
424 return;
425 }
426 WDT_HIT();
427 }
952a8bb5 428
ae8e8a43
MHS
429 i++;
430 if(i == period) {
431 i = 0;
432 if (gap) {
433 SHORT_COIL();
434 SpinDelayUs(gap);
435 }
436 }
437 }
15c4dc5a 438}
439
15c4dc5a 440#define DEBUG_FRAME_CONTENTS 1
441void SimulateTagLowFrequencyBidir(int divisor, int t0)
442{
15c4dc5a 443}
444
abd6112f 445// compose fc/8 fc/10 waveform (FSK2)
446static void fc(int c, int *n)
447{
117d9ec2 448 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
449 int idx;
450
451 // for when we want an fc8 pattern every 4 logical bits
452 if(c==0) {
453 dest[((*n)++)]=1;
454 dest[((*n)++)]=1;
abd6112f 455 dest[((*n)++)]=1;
456 dest[((*n)++)]=1;
ae8e8a43
MHS
457 dest[((*n)++)]=0;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 dest[((*n)++)]=0;
461 }
abd6112f 462
ae8e8a43
MHS
463 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
464 if(c==8) {
465 for (idx=0; idx<6; idx++) {
466 dest[((*n)++)]=1;
467 dest[((*n)++)]=1;
abd6112f 468 dest[((*n)++)]=1;
469 dest[((*n)++)]=1;
ae8e8a43
MHS
470 dest[((*n)++)]=0;
471 dest[((*n)++)]=0;
472 dest[((*n)++)]=0;
473 dest[((*n)++)]=0;
474 }
475 }
476
477 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
478 if(c==10) {
479 for (idx=0; idx<5; idx++) {
abd6112f 480 dest[((*n)++)]=1;
481 dest[((*n)++)]=1;
ae8e8a43
MHS
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=0;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
abd6112f 490 }
491 }
492}
493// compose fc/X fc/Y waveform (FSKx)
494static void fcAll(uint8_t c, int *n, uint8_t clock)
495{
496 uint8_t *dest = BigBuf_get_addr();
497 uint8_t idx;
498 uint8_t fcCnt;
499 // c = count of field clock for this bit
500
501 int mod = clock % c;
502 // loop through clock - step field clock
503 for (idx=0; idx < (uint8_t) clock/c; idx++){
504 // loop through field clock length - put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
505 for (fcCnt=0; fcCnt < c; fcCnt++){
506 if (fcCnt < c/2){
507 dest[((*n)++)]=1;
508 } else {
509 dest[((*n)++)]=0;
510 }
511 }
512 }
513 Dbprintf("mod: %d",mod);
514 if (mod>0){ //for FC counts that don't add up to a full clock cycle padd with extra wave
515 for (idx=0; idx < mod; idx++){
516 if (idx < mod/2) {
517 dest[((*n)++)]=1;
518 } else {
519 dest[((*n)++)]=0;
520 }
ae8e8a43
MHS
521 }
522 }
15c4dc5a 523}
524
525// prepare a waveform pattern in the buffer based on the ID given then
526// simulate a HID tag until the button is pressed
527void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
528{
ae8e8a43
MHS
529 int n=0, i=0;
530 /*
531 HID tag bitstream format
532 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
533 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
534 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
535 A fc8 is inserted before every 4 bits
536 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
537 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
538 */
539
540 if (hi>0xFFF) {
541 DbpString("Tags can only have 44 bits.");
542 return;
543 }
544 fc(0,&n);
545 // special start of frame marker containing invalid bit sequences
546 fc(8, &n); fc(8, &n); // invalid
547 fc(8, &n); fc(10, &n); // logical 0
548 fc(10, &n); fc(10, &n); // invalid
549 fc(8, &n); fc(10, &n); // logical 0
550
551 WDT_HIT();
552 // manchester encode bits 43 to 32
553 for (i=11; i>=0; i--) {
554 if ((i%4)==3) fc(0,&n);
555 if ((hi>>i)&1) {
556 fc(10, &n); fc(8, &n); // low-high transition
557 } else {
558 fc(8, &n); fc(10, &n); // high-low transition
559 }
560 }
561
562 WDT_HIT();
563 // manchester encode bits 31 to 0
564 for (i=31; i>=0; i--) {
565 if ((i%4)==3) fc(0,&n);
566 if ((lo>>i)&1) {
567 fc(10, &n); fc(8, &n); // low-high transition
568 } else {
569 fc(8, &n); fc(10, &n); // high-low transition
570 }
571 }
572
573 if (ledcontrol)
574 LED_A_ON();
575 SimulateTagLowFrequency(n, 0, ledcontrol);
576
577 if (ledcontrol)
578 LED_A_OFF();
15c4dc5a 579}
eb191de6 580
abd6112f 581// prepare a waveform pattern in the buffer based on the ID given then
582// simulate a FSK tag until the button is pressed
583// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
584void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
585{
586 int ledcontrol=1;
587 int n=0, i=0;
588 uint8_t fcHigh = arg1 >> 8;
589 uint8_t fcLow = arg1 & 0xFF;
590 //spacer bit
591 uint8_t clk = arg2 & 0xFF;
592 uint8_t invert = (arg2 >> 8) & 1;
593 //fcAll(0, &n, clk);
594
595 WDT_HIT();
596 for (i=0; i<size; i++){
abd6112f 597 if (BitStream[i] == invert){
598 fcAll(fcLow, &n, clk);
599 } else {
600 fcAll(fcHigh, &n, clk);
601 }
602 }
603 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
604 //Dbprintf("First 64:");
605 //uint8_t *dest = BigBuf_get_addr();
606 //i=0;
607 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
608 //i+=16;
609 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
610 //i+=16;
611 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
612 //i+=16;
613 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
614
615 if (ledcontrol)
616 LED_A_ON();
617 SimulateTagLowFrequency(n, 0, ledcontrol);
618
619 if (ledcontrol)
620 LED_A_OFF();
621}
622
623// compose ask waveform for one bit(ASK)
624static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
625{
626 uint8_t *dest = BigBuf_get_addr();
627 uint8_t idx;
628 // c = current bit 1 or 0
629 int i = 0;
630 // for when we want a separator
631 if (c==2) { //separator
632 for (i=0; i<clock/2; i++){
633 dest[((*n)++)]=0;
634 }
635 } else {
636 if (manchester){
637 for (idx=0; idx < (uint8_t) clock/2; idx++){
638 dest[((*n)++)]=c;
639 }
640 for (idx=0; idx < (uint8_t) clock/2; idx++){
641 dest[((*n)++)]=c^1;
642 }
643 } else {
644 for (idx=0; idx < (uint8_t) clock; idx++){
645 dest[((*n)++)]=c;
646 }
647 }
648 }
649}
650
651// args clock, ask/man or askraw, invert, transmission separator
652void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
653{
654 int ledcontrol = 1;
655 int n=0, i=0;
656 uint8_t clk = (arg1 >> 8) & 0xFF;
657 uint8_t manchester = arg1 & 1;
658 uint8_t separator = arg2 & 1;
659 uint8_t invert = (arg2 >> 8) & 1;
660 WDT_HIT();
661 for (i=0; i<size; i++){
662 askSimBit(BitStream[i]^invert, &n, clk, manchester);
663 }
664 if (separator==1) Dbprintf("sorry but separator option not yet available"); //askSimBit(2, &n, clk, manchester);
665
666 Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk, invert, manchester, separator, n);
667 //DEBUG
668 //Dbprintf("First 64:");
669 //uint8_t *dest = BigBuf_get_addr();
670 //i=0;
671 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
672 //i+=16;
673 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
674 //i+=16;
675 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
676 //i+=16;
677 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
678
679
680 if (ledcontrol)
681 LED_A_ON();
682 SimulateTagLowFrequency(n, 0, ledcontrol);
683
684 if (ledcontrol)
685 LED_A_OFF();
686}
687
872e3d4d 688//carrier can be 2,4 or 8
689static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
690{
691 uint8_t *dest = BigBuf_get_addr();
692 uint8_t idx;
693 int i = 0;
694 if (phaseChg){
695 // write phase change
696 for (i=0; i < waveLen/2; i++){
697 dest[((*n)++)] = *curPhase^1;
698 }
699 for (i=0; i < waveLen/2; i++){
700 dest[((*n)++)] = *curPhase;
701 }
702 *curPhase ^= 1;
703 }
704 //write each normal clock wave for the clock duration
705 for (; i < clk; i+=waveLen){
706 for (idx=0; idx<waveLen/2; idx++){
707 dest[((*n)++)] = *curPhase;
708 }
709 for (idx=0; idx<waveLen/2; idx++){
710 dest[((*n)++)] = *curPhase^1;
711 }
712 }
713}
714
715// args clock, carrier, invert,
716void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
717{
718 int ledcontrol=1;
719 int n=0, i=0;
720 uint8_t clk = arg1 >> 8;
721 uint8_t carrier = arg1 & 0xFF;
722 uint8_t invert = arg2 & 0xFF;
723 uint8_t phase = carrier/2; //extra phase changing bits = 1/2 a carrier wave to change the phase
724 //uint8_t invert = (arg2 >> 8) & 1;
725 uint8_t curPhase = 0;
726 WDT_HIT();
727 for (i=0; i<size; i++){
728 if (BitStream[i] == curPhase){
729 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
730 } else {
731 pskSimBit(phase, &n, clk, &curPhase, TRUE);
732 }
733 }
734 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
735 Dbprintf("First 64:");
736 uint8_t *dest = BigBuf_get_addr();
737 i=0;
738 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
739 i+=16;
740 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
741 i+=16;
742 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
743 i+=16;
744 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
745
746 if (ledcontrol)
747 LED_A_ON();
748 SimulateTagLowFrequency(n, 0, ledcontrol);
749
750 if (ledcontrol)
751 LED_A_OFF();
752}
753
b3b70669 754// loop to get raw HID waveform then FSK demodulate the TAG ID from it
69d88ec4
MHS
755void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
756{
117d9ec2 757 uint8_t *dest = BigBuf_get_addr();
08ebca68 758 const size_t sizeOfBigBuff = BigBuf_max_traceLen();
759 size_t size = 0;
ae8e8a43 760 uint32_t hi2=0, hi=0, lo=0;
a1d17964 761 int idx=0;
ae8e8a43
MHS
762 // Configure to go in 125Khz listen mode
763 LFSetupFPGAForADC(95, true);
764
765 while(!BUTTON_PRESS()) {
766
767 WDT_HIT();
768 if (ledcontrol) LED_A_ON();
769
31abe49f
MHS
770 DoAcquisition_default(-1,true);
771 // FSK demodulator
08ebca68 772 size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
a1d17964 773 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
774
ec75f5c1 775 if (idx>0 && lo>0){
ae8e8a43
MHS
776 // final loop, go over previously decoded manchester data and decode into usable tag ID
777 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
778 if (hi2 != 0){ //extra large HID tags
779 Dbprintf("TAG ID: %x%08x%08x (%d)",
780 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
781 }else { //standard HID tags <38 bits
782 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
783 uint8_t bitlen = 0;
784 uint32_t fc = 0;
785 uint32_t cardnum = 0;
ba1a299c 786 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
ae8e8a43
MHS
787 uint32_t lo2=0;
788 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
789 uint8_t idx3 = 1;
ba1a299c 790 while(lo2 > 1){ //find last bit set to 1 (format len bit)
791 lo2=lo2 >> 1;
ae8e8a43
MHS
792 idx3++;
793 }
ba1a299c 794 bitlen = idx3+19;
ae8e8a43
MHS
795 fc =0;
796 cardnum=0;
ba1a299c 797 if(bitlen == 26){
ae8e8a43
MHS
798 cardnum = (lo>>1)&0xFFFF;
799 fc = (lo>>17)&0xFF;
800 }
ba1a299c 801 if(bitlen == 37){
ae8e8a43
MHS
802 cardnum = (lo>>1)&0x7FFFF;
803 fc = ((hi&0xF)<<12)|(lo>>20);
804 }
ba1a299c 805 if(bitlen == 34){
ae8e8a43
MHS
806 cardnum = (lo>>1)&0xFFFF;
807 fc= ((hi&1)<<15)|(lo>>17);
808 }
ba1a299c 809 if(bitlen == 35){
ae8e8a43
MHS
810 cardnum = (lo>>1)&0xFFFFF;
811 fc = ((hi&1)<<11)|(lo>>21);
812 }
813 }
814 else { //if bit 38 is not set then 37 bit format is used
815 bitlen= 37;
816 fc =0;
817 cardnum=0;
818 if(bitlen==37){
819 cardnum = (lo>>1)&0x7FFFF;
820 fc = ((hi&0xF)<<12)|(lo>>20);
821 }
822 }
823 //Dbprintf("TAG ID: %x%08x (%d)",
824 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
825 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
826 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
827 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
828 }
829 if (findone){
830 if (ledcontrol) LED_A_OFF();
0892b968 831 *high = hi;
832 *low = lo;
ae8e8a43
MHS
833 return;
834 }
835 // reset
836 hi2 = hi = lo = 0;
837 }
838 WDT_HIT();
ae8e8a43
MHS
839 }
840 DbpString("Stopped");
841 if (ledcontrol) LED_A_OFF();
eb191de6 842}
843
66707a3b 844void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
eb191de6 845{
117d9ec2 846 uint8_t *dest = BigBuf_get_addr();
ae8e8a43 847
ec75f5c1 848 size_t size=0, idx=0;
e770c648 849 int clk=0, invert=0, errCnt=0, maxErr=20;
ae8e8a43
MHS
850 uint64_t lo=0;
851 // Configure to go in 125Khz listen mode
852 LFSetupFPGAForADC(95, true);
853
854 while(!BUTTON_PRESS()) {
855
856 WDT_HIT();
857 if (ledcontrol) LED_A_ON();
858
31abe49f 859 DoAcquisition_default(-1,true);
0644d5e3 860 size = BigBuf_max_traceLen();
ae8e8a43 861 //Dbprintf("DEBUG: Buffer got");
d91a31f9 862 //askdemod and manchester decode
e770c648 863 errCnt = askmandemod(dest, &size, &clk, &invert, maxErr);
ae8e8a43
MHS
864 //Dbprintf("DEBUG: ASK Got");
865 WDT_HIT();
866
867 if (errCnt>=0){
ec75f5c1 868 lo = Em410xDecode(dest, &size, &idx);
ae8e8a43 869 //Dbprintf("DEBUG: EM GOT");
ae8e8a43 870 if (lo>0){
d91a31f9 871 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
872 (uint32_t)(lo>>32),
873 (uint32_t)lo,
874 (uint32_t)(lo&0xFFFF),
875 (uint32_t)((lo>>16LL) & 0xFF),
876 (uint32_t)(lo & 0xFFFFFF));
ae8e8a43
MHS
877 }
878 if (findone){
879 if (ledcontrol) LED_A_OFF();
0892b968 880 *high=lo>>32;
881 *low=lo & 0xFFFFFFFF;
ae8e8a43
MHS
882 return;
883 }
884 } else{
885 //Dbprintf("DEBUG: No Tag");
886 }
887 WDT_HIT();
888 lo = 0;
889 clk=0;
890 invert=0;
891 errCnt=0;
892 size=0;
ae8e8a43
MHS
893 }
894 DbpString("Stopped");
895 if (ledcontrol) LED_A_OFF();
15c4dc5a 896}
69d88ec4 897
a1f3bb12 898void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
eb191de6 899{
117d9ec2 900 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
901 int idx=0;
902 uint32_t code=0, code2=0;
903 uint8_t version=0;
904 uint8_t facilitycode=0;
905 uint16_t number=0;
906 // Configure to go in 125Khz listen mode
907 LFSetupFPGAForADC(95, true);
908
909 while(!BUTTON_PRESS()) {
910 WDT_HIT();
911 if (ledcontrol) LED_A_ON();
31abe49f
MHS
912 DoAcquisition_default(-1,true);
913 //fskdemod and get start index
ae8e8a43 914 WDT_HIT();
f71f4deb 915 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
ae8e8a43
MHS
916 if (idx>0){
917 //valid tag found
918
919 //Index map
920 //0 10 20 30 40 50 60
921 //| | | | | | |
922 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
923 //-----------------------------------------------------------------------------
924 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
925 //
926 //XSF(version)facility:codeone+codetwo
927 //Handle the data
928 if(findone){ //only print binary if we are doing one
929 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
930 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
931 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
932 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
933 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
934 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
935 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
936 }
937 code = bytebits_to_byte(dest+idx,32);
938 code2 = bytebits_to_byte(dest+idx+32,32);
939 version = bytebits_to_byte(dest+idx+27,8); //14,4
940 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
941 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
942
943 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
944 // if we're only looking for one tag
945 if (findone){
946 if (ledcontrol) LED_A_OFF();
947 //LED_A_OFF();
0892b968 948 *high=code;
949 *low=code2;
ae8e8a43
MHS
950 return;
951 }
952 code=code2=0;
953 version=facilitycode=0;
954 number=0;
955 idx=0;
956 }
957 WDT_HIT();
958 }
959 DbpString("Stopped");
960 if (ledcontrol) LED_A_OFF();
eb191de6 961}
a1f3bb12 962
2d4eae76 963/*------------------------------
964 * T5555/T5557/T5567 routines
965 *------------------------------
966 */
967
968/* T55x7 configuration register definitions */
969#define T55x7_POR_DELAY 0x00000001
970#define T55x7_ST_TERMINATOR 0x00000008
971#define T55x7_PWD 0x00000010
972#define T55x7_MAXBLOCK_SHIFT 5
973#define T55x7_AOR 0x00000200
974#define T55x7_PSKCF_RF_2 0
975#define T55x7_PSKCF_RF_4 0x00000400
976#define T55x7_PSKCF_RF_8 0x00000800
977#define T55x7_MODULATION_DIRECT 0
978#define T55x7_MODULATION_PSK1 0x00001000
979#define T55x7_MODULATION_PSK2 0x00002000
980#define T55x7_MODULATION_PSK3 0x00003000
981#define T55x7_MODULATION_FSK1 0x00004000
982#define T55x7_MODULATION_FSK2 0x00005000
983#define T55x7_MODULATION_FSK1a 0x00006000
984#define T55x7_MODULATION_FSK2a 0x00007000
985#define T55x7_MODULATION_MANCHESTER 0x00008000
986#define T55x7_MODULATION_BIPHASE 0x00010000
987#define T55x7_BITRATE_RF_8 0
988#define T55x7_BITRATE_RF_16 0x00040000
989#define T55x7_BITRATE_RF_32 0x00080000
990#define T55x7_BITRATE_RF_40 0x000C0000
991#define T55x7_BITRATE_RF_50 0x00100000
992#define T55x7_BITRATE_RF_64 0x00140000
993#define T55x7_BITRATE_RF_100 0x00180000
994#define T55x7_BITRATE_RF_128 0x001C0000
995
996/* T5555 (Q5) configuration register definitions */
997#define T5555_ST_TERMINATOR 0x00000001
998#define T5555_MAXBLOCK_SHIFT 0x00000001
999#define T5555_MODULATION_MANCHESTER 0
1000#define T5555_MODULATION_PSK1 0x00000010
1001#define T5555_MODULATION_PSK2 0x00000020
1002#define T5555_MODULATION_PSK3 0x00000030
1003#define T5555_MODULATION_FSK1 0x00000040
1004#define T5555_MODULATION_FSK2 0x00000050
1005#define T5555_MODULATION_BIPHASE 0x00000060
1006#define T5555_MODULATION_DIRECT 0x00000070
1007#define T5555_INVERT_OUTPUT 0x00000080
1008#define T5555_PSK_RF_2 0
1009#define T5555_PSK_RF_4 0x00000100
1010#define T5555_PSK_RF_8 0x00000200
1011#define T5555_USE_PWD 0x00000400
1012#define T5555_USE_AOR 0x00000800
1013#define T5555_BITRATE_SHIFT 12
1014#define T5555_FAST_WRITE 0x00004000
1015#define T5555_PAGE_SELECT 0x00008000
1016
1017/*
1018 * Relevant times in microsecond
1019 * To compensate antenna falling times shorten the write times
1020 * and enlarge the gap ones.
1021 */
1022#define START_GAP 250
1023#define WRITE_GAP 160
1024#define WRITE_0 144 // 192
1025#define WRITE_1 400 // 432 for T55x7; 448 for E5550
1026
1027// Write one bit to card
1028void T55xxWriteBit(int bit)
ec09b62d 1029{
ae8e8a43
MHS
1030 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1031 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1032 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1033 if (bit == 0)
1034 SpinDelayUs(WRITE_0);
1035 else
1036 SpinDelayUs(WRITE_1);
1037 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1038 SpinDelayUs(WRITE_GAP);
ec09b62d 1039}
1040
2d4eae76 1041// Write one card block in page 0, no lock
54a942b0 1042void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
ec09b62d 1043{
ae8e8a43
MHS
1044 //unsigned int i; //enio adjustment 12/10/14
1045 uint32_t i;
1046
1047 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1048 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1049 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1050
1051 // Give it a bit of time for the resonant antenna to settle.
1052 // And for the tag to fully power up
1053 SpinDelay(150);
1054
1055 // Now start writting
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1057 SpinDelayUs(START_GAP);
1058
1059 // Opcode
1060 T55xxWriteBit(1);
1061 T55xxWriteBit(0); //Page 0
1062 if (PwdMode == 1){
1063 // Pwd
1064 for (i = 0x80000000; i != 0; i >>= 1)
1065 T55xxWriteBit(Pwd & i);
1066 }
1067 // Lock bit
1068 T55xxWriteBit(0);
1069
1070 // Data
54a942b0 1071 for (i = 0x80000000; i != 0; i >>= 1)
ae8e8a43
MHS
1072 T55xxWriteBit(Data & i);
1073
1074 // Block
1075 for (i = 0x04; i != 0; i >>= 1)
1076 T55xxWriteBit(Block & i);
1077
1078 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1079 // so wait a little more)
1080 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1081 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1082 SpinDelay(20);
1083 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ec09b62d 1084}
1085
54a942b0 1086// Read one card block in page 0
1087void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
ec09b62d 1088{
117d9ec2 1089 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
1090 //int m=0, i=0; //enio adjustment 12/10/14
1091 uint32_t m=0, i=0;
1092 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
f71f4deb 1093 m = BigBuf_max_traceLen();
ae8e8a43
MHS
1094 // Clear destination buffer before sending the command
1095 memset(dest, 128, m);
1096 // Connect the A/D to the peak-detected low-frequency path.
1097 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1098 // Now set up the SSC to get the ADC samples that are now streaming at us.
1099 FpgaSetupSsc();
1100
1101 LED_D_ON();
1102 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1103 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1104
1105 // Give it a bit of time for the resonant antenna to settle.
1106 // And for the tag to fully power up
1107 SpinDelay(150);
1108
1109 // Now start writting
1110 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1111 SpinDelayUs(START_GAP);
1112
1113 // Opcode
1114 T55xxWriteBit(1);
1115 T55xxWriteBit(0); //Page 0
1116 if (PwdMode == 1){
1117 // Pwd
1118 for (i = 0x80000000; i != 0; i >>= 1)
1119 T55xxWriteBit(Pwd & i);
1120 }
1121 // Lock bit
1122 T55xxWriteBit(0);
1123 // Block
1124 for (i = 0x04; i != 0; i >>= 1)
1125 T55xxWriteBit(Block & i);
1126
1127 // Turn field on to read the response
1128 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1129 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1130
1131 // Now do the acquisition
1132 i = 0;
1133 for(;;) {
1134 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1135 AT91C_BASE_SSC->SSC_THR = 0x43;
1136 }
1137 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1138 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1139 // we don't care about actual value, only if it's more or less than a
1140 // threshold essentially we capture zero crossings for later analysis
1141 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1142 i++;
1143 if (i >= m) break;
1144 }
1145 }
1146
1147 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1148 LED_D_OFF();
1149 DbpString("DONE!");
54a942b0 1150}
2d4eae76 1151
54a942b0 1152// Read card traceability data (page 1)
1153void T55xxReadTrace(void){
117d9ec2 1154 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
1155 int m=0, i=0;
1156
1157 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
f71f4deb 1158 m = BigBuf_max_traceLen();
ae8e8a43
MHS
1159 // Clear destination buffer before sending the command
1160 memset(dest, 128, m);
1161 // Connect the A/D to the peak-detected low-frequency path.
1162 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1163 // Now set up the SSC to get the ADC samples that are now streaming at us.
1164 FpgaSetupSsc();
1165
1166 LED_D_ON();
1167 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1168 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1169
1170 // Give it a bit of time for the resonant antenna to settle.
1171 // And for the tag to fully power up
1172 SpinDelay(150);
1173
1174 // Now start writting
1175 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1176 SpinDelayUs(START_GAP);
1177
1178 // Opcode
1179 T55xxWriteBit(1);
1180 T55xxWriteBit(1); //Page 1
1181
1182 // Turn field on to read the response
1183 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1185
1186 // Now do the acquisition
1187 i = 0;
1188 for(;;) {
1189 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1190 AT91C_BASE_SSC->SSC_THR = 0x43;
1191 }
1192 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1193 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1194 i++;
1195 if (i >= m) break;
1196 }
1197 }
1198
1199 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1200 LED_D_OFF();
1201 DbpString("DONE!");
54a942b0 1202}
ec09b62d 1203
54a942b0 1204/*-------------- Cloning routines -----------*/
1205// Copy HID id to card and setup block 0 config
1206void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1207{
ae8e8a43
MHS
1208 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1209 int last_block = 0;
1210
1211 if (longFMT){
1212 // Ensure no more than 84 bits supplied
1213 if (hi2>0xFFFFF) {
1214 DbpString("Tags can only have 84 bits.");
1215 return;
1216 }
1217 // Build the 6 data blocks for supplied 84bit ID
1218 last_block = 6;
1219 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1220 for (int i=0;i<4;i++) {
1221 if (hi2 & (1<<(19-i)))
1222 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1223 else
1224 data1 |= (1<<((3-i)*2)); // 0 -> 01
1225 }
1226
1227 data2 = 0;
1228 for (int i=0;i<16;i++) {
1229 if (hi2 & (1<<(15-i)))
1230 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1231 else
1232 data2 |= (1<<((15-i)*2)); // 0 -> 01
1233 }
1234
1235 data3 = 0;
1236 for (int i=0;i<16;i++) {
1237 if (hi & (1<<(31-i)))
1238 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1239 else
1240 data3 |= (1<<((15-i)*2)); // 0 -> 01
1241 }
1242
1243 data4 = 0;
1244 for (int i=0;i<16;i++) {
1245 if (hi & (1<<(15-i)))
1246 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1247 else
1248 data4 |= (1<<((15-i)*2)); // 0 -> 01
1249 }
1250
1251 data5 = 0;
1252 for (int i=0;i<16;i++) {
1253 if (lo & (1<<(31-i)))
1254 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1255 else
1256 data5 |= (1<<((15-i)*2)); // 0 -> 01
1257 }
1258
1259 data6 = 0;
1260 for (int i=0;i<16;i++) {
1261 if (lo & (1<<(15-i)))
1262 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1263 else
1264 data6 |= (1<<((15-i)*2)); // 0 -> 01
1265 }
54a942b0 1266 }
ae8e8a43
MHS
1267 else {
1268 // Ensure no more than 44 bits supplied
1269 if (hi>0xFFF) {
1270 DbpString("Tags can only have 44 bits.");
1271 return;
1272 }
1273
1274 // Build the 3 data blocks for supplied 44bit ID
1275 last_block = 3;
1276
1277 data1 = 0x1D000000; // load preamble
1278
1279 for (int i=0;i<12;i++) {
1280 if (hi & (1<<(11-i)))
1281 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1282 else
1283 data1 |= (1<<((11-i)*2)); // 0 -> 01
1284 }
1285
1286 data2 = 0;
1287 for (int i=0;i<16;i++) {
1288 if (lo & (1<<(31-i)))
1289 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1290 else
1291 data2 |= (1<<((15-i)*2)); // 0 -> 01
1292 }
1293
1294 data3 = 0;
1295 for (int i=0;i<16;i++) {
1296 if (lo & (1<<(15-i)))
1297 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1298 else
1299 data3 |= (1<<((15-i)*2)); // 0 -> 01
1300 }
54a942b0 1301 }
ae8e8a43
MHS
1302
1303 LED_D_ON();
1304 // Program the data blocks for supplied ID
1305 // and the block 0 for HID format
1306 T55xxWriteBlock(data1,1,0,0);
1307 T55xxWriteBlock(data2,2,0,0);
1308 T55xxWriteBlock(data3,3,0,0);
1309
1310 if (longFMT) { // if long format there are 6 blocks
1311 T55xxWriteBlock(data4,4,0,0);
1312 T55xxWriteBlock(data5,5,0,0);
1313 T55xxWriteBlock(data6,6,0,0);
54a942b0 1314 }
ae8e8a43
MHS
1315
1316 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1317 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1318 T55x7_MODULATION_FSK2a |
1319 last_block << T55x7_MAXBLOCK_SHIFT,
1320 0,0,0);
1321
1322 LED_D_OFF();
1323
1324 DbpString("DONE!");
2d4eae76 1325}
ec09b62d 1326
a1f3bb12 1327void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1328{
ae8e8a43
MHS
1329 int data1=0, data2=0; //up to six blocks for long format
1330
a1f3bb12 1331 data1 = hi; // load preamble
1332 data2 = lo;
ba1a299c 1333
a1f3bb12 1334 LED_D_ON();
1335 // Program the data blocks for supplied ID
1336 // and the block 0 for HID format
1337 T55xxWriteBlock(data1,1,0,0);
1338 T55xxWriteBlock(data2,2,0,0);
ae8e8a43 1339
a1f3bb12 1340 //Config Block
1341 T55xxWriteBlock(0x00147040,0,0,0);
1342 LED_D_OFF();
ae8e8a43 1343
a1f3bb12 1344 DbpString("DONE!");
1345}
1346
2d4eae76 1347// Define 9bit header for EM410x tags
1348#define EM410X_HEADER 0x1FF
1349#define EM410X_ID_LENGTH 40
ec09b62d 1350
2d4eae76 1351void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1352{
ae8e8a43
MHS
1353 int i, id_bit;
1354 uint64_t id = EM410X_HEADER;
1355 uint64_t rev_id = 0; // reversed ID
1356 int c_parity[4]; // column parity
1357 int r_parity = 0; // row parity
1358 uint32_t clock = 0;
1359
1360 // Reverse ID bits given as parameter (for simpler operations)
1361 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1362 if (i < 32) {
1363 rev_id = (rev_id << 1) | (id_lo & 1);
1364 id_lo >>= 1;
1365 } else {
1366 rev_id = (rev_id << 1) | (id_hi & 1);
1367 id_hi >>= 1;
1368 }
1369 }
1370
1371 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1372 id_bit = rev_id & 1;
1373
1374 if (i % 4 == 0) {
1375 // Don't write row parity bit at start of parsing
1376 if (i)
1377 id = (id << 1) | r_parity;
1378 // Start counting parity for new row
1379 r_parity = id_bit;
1380 } else {
1381 // Count row parity
1382 r_parity ^= id_bit;
1383 }
1384
1385 // First elements in column?
1386 if (i < 4)
1387 // Fill out first elements
1388 c_parity[i] = id_bit;
1389 else
1390 // Count column parity
1391 c_parity[i % 4] ^= id_bit;
1392
1393 // Insert ID bit
1394 id = (id << 1) | id_bit;
1395 rev_id >>= 1;
1396 }
1397
1398 // Insert parity bit of last row
1399 id = (id << 1) | r_parity;
1400
1401 // Fill out column parity at the end of tag
1402 for (i = 0; i < 4; ++i)
1403 id = (id << 1) | c_parity[i];
1404
1405 // Add stop bit
1406 id <<= 1;
1407
1408 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1409 LED_D_ON();
1410
1411 // Write EM410x ID
1412 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1413 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1414
1415 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1416 if (card) {
1417 // Clock rate is stored in bits 8-15 of the card value
1418 clock = (card & 0xFF00) >> 8;
1419 Dbprintf("Clock rate: %d", clock);
1420 switch (clock)
1421 {
1422 case 32:
1423 clock = T55x7_BITRATE_RF_32;
1424 break;
1425 case 16:
1426 clock = T55x7_BITRATE_RF_16;
1427 break;
1428 case 0:
1429 // A value of 0 is assumed to be 64 for backwards-compatibility
1430 // Fall through...
1431 case 64:
1432 clock = T55x7_BITRATE_RF_64;
1433 break;
1434 default:
1435 Dbprintf("Invalid clock rate: %d", clock);
1436 return;
1437 }
1438
1439 // Writing configuration for T55x7 tag
1440 T55xxWriteBlock(clock |
1441 T55x7_MODULATION_MANCHESTER |
1442 2 << T55x7_MAXBLOCK_SHIFT,
1443 0, 0, 0);
1444 }
1445 else
1446 // Writing configuration for T5555(Q5) tag
1447 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1448 T5555_MODULATION_MANCHESTER |
1449 2 << T5555_MAXBLOCK_SHIFT,
1450 0, 0, 0);
1451
1452 LED_D_OFF();
1453 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1454 (uint32_t)(id >> 32), (uint32_t)id);
2d4eae76 1455}
2414f978 1456
1457// Clone Indala 64-bit tag by UID to T55x7
1458void CopyIndala64toT55x7(int hi, int lo)
1459{
2414f978 1460
ae8e8a43
MHS
1461 //Program the 2 data blocks for supplied 64bit UID
1462 // and the block 0 for Indala64 format
1463 T55xxWriteBlock(hi,1,0,0);
1464 T55xxWriteBlock(lo,2,0,0);
1465 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1466 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1467 T55x7_MODULATION_PSK1 |
1468 2 << T55x7_MAXBLOCK_SHIFT,
1469 0, 0, 0);
1470 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1471 // T5567WriteBlock(0x603E1042,0);
2414f978 1472
ae8e8a43 1473 DbpString("DONE!");
4118b74d 1474
ba1a299c 1475}
2414f978 1476
1477void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1478{
ae8e8a43 1479
ae8e8a43
MHS
1480 //Program the 7 data blocks for supplied 224bit UID
1481 // and the block 0 for Indala224 format
1482 T55xxWriteBlock(uid1,1,0,0);
1483 T55xxWriteBlock(uid2,2,0,0);
1484 T55xxWriteBlock(uid3,3,0,0);
1485 T55xxWriteBlock(uid4,4,0,0);
1486 T55xxWriteBlock(uid5,5,0,0);
1487 T55xxWriteBlock(uid6,6,0,0);
1488 T55xxWriteBlock(uid7,7,0,0);
1489 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1490 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1491 T55x7_MODULATION_PSK1 |
1492 7 << T55x7_MAXBLOCK_SHIFT,
1493 0,0,0);
1494 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1495 // T5567WriteBlock(0x603E10E2,0);
1496
1497 DbpString("DONE!");
4118b74d 1498
2414f978 1499}
54a942b0 1500
1501
1502#define abs(x) ( ((x)<0) ? -(x) : (x) )
1503#define max(x,y) ( x<y ? y:x)
1504
1505int DemodPCF7931(uint8_t **outBlocks) {
ae8e8a43
MHS
1506 uint8_t BitStream[256];
1507 uint8_t Blocks[8][16];
117d9ec2 1508 uint8_t *GraphBuffer = BigBuf_get_addr();
f71f4deb 1509 int GraphTraceLen = BigBuf_max_traceLen();
ae8e8a43
MHS
1510 int i, j, lastval, bitidx, half_switch;
1511 int clock = 64;
1512 int tolerance = clock / 8;
1513 int pmc, block_done;
1514 int lc, warnings = 0;
1515 int num_blocks = 0;
1516 int lmin=128, lmax=128;
1517 uint8_t dir;
1518
31abe49f
MHS
1519 LFSetupFPGAForADC(95, true);
1520 DoAcquisition_default(0, 0);
1521
ae8e8a43
MHS
1522
1523 lmin = 64;
1524 lmax = 192;
1525
1526 i = 2;
1527
1528 /* Find first local max/min */
1529 if(GraphBuffer[1] > GraphBuffer[0]) {
1530 while(i < GraphTraceLen) {
1531 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1532 break;
1533 i++;
1534 }
1535 dir = 0;
54a942b0 1536 }
ae8e8a43
MHS
1537 else {
1538 while(i < GraphTraceLen) {
1539 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1540 break;
1541 i++;
1542 }
1543 dir = 1;
54a942b0 1544 }
ae8e8a43
MHS
1545
1546 lastval = i++;
1547 half_switch = 0;
1548 pmc = 0;
1549 block_done = 0;
1550
1551 for (bitidx = 0; i < GraphTraceLen; i++)
1552 {
1553 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1554 {
1555 lc = i - lastval;
1556 lastval = i;
1557
1558 // Switch depending on lc length:
1559 // Tolerance is 1/8 of clock rate (arbitrary)
1560 if (abs(lc-clock/4) < tolerance) {
1561 // 16T0
1562 if((i - pmc) == lc) { /* 16T0 was previous one */
1563 /* It's a PMC ! */
1564 i += (128+127+16+32+33+16)-1;
1565 lastval = i;
1566 pmc = 0;
1567 block_done = 1;
1568 }
1569 else {
1570 pmc = i;
1571 }
1572 } else if (abs(lc-clock/2) < tolerance) {
1573 // 32TO
1574 if((i - pmc) == lc) { /* 16T0 was previous one */
1575 /* It's a PMC ! */
1576 i += (128+127+16+32+33)-1;
1577 lastval = i;
1578 pmc = 0;
1579 block_done = 1;
1580 }
1581 else if(half_switch == 1) {
1582 BitStream[bitidx++] = 0;
1583 half_switch = 0;
1584 }
1585 else
1586 half_switch++;
1587 } else if (abs(lc-clock) < tolerance) {
1588 // 64TO
1589 BitStream[bitidx++] = 1;
1590 } else {
1591 // Error
1592 warnings++;
1593 if (warnings > 10)
1594 {
1595 Dbprintf("Error: too many detection errors, aborting.");
1596 return 0;
1597 }
1598 }
1599
1600 if(block_done == 1) {
1601 if(bitidx == 128) {
1602 for(j=0; j<16; j++) {
1603 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1604 64*BitStream[j*8+6]+
1605 32*BitStream[j*8+5]+
1606 16*BitStream[j*8+4]+
1607 8*BitStream[j*8+3]+
1608 4*BitStream[j*8+2]+
1609 2*BitStream[j*8+1]+
1610 BitStream[j*8];
1611 }
1612 num_blocks++;
1613 }
1614 bitidx = 0;
1615 block_done = 0;
1616 half_switch = 0;
1617 }
1618 if(i < GraphTraceLen)
1619 {
1620 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1621 else dir = 1;
1622 }
1623 }
1624 if(bitidx==255)
1625 bitidx=0;
1626 warnings = 0;
1627 if(num_blocks == 4) break;
1628 }
1629 memcpy(outBlocks, Blocks, 16*num_blocks);
1630 return num_blocks;
54a942b0 1631}
1632
1633int IsBlock0PCF7931(uint8_t *Block) {
ae8e8a43
MHS
1634 // Assume RFU means 0 :)
1635 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1636 return 1;
1637 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1638 return 1;
1639 return 0;
54a942b0 1640}
1641
1642int IsBlock1PCF7931(uint8_t *Block) {
ae8e8a43
MHS
1643 // Assume RFU means 0 :)
1644 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1645 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1646 return 1;
1647
1648 return 0;
54a942b0 1649}
d91a31f9 1650
54a942b0 1651#define ALLOC 16
1652
1653void ReadPCF7931() {
ae8e8a43
MHS
1654 uint8_t Blocks[8][17];
1655 uint8_t tmpBlocks[4][16];
1656 int i, j, ind, ind2, n;
1657 int num_blocks = 0;
1658 int max_blocks = 8;
1659 int ident = 0;
1660 int error = 0;
1661 int tries = 0;
1662
1663 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1664
1665 do {
1666 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1667 n = DemodPCF7931((uint8_t**)tmpBlocks);
1668 if(!n)
1669 error++;
1670 if(error==10 && num_blocks == 0) {
1671 Dbprintf("Error, no tag or bad tag");
1672 return;
54a942b0 1673 }
ae8e8a43
MHS
1674 else if (tries==20 || error==10) {
1675 Dbprintf("Error reading the tag");
1676 Dbprintf("Here is the partial content");
1677 goto end;
1678 }
1679
1680 for(i=0; i<n; i++)
1681 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1682 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1683 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1684 if(!ident) {
1685 for(i=0; i<n; i++) {
1686 if(IsBlock0PCF7931(tmpBlocks[i])) {
1687 // Found block 0 ?
1688 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1689 // Found block 1!
1690 // \o/
1691 ident = 1;
1692 memcpy(Blocks[0], tmpBlocks[i], 16);
1693 Blocks[0][ALLOC] = 1;
1694 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1695 Blocks[1][ALLOC] = 1;
1696 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1697 // Debug print
1698 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1699 num_blocks = 2;
1700 // Handle following blocks
1701 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1702 if(j==n) j=0;
1703 if(j==i) break;
1704 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1705 Blocks[ind2][ALLOC] = 1;
1706 }
1707 break;
1708 }
54a942b0 1709 }
ae8e8a43
MHS
1710 }
1711 }
1712 else {
1713 for(i=0; i<n; i++) { // Look for identical block in known blocks
1714 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1715 for(j=0; j<max_blocks; j++) {
1716 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1717 // Found an identical block
1718 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1719 if(ind2 < 0)
1720 ind2 = max_blocks;
1721 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1722 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1723 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1724 Blocks[ind2][ALLOC] = 1;
1725 num_blocks++;
1726 if(num_blocks == max_blocks) goto end;
1727 }
1728 }
1729 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1730 if(ind2 > max_blocks)
1731 ind2 = 0;
1732 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1733 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1734 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1735 Blocks[ind2][ALLOC] = 1;
1736 num_blocks++;
1737 if(num_blocks == max_blocks) goto end;
1738 }
1739 }
1740 }
1741 }
54a942b0 1742 }
54a942b0 1743 }
54a942b0 1744 }
ae8e8a43
MHS
1745 tries++;
1746 if (BUTTON_PRESS()) return;
1747 } while (num_blocks != max_blocks);
abd6112f 1748 end:
ae8e8a43
MHS
1749 Dbprintf("-----------------------------------------");
1750 Dbprintf("Memory content:");
1751 Dbprintf("-----------------------------------------");
1752 for(i=0; i<max_blocks; i++) {
1753 if(Blocks[i][ALLOC]==1)
1754 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1755 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1756 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1757 else
1758 Dbprintf("<missing block %d>", i);
1759 }
1760 Dbprintf("-----------------------------------------");
1761
1762 return ;
54a942b0 1763}
1764
1765
1766//-----------------------------------
1767// EM4469 / EM4305 routines
1768//-----------------------------------
1769#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1770#define FWD_CMD_WRITE 0xA
1771#define FWD_CMD_READ 0x9
1772#define FWD_CMD_DISABLE 0x5
1773
1774
1775uint8_t forwardLink_data[64]; //array of forwarded bits
1776uint8_t * forward_ptr; //ptr for forward message preparation
1777uint8_t fwd_bit_sz; //forwardlink bit counter
1778uint8_t * fwd_write_ptr; //forwardlink bit pointer
1779
1780//====================================================================
1781// prepares command bits
1782// see EM4469 spec
1783//====================================================================
1784//--------------------------------------------------------------------
1785uint8_t Prepare_Cmd( uint8_t cmd ) {
ae8e8a43
MHS
1786 //--------------------------------------------------------------------
1787
1788 *forward_ptr++ = 0; //start bit
1789 *forward_ptr++ = 0; //second pause for 4050 code
1790
1791 *forward_ptr++ = cmd;
1792 cmd >>= 1;
1793 *forward_ptr++ = cmd;
1794 cmd >>= 1;
1795 *forward_ptr++ = cmd;
1796 cmd >>= 1;
1797 *forward_ptr++ = cmd;
1798
1799 return 6; //return number of emited bits
54a942b0 1800}
1801
1802//====================================================================
1803// prepares address bits
1804// see EM4469 spec
1805//====================================================================
1806
1807//--------------------------------------------------------------------
1808uint8_t Prepare_Addr( uint8_t addr ) {
ae8e8a43
MHS
1809 //--------------------------------------------------------------------
1810
1811 register uint8_t line_parity;
1812
1813 uint8_t i;
1814 line_parity = 0;
1815 for(i=0;i<6;i++) {
1816 *forward_ptr++ = addr;
1817 line_parity ^= addr;
1818 addr >>= 1;
1819 }
1820
1821 *forward_ptr++ = (line_parity & 1);
1822
1823 return 7; //return number of emited bits
54a942b0 1824}
1825
1826//====================================================================
1827// prepares data bits intreleaved with parity bits
1828// see EM4469 spec
1829//====================================================================
1830
1831//--------------------------------------------------------------------
1832uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
ae8e8a43
MHS
1833 //--------------------------------------------------------------------
1834
1835 register uint8_t line_parity;
1836 register uint8_t column_parity;
1837 register uint8_t i, j;
1838 register uint16_t data;
1839
1840 data = data_low;
1841 column_parity = 0;
1842
1843 for(i=0; i<4; i++) {
1844 line_parity = 0;
1845 for(j=0; j<8; j++) {
1846 line_parity ^= data;
1847 column_parity ^= (data & 1) << j;
1848 *forward_ptr++ = data;
1849 data >>= 1;
1850 }
1851 *forward_ptr++ = line_parity;
1852 if(i == 1)
1853 data = data_hi;
1854 }
1855
54a942b0 1856 for(j=0; j<8; j++) {
ae8e8a43
MHS
1857 *forward_ptr++ = column_parity;
1858 column_parity >>= 1;
54a942b0 1859 }
ae8e8a43
MHS
1860 *forward_ptr = 0;
1861
1862 return 45; //return number of emited bits
54a942b0 1863}
1864
1865//====================================================================
1866// Forward Link send function
1867// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1868// fwd_bit_count set with number of bits to be sent
1869//====================================================================
1870void SendForward(uint8_t fwd_bit_count) {
ae8e8a43
MHS
1871
1872 fwd_write_ptr = forwardLink_data;
1873 fwd_bit_sz = fwd_bit_count;
1874
1875 LED_D_ON();
1876
1877 //Field on
1878 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1879 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1880 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1881
1882 // Give it a bit of time for the resonant antenna to settle.
1883 // And for the tag to fully power up
1884 SpinDelay(150);
1885
1886 // force 1st mod pulse (start gap must be longer for 4305)
1887 fwd_bit_sz--; //prepare next bit modulation
1888 fwd_write_ptr++;
1889 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1890 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1891 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1892 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1893 SpinDelayUs(16*8); //16 cycles on (8us each)
1894
1895 // now start writting
1896 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1897 if(((*fwd_write_ptr++) & 1) == 1)
1898 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1899 else {
1900 //These timings work for 4469/4269/4305 (with the 55*8 above)
1901 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1902 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1903 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1904 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1905 SpinDelayUs(9*8); //16 cycles on (8us each)
1906 }
54a942b0 1907 }
54a942b0 1908}
1909
1910void EM4xLogin(uint32_t Password) {
ae8e8a43
MHS
1911
1912 uint8_t fwd_bit_count;
1913
1914 forward_ptr = forwardLink_data;
1915 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1916 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1917
1918 SendForward(fwd_bit_count);
1919
1920 //Wait for command to complete
1921 SpinDelay(20);
1922
54a942b0 1923}
1924
1925void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
ae8e8a43
MHS
1926
1927 uint8_t fwd_bit_count;
117d9ec2 1928 uint8_t *dest = BigBuf_get_addr();
ae8e8a43
MHS
1929 int m=0, i=0;
1930
1931 //If password mode do login
1932 if (PwdMode == 1) EM4xLogin(Pwd);
1933
1934 forward_ptr = forwardLink_data;
1935 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1936 fwd_bit_count += Prepare_Addr( Address );
1937
f71f4deb 1938 m = BigBuf_max_traceLen();
ae8e8a43
MHS
1939 // Clear destination buffer before sending the command
1940 memset(dest, 128, m);
1941 // Connect the A/D to the peak-detected low-frequency path.
1942 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1943 // Now set up the SSC to get the ADC samples that are now streaming at us.
1944 FpgaSetupSsc();
1945
1946 SendForward(fwd_bit_count);
1947
1948 // Now do the acquisition
1949 i = 0;
1950 for(;;) {
1951 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1952 AT91C_BASE_SSC->SSC_THR = 0x43;
1953 }
1954 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1955 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1956 i++;
1957 if (i >= m) break;
1958 }
54a942b0 1959 }
ae8e8a43
MHS
1960 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1961 LED_D_OFF();
54a942b0 1962}
1963
1964void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
ae8e8a43
MHS
1965
1966 uint8_t fwd_bit_count;
1967
1968 //If password mode do login
1969 if (PwdMode == 1) EM4xLogin(Pwd);
1970
1971 forward_ptr = forwardLink_data;
1972 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1973 fwd_bit_count += Prepare_Addr( Address );
1974 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1975
1976 SendForward(fwd_bit_count);
1977
1978 //Wait for write to complete
1979 SpinDelay(20);
1980 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1981 LED_D_OFF();
54a942b0 1982}
Impressum, Datenschutz