]> git.zerfleddert.de Git - proxmark3-svn/blame - common/lfdemod.c
em4x05 getting better
[proxmark3-svn] / common / lfdemod.c
CommitLineData
eb191de6 1//-----------------------------------------------------------------------------
ba1a299c 2// Copyright (C) 2014
eb191de6 3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
1e090a61 8// Low frequency demod/decode commands
eb191de6 9//-----------------------------------------------------------------------------
10
eb191de6 11#include <stdlib.h>
eb191de6 12#include "lfdemod.h"
d1869c33 13#include <string.h>
6fe5c94b 14
d1869c33 15//to allow debug print calls when used not on device
6fe5c94b 16void dummy(char *fmt, ...){}
17
18#ifndef ON_DEVICE
19#include "ui.h"
709665b5 20#include "cmdparser.h"
21#include "cmddata.h"
6fe5c94b 22#define prnt PrintAndLog
23#else
709665b5 24 uint8_t g_debugMode=0;
6fe5c94b 25#define prnt dummy
26#endif
6fe5c94b 27
a1d17964 28uint8_t justNoise(uint8_t *BitStream, size_t size)
29{
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37}
38
1e090a61 39//by marshmellow
872e3d4d 40//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
1e090a61 41int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42{
43 *high=0;
44 *low=255;
45 // get high and low thresholds
2eec55c8 46 for (size_t i=0; i < size; i++){
1e090a61 47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
75cbbe9a 51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
1e090a61 53 return 1;
54}
55
a1d17964 56// by marshmellow
57// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58// returns 1 if passed
59uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60{
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
e39a92bb 65 if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits);
a1d17964 66 return (ans == pType);
67}
68
709665b5 69// by marshmellow
70// takes a array of binary values, start position, length of bits per parity (includes parity bit),
88e85bde 71// Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
709665b5 72size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73{
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
e39a92bb 76 for (int word = 0; word < (bLen); word+=pLen) {
77 for (int bit=0; bit < pLen; bit++) {
709665b5 78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
e39a92bb 81 if (word+pLen >= bLen) break;
82
709665b5 83 j--; // overwrite parity with next data
84 // if parity fails then return 0
88e85bde 85 switch (pType) {
29435274 86 case 3: if (BitStream[j]==1) {return 0;} break; //should be 0 spacer bit
87 case 2: if (BitStream[j]==0) {return 0;} break; //should be 1 spacer bit
88 default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity
709665b5 89 }
90 bitCnt+=(pLen-1);
91 parityWd = 0;
92 }
93 // if we got here then all the parities passed
94 //return ID start index and size
95 return bitCnt;
96}
97
98// by marshmellow
99// takes a array of binary values, length of bits per parity (includes parity bit),
88e85bde 100// Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
101// Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
709665b5 102size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
103{
104 uint32_t parityWd = 0;
105 size_t j = 0, bitCnt = 0;
106 for (int word = 0; word < sourceLen; word+=pLen-1) {
107 for (int bit=0; bit < pLen-1; bit++){
108 parityWd = (parityWd << 1) | BitSource[word+bit];
109 dest[j++] = (BitSource[word+bit]);
110 }
111 // if parity fails then return 0
88e85bde 112 switch (pType) {
113 case 3: dest[j++]=0; break; // marker bit which should be a 0
114 case 2: dest[j++]=1; break; // marker bit which should be a 1
115 default:
116 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
117 break;
709665b5 118 }
119 bitCnt += pLen;
120 parityWd = 0;
121 }
122 // if we got here then all the parities passed
123 //return ID start index and size
124 return bitCnt;
125}
126
127uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
128{
129 uint32_t num = 0;
130 for(int i = 0 ; i < numbits ; i++)
131 {
132 num = (num << 1) | (*src);
133 src++;
134 }
135 return num;
136}
137
138//least significant bit first
139uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
140{
141 uint32_t num = 0;
142 for(int i = 0 ; i < numbits ; i++)
143 {
144 num = (num << 1) | *(src + (numbits-(i+1)));
145 }
146 return num;
147}
148
a1d17964 149//by marshmellow
2147c307 150//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
a1d17964 151uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
152{
59f726c9 153 // Sanity check. If preamble length is bigger than bitstream length.
154 if ( *size <= pLen ) return 0;
155
e0165dcf 156 uint8_t foundCnt=0;
157 for (int idx=0; idx < *size - pLen; idx++){
158 if (memcmp(BitStream+idx, preamble, pLen) == 0){
159 //first index found
160 foundCnt++;
161 if (foundCnt == 1){
162 *startIdx = idx;
163 }
164 if (foundCnt == 2){
165 *size = idx - *startIdx;
166 return 1;
167 }
168 }
169 }
170 return 0;
a1d17964 171}
172
2147c307 173//by marshmellow
174//takes 1s and 0s and searches for EM410x format - output EM ID
175uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
176{
e0165dcf 177 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
178 // otherwise could be a void with no arguments
179 //set defaults
180 uint32_t i = 0;
2767fc02 181 if (BitStream[1]>1) return 0; //allow only 1s and 0s
182
e0165dcf 183 // 111111111 bit pattern represent start of frame
184 // include 0 in front to help get start pos
185 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
186 uint32_t idx = 0;
187 uint32_t parityBits = 0;
188 uint8_t errChk = 0;
189 uint8_t FmtLen = 10;
190 *startIdx = 0;
191 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
192 if (errChk == 0 || *size < 64) return 0;
193 if (*size > 64) FmtLen = 22;
194 *startIdx += 1; //get rid of 0 from preamble
195 idx = *startIdx + 9;
196 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
197 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
2eec55c8 198 //check even parity - quit if failed
199 if (parityTest(parityBits, 5, 0) == 0) return 0;
e0165dcf 200 //set uint64 with ID from BitStream
201 for (uint8_t ii=0; ii<4; ii++){
202 *hi = (*hi << 1) | (*lo >> 63);
203 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
204 }
205 }
206 if (errChk != 0) return 1;
207 //skip last 5 bit parity test for simplicity.
208 // *size = 64 | 128;
209 return 0;
2147c307 210}
211
fef74fdc 212//by marshmellow
213//demodulates strong heavily clipped samples
23f0a7d8 214int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
215{
216 size_t bitCnt=0, smplCnt=0, errCnt=0;
217 uint8_t waveHigh = 0;
23f0a7d8 218 for (size_t i=0; i < *size; i++){
219 if (BinStream[i] >= high && waveHigh){
220 smplCnt++;
221 } else if (BinStream[i] <= low && !waveHigh){
222 smplCnt++;
223 } else { //transition
224 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
225 if (smplCnt > clk-(clk/4)-1) { //full clock
226 if (smplCnt > clk + (clk/4)+1) { //too many samples
227 errCnt++;
d1869c33 228 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
2767fc02 229 BinStream[bitCnt++]=7;
23f0a7d8 230 } else if (waveHigh) {
231 BinStream[bitCnt++] = invert;
232 BinStream[bitCnt++] = invert;
233 } else if (!waveHigh) {
234 BinStream[bitCnt++] = invert ^ 1;
235 BinStream[bitCnt++] = invert ^ 1;
236 }
237 waveHigh ^= 1;
238 smplCnt = 0;
239 } else if (smplCnt > (clk/2) - (clk/4)-1) {
240 if (waveHigh) {
241 BinStream[bitCnt++] = invert;
242 } else if (!waveHigh) {
243 BinStream[bitCnt++] = invert ^ 1;
244 }
245 waveHigh ^= 1;
246 smplCnt = 0;
247 } else if (!bitCnt) {
248 //first bit
249 waveHigh = (BinStream[i] >= high);
250 smplCnt = 1;
251 } else {
252 smplCnt++;
253 //transition bit oops
254 }
255 } else { //haven't hit new high or new low yet
256 smplCnt++;
257 }
258 }
259 }
260 *size = bitCnt;
261 return errCnt;
262}
263
eb191de6 264//by marshmellow
fef74fdc 265void askAmp(uint8_t *BitStream, size_t size)
266{
16ea2b8c 267 uint8_t Last = 128;
fef74fdc 268 for(size_t i = 1; i<size; i++){
269 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
16ea2b8c 270 Last = 255;
271 else if(BitStream[i-1]-BitStream[i]>=20) //large jump down
272 Last = 0;
273
274 BitStream[i-1] = Last;
fef74fdc 275 }
276 return;
277}
01d0f8ae 278
fef74fdc 279//by marshmellow
280//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
281int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
eb191de6 282{
fef74fdc 283 if (*size==0) return -1;
6e984446 284 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
2eec55c8 285 if (*clk==0 || start < 0) return -3;
fef74fdc 286 if (*invert != 1) *invert = 0;
287 if (amp==1) askAmp(BinStream, *size);
01d0f8ae 288 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
fef74fdc 289
2eec55c8 290 uint8_t initLoopMax = 255;
291 if (initLoopMax > *size) initLoopMax = *size;
ba1a299c 292 // Detect high and lows
fef74fdc 293 //25% clip in case highs and lows aren't clipped [marshmellow]
2eec55c8 294 int high, low;
fef74fdc 295 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
296 return -2; //just noise
ba1a299c 297
fef74fdc 298 size_t errCnt = 0;
23f0a7d8 299 // if clean clipped waves detected run alternate demod
300 if (DetectCleanAskWave(BinStream, *size, high, low)) {
d1869c33 301 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
fef74fdc 302 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
303 if (askType) //askman
304 return manrawdecode(BinStream, size, 0);
305 else //askraw
306 return errCnt;
23f0a7d8 307 }
d1869c33 308 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
23f0a7d8 309
d1869c33 310 int lastBit; //set first clock check - can go negative
fef74fdc 311 size_t i, bitnum = 0; //output counter
312 uint8_t midBit = 0;
2eec55c8 313 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
d1869c33 314 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
315 size_t MaxBits = 3072; //max bits to collect
6e984446 316 lastBit = start - *clk;
fef74fdc 317
6e984446 318 for (i = start; i < *size; ++i) {
fef74fdc 319 if (i-lastBit >= *clk-tol){
320 if (BinStream[i] >= high) {
321 BinStream[bitnum++] = *invert;
322 } else if (BinStream[i] <= low) {
323 BinStream[bitnum++] = *invert ^ 1;
324 } else if (i-lastBit >= *clk+tol) {
325 if (bitnum > 0) {
d1869c33 326 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
fef74fdc 327 BinStream[bitnum++]=7;
328 errCnt++;
329 }
330 } else { //in tolerance - looking for peak
331 continue;
332 }
333 midBit = 0;
2eec55c8 334 lastBit += *clk;
fef74fdc 335 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
336 if (BinStream[i] >= high) {
337 BinStream[bitnum++] = *invert;
338 } else if (BinStream[i] <= low) {
339 BinStream[bitnum++] = *invert ^ 1;
340 } else if (i-lastBit >= *clk/2+tol) {
341 BinStream[bitnum] = BinStream[bitnum-1];
342 bitnum++;
343 } else { //in tolerance - looking for peak
344 continue;
345 }
346 midBit = 1;
2eec55c8 347 }
348 if (bitnum >= MaxBits) break;
ba1a299c 349 }
2eec55c8 350 *size = bitnum;
6e984446 351 return errCnt;
eb191de6 352}
353
354//by marshmellow
355//take 10 and 01 and manchester decode
356//run through 2 times and take least errCnt
fef74fdc 357int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
eb191de6 358{
13d77ef9 359 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
360 size_t i, ii;
361 uint16_t bestErr = 1000, bestRun = 0;
fef74fdc 362 if (*size < 16) return -1;
2767fc02 363 //find correct start position [alignment]
13d77ef9 364 for (ii=0;ii<2;++ii){
fef74fdc 365 for (i=ii; i<*size-3; i+=2)
2eec55c8 366 if (BitStream[i]==BitStream[i+1])
ba1a299c 367 errCnt++;
2eec55c8 368
ba1a299c 369 if (bestErr>errCnt){
370 bestErr=errCnt;
371 bestRun=ii;
372 }
373 errCnt=0;
374 }
2767fc02 375 //decode
fef74fdc 376 for (i=bestRun; i < *size-3; i+=2){
23f0a7d8 377 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
fef74fdc 378 BitStream[bitnum++]=invert;
23f0a7d8 379 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
fef74fdc 380 BitStream[bitnum++]=invert^1;
23f0a7d8 381 } else {
2767fc02 382 BitStream[bitnum++]=7;
ba1a299c 383 }
23f0a7d8 384 if(bitnum>MaxBits) break;
ba1a299c 385 }
23f0a7d8 386 *size=bitnum;
2eec55c8 387 return bestErr;
f822a063 388}
389
3606ac0a 390uint32_t manchesterEncode2Bytes(uint16_t datain) {
391 uint32_t output = 0;
392 uint8_t curBit = 0;
393 for (uint8_t i=0; i<16; i++) {
394 curBit = (datain >> (15-i) & 1);
395 output |= (1<<(((15-i)*2)+curBit));
396 }
397 return output;
398}
399
fef74fdc 400//by marshmellow
401//encode binary data into binary manchester
402int ManchesterEncode(uint8_t *BitStream, size_t size)
403{
404 size_t modIdx=20000, i=0;
405 if (size>modIdx) return -1;
406 for (size_t idx=0; idx < size; idx++){
407 BitStream[idx+modIdx++] = BitStream[idx];
408 BitStream[idx+modIdx++] = BitStream[idx]^1;
409 }
410 for (; i<(size*2); i++){
411 BitStream[i] = BitStream[i+20000];
412 }
413 return i;
414}
415
f822a063 416//by marshmellow
2147c307 417//take 01 or 10 = 1 and 11 or 00 = 0
418//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
13d77ef9 419//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
1e090a61 420int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
f822a063 421{
2eec55c8 422 uint16_t bitnum = 0;
423 uint16_t errCnt = 0;
424 size_t i = offset;
2147c307 425 uint16_t MaxBits=512;
426 //if not enough samples - error
427 if (*size < 51) return -1;
428 //check for phase change faults - skip one sample if faulty
429 uint8_t offsetA = 1, offsetB = 1;
430 for (; i<48; i+=2){
431 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
432 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
433 }
434 if (!offsetA && offsetB) offset++;
435 for (i=offset; i<*size-3; i+=2){
436 //check for phase error
13d77ef9 437 if (BitStream[i+1]==BitStream[i+2]) {
2767fc02 438 BitStream[bitnum++]=7;
2147c307 439 errCnt++;
440 }
ba1a299c 441 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
1e090a61 442 BitStream[bitnum++]=1^invert;
ba1a299c 443 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
1e090a61 444 BitStream[bitnum++]=invert;
ba1a299c 445 } else {
2767fc02 446 BitStream[bitnum++]=7;
ba1a299c 447 errCnt++;
448 }
6de43508 449 if(bitnum>MaxBits) break;
ba1a299c 450 }
451 *size=bitnum;
452 return errCnt;
eb191de6 453}
454
fef74fdc 455// by marshmellow
11081e04 456// demod gProxIIDemod
457// error returns as -x
458// success returns start position in BitStream
459// BitStream must contain previously askrawdemod and biphasedemoded data
460int gProxII_Demod(uint8_t BitStream[], size_t *size)
461{
462 size_t startIdx=0;
463 uint8_t preamble[] = {1,1,1,1,1,0};
464
465 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
466 if (errChk == 0) return -3; //preamble not found
467 if (*size != 96) return -2; //should have found 96 bits
468 //check first 6 spacer bits to verify format
469 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
470 //confirmed proper separator bits found
471 //return start position
472 return (int) startIdx;
473 }
cf194819 474 return -5; //spacer bits not found - not a valid gproxII
11081e04 475}
476
cf194819 477//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
f822a063 478size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
eb191de6 479{
2eec55c8 480 size_t last_transition = 0;
481 size_t idx = 1;
ac3ba7ee 482 //uint32_t maxVal=0;
ba1a299c 483 if (fchigh==0) fchigh=10;
484 if (fclow==0) fclow=8;
84871873 485 //set the threshold close to 0 (graph) or 128 std to avoid static
486 uint8_t threshold_value = 123;
f4eadf8a 487 size_t preLastSample = 0;
488 size_t LastSample = 0;
489 size_t currSample = 0;
ba1a299c 490 // sync to first lo-hi transition, and threshold
491
492 // Need to threshold first sample
6fe5c94b 493 // skip 160 samples to allow antenna/samples to settle
494 if(dest[160] < threshold_value) dest[0] = 0;
ba1a299c 495 else dest[0] = 1;
496
497 size_t numBits = 0;
498 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
63744b56 499 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
ba1a299c 500 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
cf194819 501 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
6fe5c94b 502 for(idx = 161; idx < size-20; idx++) {
ba1a299c 503 // threshold current value
504
505 if (dest[idx] < threshold_value) dest[idx] = 0;
506 else dest[idx] = 1;
507
508 // Check for 0->1 transition
cf194819 509 if (dest[idx-1] < dest[idx]) {
f4eadf8a 510 preLastSample = LastSample;
511 LastSample = currSample;
512 currSample = idx-last_transition;
cf194819 513 if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3)
ba1a299c 514 //do nothing with extra garbage
cf194819 515 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
516 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
db829602 517 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
cf194819 518 dest[numBits-1]=1;
f4eadf8a 519 }
2eec55c8 520 dest[numBits++]=1;
f4eadf8a 521
cf194819 522 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
13d77ef9 523 //do nothing with beginning garbage
cf194819 524 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
f4eadf8a 525 dest[numBits++]=1;
cf194819 526 } else { //9+ = 10 sample waves (or 6+ = 7)
2eec55c8 527 dest[numBits++]=0;
ba1a299c 528 }
529 last_transition = idx;
ba1a299c 530 }
531 }
532 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
eb191de6 533}
534
ba1a299c 535//translate 11111100000 to 10
cf194819 536//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
2eec55c8 537size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
e0165dcf 538 uint8_t invert, uint8_t fchigh, uint8_t fclow)
eb191de6 539{
ba1a299c 540 uint8_t lastval=dest[0];
2eec55c8 541 size_t idx=0;
ba1a299c 542 size_t numBits=0;
543 uint32_t n=1;
ba1a299c 544 for( idx=1; idx < size; idx++) {
13d77ef9 545 n++;
cf194819 546 if (dest[idx]==lastval) continue; //skip until we hit a transition
2eec55c8 547
cf194819 548 //find out how many bits (n) we collected
ba1a299c 549 //if lastval was 1, we have a 1->0 crossing
13d77ef9 550 if (dest[idx-1]==1) {
6fe5c94b 551 n = (n * fclow + rfLen/2) / rfLen;
13d77ef9 552 } else {// 0->1 crossing
75cbbe9a 553 n = (n * fchigh + rfLen/2) / rfLen;
ba1a299c 554 }
555 if (n == 0) n = 1;
556
cf194819 557 //add to our destination the bits we collected
2eec55c8 558 memset(dest+numBits, dest[idx-1]^invert , n);
559 numBits += n;
ba1a299c 560 n=0;
561 lastval=dest[idx];
562 }//end for
13d77ef9 563 // if valid extra bits at the end were all the same frequency - add them in
75cbbe9a 564 if (n > rfLen/fchigh) {
13d77ef9 565 if (dest[idx-2]==1) {
75cbbe9a 566 n = (n * fclow + rfLen/2) / rfLen;
13d77ef9 567 } else {
75cbbe9a 568 n = (n * fchigh + rfLen/2) / rfLen;
13d77ef9 569 }
2eec55c8 570 memset(dest+numBits, dest[idx-1]^invert , n);
13d77ef9 571 numBits += n;
572 }
ba1a299c 573 return numBits;
eb191de6 574}
6fe5c94b 575
eb191de6 576//by marshmellow (from holiman's base)
577// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
f822a063 578int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
eb191de6 579{
ba1a299c 580 // FSK demodulator
581 size = fsk_wave_demod(dest, size, fchigh, fclow);
2eec55c8 582 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
ba1a299c 583 return size;
eb191de6 584}
a1d17964 585
eb191de6 586// loop to get raw HID waveform then FSK demodulate the TAG ID from it
ec75f5c1 587int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
eb191de6 588{
e0165dcf 589 if (justNoise(dest, *size)) return -1;
590
591 size_t numStart=0, size2=*size, startIdx=0;
592 // FSK demodulator
593 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
2eec55c8 594 if (*size < 96*2) return -2;
e0165dcf 595 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
596 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
597 // find bitstring in array
598 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
599 if (errChk == 0) return -3; //preamble not found
600
601 numStart = startIdx + sizeof(preamble);
602 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
603 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
604 if (dest[idx] == dest[idx+1]){
605 return -4; //not manchester data
606 }
607 *hi2 = (*hi2<<1)|(*hi>>31);
608 *hi = (*hi<<1)|(*lo>>31);
609 //Then, shift in a 0 or one into low
610 if (dest[idx] && !dest[idx+1]) // 1 0
611 *lo=(*lo<<1)|1;
612 else // 0 1
613 *lo=(*lo<<1)|0;
614 }
615 return (int)startIdx;
eb191de6 616}
617
ec75f5c1 618// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
a1d17964 619int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
ec75f5c1 620{
a1d17964 621 if (justNoise(dest, *size)) return -1;
622
623 size_t numStart=0, size2=*size, startIdx=0;
ec75f5c1 624 // FSK demodulator
a1d17964 625 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
626 if (*size < 96) return -2;
ec75f5c1 627
a1d17964 628 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
629 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
630
631 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
632 if (errChk == 0) return -3; //preamble not found
633
634 numStart = startIdx + sizeof(preamble);
635 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
636 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
637 if (dest[idx] == dest[idx+1])
638 return -4; //not manchester data
639 *hi2 = (*hi2<<1)|(*hi>>31);
640 *hi = (*hi<<1)|(*lo>>31);
641 //Then, shift in a 0 or one into low
642 if (dest[idx] && !dest[idx+1]) // 1 0
643 *lo=(*lo<<1)|1;
644 else // 0 1
645 *lo=(*lo<<1)|0;
ec75f5c1 646 }
a1d17964 647 return (int)startIdx;
ec75f5c1 648}
649
eb191de6 650int IOdemodFSK(uint8_t *dest, size_t size)
651{
a1d17964 652 if (justNoise(dest, size)) return -1;
ba1a299c 653 //make sure buffer has data
a1d17964 654 if (size < 66*64) return -2;
ba1a299c 655 // FSK demodulator
a1d17964 656 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
657 if (size < 65) return -3; //did we get a good demod?
ba1a299c 658 //Index map
659 //0 10 20 30 40 50 60
660 //| | | | | | |
661 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
662 //-----------------------------------------------------------------------------
663 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
664 //
665 //XSF(version)facility:codeone+codetwo
666 //Handle the data
a1d17964 667 size_t startIdx = 0;
668 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
669 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
670 if (errChk == 0) return -4; //preamble not found
eb191de6 671
a1d17964 672 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
673 //confirmed proper separator bits found
674 //return start position
675 return (int) startIdx;
1e090a61 676 }
a1d17964 677 return -5;
415274a7 678}
679
680// by marshmellow
681// find viking preamble 0xF200 in already demoded data
682int VikingDemod_AM(uint8_t *dest, size_t *size) {
415274a7 683 //make sure buffer has data
684 if (*size < 64*2) return -2;
685
686 size_t startIdx = 0;
687 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
688 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
689 if (errChk == 0) return -4; //preamble not found
3ea7254a 690 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
691 ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
692 ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
693 if ( checkCalc != 0xA8 ) return -5;
14331320 694 if (*size != 64) return -6;
415274a7 695 //return start position
696 return (int) startIdx;
1e090a61 697}
698
6923d3f1 699// find presco preamble 0x10D in already demoded data
700int PrescoDemod(uint8_t *dest, size_t *size) {
701 //make sure buffer has data
702 if (*size < 64*2) return -2;
703
704 size_t startIdx = 0;
705 uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
706 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
707 if (errChk == 0) return -4; //preamble not found
708 //return start position
709 return (int) startIdx;
710}
711
04bb0567 712// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
713// BitStream must contain previously askrawdemod and biphasedemoded data
b2c330b3 714int FDXBdemodBI(uint8_t *dest, size_t *size)
04bb0567 715{
716 //make sure buffer has enough data
717 if (*size < 128) return -1;
718
719 size_t startIdx = 0;
720 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
721
722 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
723 if (errChk == 0) return -2; //preamble not found
724 return (int)startIdx;
725}
726
1e090a61 727// by marshmellow
728// FSK Demod then try to locate an AWID ID
a1d17964 729int AWIDdemodFSK(uint8_t *dest, size_t *size)
1e090a61 730{
a1d17964 731 //make sure buffer has enough data
732 if (*size < 96*50) return -1;
733
734 if (justNoise(dest, *size)) return -2;
1e090a61 735
736 // FSK demodulator
a1d17964 737 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
738 if (*size < 96) return -3; //did we get a good demod?
739
740 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
741 size_t startIdx = 0;
742 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
743 if (errChk == 0) return -4; //preamble not found
744 if (*size != 96) return -5;
745 return (int)startIdx;
1e090a61 746}
747
748// by marshmellow
6fe5c94b 749// FSK Demod then try to locate a Farpointe Data (pyramid) ID
a1d17964 750int PyramiddemodFSK(uint8_t *dest, size_t *size)
1e090a61 751{
f3bf15e4 752 //make sure buffer has data
753 if (*size < 128*50) return -5;
a1d17964 754
f3bf15e4 755 //test samples are not just noise
756 if (justNoise(dest, *size)) return -1;
1e090a61 757
f3bf15e4 758 // FSK demodulator
759 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
760 if (*size < 128) return -2; //did we get a good demod?
a1d17964 761
f3bf15e4 762 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
a1d17964 763 size_t startIdx = 0;
764 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
765 if (errChk == 0) return -4; //preamble not found
766 if (*size != 128) return -3;
767 return (int)startIdx;
1e090a61 768}
769
fef74fdc 770// by marshmellow
771// to detect a wave that has heavily clipped (clean) samples
cc15a118 772uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
6de43508 773{
6fe5c94b 774 bool allArePeaks = true;
6de43508 775 uint16_t cntPeaks=0;
db829602 776 size_t loopEnd = 512+160;
1fbf8956 777 if (loopEnd > size) loopEnd = size;
db829602 778 for (size_t i=160; i<loopEnd; i++){
6de43508 779 if (dest[i]>low && dest[i]<high)
6fe5c94b 780 allArePeaks = false;
6de43508 781 else
782 cntPeaks++;
783 }
6fe5c94b 784 if (!allArePeaks){
785 if (cntPeaks > 300) return true;
6de43508 786 }
6fe5c94b 787 return allArePeaks;
6de43508 788}
2eec55c8 789// by marshmellow
790// to help detect clocks on heavily clipped samples
cc15a118 791// based on count of low to low
792int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
13d77ef9 793{
cc15a118 794 uint8_t fndClk[] = {8,16,32,40,50,64,128};
795 size_t startwave;
db829602 796 size_t i = 100;
cc15a118 797 size_t minClk = 255;
798 // get to first full low to prime loop and skip incomplete first pulse
799 while ((dest[i] < high) && (i < size))
800 ++i;
801 while ((dest[i] > low) && (i < size))
802 ++i;
803
804 // loop through all samples
805 while (i < size) {
806 // measure from low to low
807 while ((dest[i] > low) && (i < size))
808 ++i;
809 startwave= i;
810 while ((dest[i] < high) && (i < size))
811 ++i;
812 while ((dest[i] > low) && (i < size))
813 ++i;
814 //get minimum measured distance
815 if (i-startwave < minClk && i < size)
816 minClk = i - startwave;
13d77ef9 817 }
cc15a118 818 // set clock
709665b5 819 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
cc15a118 820 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
821 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
822 return fndClk[clkCnt];
13d77ef9 823 }
cc15a118 824 return 0;
13d77ef9 825}
826
eb191de6 827// by marshmellow
828// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
829// maybe somehow adjust peak trimming value based on samples to fix?
6de43508 830// return start index of best starting position for that clock and return clock (by reference)
831int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
eb191de6 832{
6e984446 833 size_t i=1;
cc15a118 834 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
835 uint8_t clkEnd = 9;
2eec55c8 836 uint8_t loopCnt = 255; //don't need to loop through entire array...
db829602 837 if (size <= loopCnt+60) return -1; //not enough samples
838 size -= 60; //sometimes there is a strange end wave - filter out this....
6e984446 839 //if we already have a valid clock
840 uint8_t clockFnd=0;
cc15a118 841 for (;i<clkEnd;++i)
842 if (clk[i] == *clock) clockFnd = i;
6e984446 843 //clock found but continue to find best startpos
e0165dcf 844
845 //get high and low peak
846 int peak, low;
2eec55c8 847 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
e0165dcf 848
849 //test for large clean peaks
cc15a118 850 if (!clockFnd){
851 if (DetectCleanAskWave(dest, size, peak, low)==1){
852 int ans = DetectStrongAskClock(dest, size, peak, low);
709665b5 853 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
cc15a118 854 for (i=clkEnd-1; i>0; i--){
855 if (clk[i] == ans) {
856 *clock = ans;
857 //clockFnd = i;
858 return 0; // for strong waves i don't use the 'best start position' yet...
859 //break; //clock found but continue to find best startpos [not yet]
860 }
e0165dcf 861 }
862 }
863 }
2eec55c8 864 uint8_t ii;
865 uint8_t clkCnt, tol = 0;
866 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
867 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
868 size_t errCnt = 0;
869 size_t arrLoc, loopEnd;
6e984446 870
cc15a118 871 if (clockFnd>0) {
872 clkCnt = clockFnd;
873 clkEnd = clockFnd+1;
874 }
875 else clkCnt=1;
876
877 //test each valid clock from smallest to greatest to see which lines up
878 for(; clkCnt < clkEnd; clkCnt++){
fef74fdc 879 if (clk[clkCnt] <= 32){
e0165dcf 880 tol=1;
881 }else{
882 tol=0;
883 }
2767fc02 884 //if no errors allowed - keep start within the first clock
cc15a118 885 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
e0165dcf 886 bestErr[clkCnt]=1000;
6e984446 887 //try lining up the peaks by moving starting point (try first few clocks)
cc15a118 888 for (ii=0; ii < loopCnt; ii++){
2eec55c8 889 if (dest[ii] < peak && dest[ii] > low) continue;
890
891 errCnt=0;
892 // now that we have the first one lined up test rest of wave array
893 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
894 for (i=0; i < loopEnd; ++i){
895 arrLoc = ii + (i * clk[clkCnt]);
896 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
897 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
898 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
899 }else{ //error no peak detected
900 errCnt++;
e0165dcf 901 }
902 }
cc15a118 903 //if we found no errors then we can stop here and a low clock (common clocks)
2eec55c8 904 // this is correct one - return this clock
709665b5 905 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
cc15a118 906 if(errCnt==0 && clkCnt<7) {
907 if (!clockFnd) *clock = clk[clkCnt];
2eec55c8 908 return ii;
909 }
910 //if we found errors see if it is lowest so far and save it as best run
911 if(errCnt<bestErr[clkCnt]){
912 bestErr[clkCnt]=errCnt;
913 bestStart[clkCnt]=ii;
914 }
e0165dcf 915 }
916 }
cc15a118 917 uint8_t iii;
e0165dcf 918 uint8_t best=0;
cc15a118 919 for (iii=1; iii<clkEnd; ++iii){
2eec55c8 920 if (bestErr[iii] < bestErr[best]){
921 if (bestErr[iii] == 0) bestErr[iii]=1;
e0165dcf 922 // current best bit to error ratio vs new bit to error ratio
2eec55c8 923 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
e0165dcf 924 best = iii;
925 }
926 }
709665b5 927 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
e0165dcf 928 }
cc15a118 929 if (!clockFnd) *clock = clk[best];
e0165dcf 930 return bestStart[best];
eb191de6 931}
ba1a299c 932
933//by marshmellow
6de43508 934//detect psk clock by reading each phase shift
935// a phase shift is determined by measuring the sample length of each wave
936int DetectPSKClock(uint8_t dest[], size_t size, int clock)
ba1a299c 937{
e0165dcf 938 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
939 uint16_t loopCnt = 4096; //don't need to loop through entire array...
940 if (size == 0) return 0;
db829602 941 if (size<loopCnt) loopCnt = size-20;
e0165dcf 942
943 //if we already have a valid clock quit
944 size_t i=1;
945 for (; i < 8; ++i)
946 if (clk[i] == clock) return clock;
947
948 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
949 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
950 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
951 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
952 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
2eec55c8 953 fc = countFC(dest, size, 0);
954 if (fc!=2 && fc!=4 && fc!=8) return -1;
709665b5 955 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
e0165dcf 956
957 //find first full wave
db829602 958 for (i=160; i<loopCnt; i++){
e0165dcf 959 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
960 if (waveStart == 0) {
961 waveStart = i+1;
db829602 962 //prnt("DEBUG: waveStart: %d",waveStart);
e0165dcf 963 } else {
964 waveEnd = i+1;
db829602 965 //prnt("DEBUG: waveEnd: %d",waveEnd);
e0165dcf 966 waveLenCnt = waveEnd-waveStart;
967 if (waveLenCnt > fc){
968 firstFullWave = waveStart;
969 fullWaveLen=waveLenCnt;
970 break;
971 }
972 waveStart=0;
973 }
974 }
975 }
709665b5 976 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
e0165dcf 977
978 //test each valid clock from greatest to smallest to see which lines up
979 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
980 lastClkBit = firstFullWave; //set end of wave as clock align
981 waveStart = 0;
982 errCnt=0;
983 peakcnt=0;
709665b5 984 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
e0165dcf 985
986 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
987 //top edge of wave = start of new wave
988 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
989 if (waveStart == 0) {
990 waveStart = i+1;
991 waveLenCnt=0;
992 } else { //waveEnd
993 waveEnd = i+1;
994 waveLenCnt = waveEnd-waveStart;
995 if (waveLenCnt > fc){
996 //if this wave is a phase shift
709665b5 997 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
e0165dcf 998 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
999 peakcnt++;
1000 lastClkBit+=clk[clkCnt];
1001 } else if (i<lastClkBit+8){
1002 //noise after a phase shift - ignore
1003 } else { //phase shift before supposed to based on clock
1004 errCnt++;
1005 }
1006 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1007 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1008 }
1009 waveStart=i+1;
1010 }
1011 }
1012 }
1013 if (errCnt == 0){
1014 return clk[clkCnt];
1015 }
1016 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1017 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1018 }
1019 //all tested with errors
1020 //return the highest clk with the most peaks found
1021 uint8_t best=7;
1022 for (i=7; i>=1; i--){
1023 if (peaksdet[i] > peaksdet[best]) {
1024 best = i;
1025 }
709665b5 1026 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
e0165dcf 1027 }
1028 return clk[best];
ba1a299c 1029}
1030
db829602 1031int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1032 //find shortest transition from high to low
1033 size_t i = 0;
1034 size_t transition1 = 0;
1035 int lowestTransition = 255;
6fe5c94b 1036 bool lastWasHigh = false;
1037
1038 //find first valid beginning of a high or low wave
1039 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1040 ++i;
1041 while ((dest[i] < peak && dest[i] > low) && (i < size))
1042 ++i;
1043 lastWasHigh = (dest[i] >= peak);
1044
db829602 1045 if (i==size) return 0;
1046 transition1 = i;
1047
1048 for (;i < size; i++) {
1049 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1050 lastWasHigh = (dest[i] >= peak);
1051 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1052 transition1 = i;
1053 }
1054 }
1055 if (lowestTransition == 255) lowestTransition = 0;
709665b5 1056 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
db829602 1057 return lowestTransition;
1058}
1059
6de43508 1060//by marshmellow
1061//detect nrz clock by reading #peaks vs no peaks(or errors)
1062int DetectNRZClock(uint8_t dest[], size_t size, int clock)
ba1a299c 1063{
2eec55c8 1064 size_t i=0;
1065 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1066 size_t loopCnt = 4096; //don't need to loop through entire array...
e0165dcf 1067 if (size == 0) return 0;
db829602 1068 if (size<loopCnt) loopCnt = size-20;
e0165dcf 1069 //if we already have a valid clock quit
1070 for (; i < 8; ++i)
1071 if (clk[i] == clock) return clock;
1072
1073 //get high and low peak
1074 int peak, low;
2eec55c8 1075 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
e0165dcf 1076
db829602 1077 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
2eec55c8 1078 size_t ii;
e0165dcf 1079 uint8_t clkCnt;
1080 uint8_t tol = 0;
db829602 1081 uint16_t smplCnt = 0;
1082 int16_t peakcnt = 0;
1083 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1084 uint16_t maxPeak = 255;
6fe5c94b 1085 bool firstpeak = false;
e0165dcf 1086 //test for large clipped waves
1087 for (i=0; i<loopCnt; i++){
1088 if (dest[i] >= peak || dest[i] <= low){
db829602 1089 if (!firstpeak) continue;
1090 smplCnt++;
e0165dcf 1091 } else {
6fe5c94b 1092 firstpeak=true;
db829602 1093 if (smplCnt > 6 ){
1094 if (maxPeak > smplCnt){
1095 maxPeak = smplCnt;
1096 //prnt("maxPk: %d",maxPeak);
1097 }
1098 peakcnt++;
1099 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1100 smplCnt=0;
e0165dcf 1101 }
e0165dcf 1102 }
1103 }
6fe5c94b 1104 bool errBitHigh = 0;
1105 bool bitHigh = 0;
1106 uint8_t ignoreCnt = 0;
1107 uint8_t ignoreWindow = 4;
1108 bool lastPeakHigh = 0;
1109 int lastBit = 0;
e0165dcf 1110 peakcnt=0;
1111 //test each valid clock from smallest to greatest to see which lines up
1112 for(clkCnt=0; clkCnt < 8; ++clkCnt){
db829602 1113 //ignore clocks smaller than smallest peak
1114 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
e0165dcf 1115 //try lining up the peaks by moving starting point (try first 256)
db829602 1116 for (ii=20; ii < loopCnt; ++ii){
e0165dcf 1117 if ((dest[ii] >= peak) || (dest[ii] <= low)){
6fe5c94b 1118 peakcnt = 0;
1119 bitHigh = false;
1120 ignoreCnt = 0;
1121 lastBit = ii-clk[clkCnt];
db829602 1122 //loop through to see if this start location works
1123 for (i = ii; i < size-20; ++i) {
6fe5c94b 1124 //if we are at a clock bit
db829602 1125 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1126 //test high/low
1127 if (dest[i] >= peak || dest[i] <= low) {
6fe5c94b 1128 //if same peak don't count it
1129 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1130 peakcnt++;
1131 }
1132 lastPeakHigh = (dest[i] >= peak);
1133 bitHigh = true;
1134 errBitHigh = false;
db829602 1135 ignoreCnt = ignoreWindow;
1136 lastBit += clk[clkCnt];
db829602 1137 } else if (i == lastBit + clk[clkCnt] + tol) {
1138 lastBit += clk[clkCnt];
db829602 1139 }
1140 //else if not a clock bit and no peaks
1141 } else if (dest[i] < peak && dest[i] > low){
db829602 1142 if (ignoreCnt==0){
6fe5c94b 1143 bitHigh=false;
1144 if (errBitHigh==true) peakcnt--;
1145 errBitHigh=false;
db829602 1146 } else {
1147 ignoreCnt--;
1148 }
1149 // else if not a clock bit but we have a peak
6fe5c94b 1150 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
db829602 1151 //error bar found no clock...
6fe5c94b 1152 errBitHigh=true;
e0165dcf 1153 }
1154 }
1155 if(peakcnt>peaksdet[clkCnt]) {
1156 peaksdet[clkCnt]=peakcnt;
1157 }
1158 }
1159 }
1160 }
1161 int iii=7;
2eec55c8 1162 uint8_t best=0;
e0165dcf 1163 for (iii=7; iii > 0; iii--){
6fe5c94b 1164 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1165 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
db829602 1166 best = iii;
1167 }
6fe5c94b 1168 } else if (peaksdet[iii] > peaksdet[best]){
1169 best = iii;
e0165dcf 1170 }
709665b5 1171 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
e0165dcf 1172 }
db829602 1173
e0165dcf 1174 return clk[best];
ba1a299c 1175}
1176
04d2721b 1177// by marshmellow
1178// convert psk1 demod to psk2 demod
1179// only transition waves are 1s
1180void psk1TOpsk2(uint8_t *BitStream, size_t size)
1181{
1182 size_t i=1;
1183 uint8_t lastBit=BitStream[0];
1184 for (; i<size; i++){
2767fc02 1185 if (BitStream[i]==7){
7a8a982b 1186 //ignore errors
1187 } else if (lastBit!=BitStream[i]){
04d2721b 1188 lastBit=BitStream[i];
1189 BitStream[i]=1;
1190 } else {
1191 BitStream[i]=0;
1192 }
1193 }
1194 return;
1195}
ba1a299c 1196
3bc66a96 1197// by marshmellow
1198// convert psk2 demod to psk1 demod
1199// from only transition waves are 1s to phase shifts change bit
1200void psk2TOpsk1(uint8_t *BitStream, size_t size)
1201{
712ebfa6 1202 uint8_t phase=0;
1203 for (size_t i=0; i<size; i++){
1204 if (BitStream[i]==1){
3bc66a96 1205 phase ^=1;
1206 }
1207 BitStream[i]=phase;
1208 }
1209 return;
1210}
1211
04d2721b 1212// redesigned by marshmellow adjusted from existing decode functions
1213// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
ba1a299c 1214int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1215{
1216 //26 bit 40134 format (don't know other formats)
14331320 1217 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1218 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1219 size_t startidx = 0;
1220 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1221 // if didn't find preamble try again inverting
1222 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1223 *invert ^= 1;
1224 }
1225 if (*size != 64 && *size != 224) return -2;
1226 if (*invert==1)
1227 for (size_t i = startidx; i < *size; i++)
1228 bitStream[i] ^= 1;
ba1a299c 1229
14331320 1230 return (int) startidx;
ba1a299c 1231}
1232
d1869c33 1233// by marshmellow - demodulate NRZ wave - requires a read with strong signal
04d2721b 1234// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
db829602 1235int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
e0165dcf 1236 if (justNoise(dest, *size)) return -1;
1237 *clk = DetectNRZClock(dest, *size, *clk);
1238 if (*clk==0) return -2;
2eec55c8 1239 size_t i, gLen = 4096;
db829602 1240 if (gLen>*size) gLen = *size-20;
e0165dcf 1241 int high, low;
1242 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
db829602 1243
1244 uint8_t bit=0;
1245 //convert wave samples to 1's and 0's
1246 for(i=20; i < *size-20; i++){
1247 if (dest[i] >= high) bit = 1;
1248 if (dest[i] <= low) bit = 0;
1249 dest[i] = bit;
e0165dcf 1250 }
db829602 1251 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1252 size_t lastBit = 0;
1253 size_t numBits = 0;
1254 for(i=21; i < *size-20; i++) {
1255 //if transition detected or large number of same bits - store the passed bits
1256 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1257 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1258 numBits += (i - lastBit + (*clk/4)) / *clk;
1259 lastBit = i-1;
e0165dcf 1260 }
e0165dcf 1261 }
db829602 1262 *size = numBits;
1263 return 0;
ba1a299c 1264}
1265
1e090a61 1266//by marshmellow
03e6bb4a 1267//detects the bit clock for FSK given the high and low Field Clocks
1268uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1e090a61 1269{
e0165dcf 1270 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1271 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1272 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1273 uint8_t rfLensFnd = 0;
2eec55c8 1274 uint8_t lastFCcnt = 0;
1275 uint16_t fcCounter = 0;
e0165dcf 1276 uint16_t rfCounter = 0;
1277 uint8_t firstBitFnd = 0;
1278 size_t i;
1279 if (size == 0) return 0;
1280
6fe5c94b 1281 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
e0165dcf 1282 rfLensFnd=0;
1283 fcCounter=0;
1284 rfCounter=0;
1285 firstBitFnd=0;
1286 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
6fe5c94b 1287 // prime i to first peak / up transition
1288 for (i = 160; i < size-20; i++)
e0165dcf 1289 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1290 break;
1291
6fe5c94b 1292 for (; i < size-20; i++){
2eec55c8 1293 fcCounter++;
1294 rfCounter++;
1295
1296 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1297 continue;
1298 // else new peak
1299 // if we got less than the small fc + tolerance then set it to the small fc
1300 if (fcCounter < fcLow+fcTol)
1301 fcCounter = fcLow;
1302 else //set it to the large fc
1303 fcCounter = fcHigh;
1304
1305 //look for bit clock (rf/xx)
1306 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1307 //not the same size as the last wave - start of new bit sequence
1308 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1309 for (int ii=0; ii<15; ii++){
6fe5c94b 1310 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
2eec55c8 1311 rfCnts[ii]++;
1312 rfCounter = 0;
1313 break;
e0165dcf 1314 }
e0165dcf 1315 }
2eec55c8 1316 if (rfCounter > 0 && rfLensFnd < 15){
1317 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1318 rfCnts[rfLensFnd]++;
1319 rfLens[rfLensFnd++] = rfCounter;
1320 }
1321 } else {
1322 firstBitFnd++;
e0165dcf 1323 }
2eec55c8 1324 rfCounter=0;
1325 lastFCcnt=fcCounter;
e0165dcf 1326 }
2eec55c8 1327 fcCounter=0;
e0165dcf 1328 }
1329 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1330
1331 for (i=0; i<15; i++){
e0165dcf 1332 //get highest 2 RF values (might need to get more values to compare or compare all?)
1333 if (rfCnts[i]>rfCnts[rfHighest]){
1334 rfHighest3=rfHighest2;
1335 rfHighest2=rfHighest;
1336 rfHighest=i;
1337 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1338 rfHighest3=rfHighest2;
1339 rfHighest2=i;
1340 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1341 rfHighest3=i;
1342 }
709665b5 1343 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
e0165dcf 1344 }
1345 // set allowed clock remainder tolerance to be 1 large field clock length+1
1346 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1347 uint8_t tol1 = fcHigh+1;
1348
709665b5 1349 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
e0165dcf 1350
1351 // loop to find the highest clock that has a remainder less than the tolerance
1352 // compare samples counted divided by
6fe5c94b 1353 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
e0165dcf 1354 int ii=7;
6fe5c94b 1355 for (; ii>=2; ii--){
e0165dcf 1356 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1357 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1358 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
709665b5 1359 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
e0165dcf 1360 break;
1361 }
1362 }
1363 }
1364 }
1365
1366 if (ii<0) return 0; // oops we went too far
1367
1368 return clk[ii];
03e6bb4a 1369}
1e090a61 1370
03e6bb4a 1371//by marshmellow
1372//countFC is to detect the field clock lengths.
1373//counts and returns the 2 most common wave lengths
6de43508 1374//mainly used for FSK field clock detection
2eec55c8 1375uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
03e6bb4a 1376{
6fe5c94b 1377 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1378 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
e0165dcf 1379 uint8_t fcLensFnd = 0;
2d99d991 1380 uint8_t lastFCcnt = 0;
2eec55c8 1381 uint8_t fcCounter = 0;
e0165dcf 1382 size_t i;
2d99d991 1383 if (size < 180) return 0;
e0165dcf 1384
1385 // prime i to first up transition
6fe5c94b 1386 for (i = 160; i < size-20; i++)
e0165dcf 1387 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1388 break;
1389
6fe5c94b 1390 for (; i < size-20; i++){
e0165dcf 1391 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1392 // new up transition
1393 fcCounter++;
2eec55c8 1394 if (fskAdj){
1395 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1396 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1397 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1398 if ((fcCounter==9) || fcCounter==4) fcCounter++;
e0165dcf 1399 // save last field clock count (fc/xx)
2eec55c8 1400 lastFCcnt = fcCounter;
1401 }
e0165dcf 1402 // find which fcLens to save it to:
6fe5c94b 1403 for (int ii=0; ii<15; ii++){
e0165dcf 1404 if (fcLens[ii]==fcCounter){
1405 fcCnts[ii]++;
1406 fcCounter=0;
1407 break;
1408 }
1409 }
6fe5c94b 1410 if (fcCounter>0 && fcLensFnd<15){
e0165dcf 1411 //add new fc length
1412 fcCnts[fcLensFnd]++;
1413 fcLens[fcLensFnd++]=fcCounter;
1414 }
1415 fcCounter=0;
1416 } else {
1417 // count sample
1418 fcCounter++;
1419 }
1420 }
1421
6fe5c94b 1422 uint8_t best1=14, best2=14, best3=14;
e0165dcf 1423 uint16_t maxCnt1=0;
1424 // go through fclens and find which ones are bigest 2
6fe5c94b 1425 for (i=0; i<15; i++){
e0165dcf 1426 // get the 3 best FC values
1427 if (fcCnts[i]>maxCnt1) {
1428 best3=best2;
1429 best2=best1;
1430 maxCnt1=fcCnts[i];
1431 best1=i;
1432 } else if(fcCnts[i]>fcCnts[best2]){
1433 best3=best2;
1434 best2=i;
1435 } else if(fcCnts[i]>fcCnts[best3]){
1436 best3=i;
1437 }
709665b5 1438 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
e0165dcf 1439 }
6fe5c94b 1440 if (fcLens[best1]==0) return 0;
e0165dcf 1441 uint8_t fcH=0, fcL=0;
1442 if (fcLens[best1]>fcLens[best2]){
1443 fcH=fcLens[best1];
1444 fcL=fcLens[best2];
1445 } else{
1446 fcH=fcLens[best2];
1447 fcL=fcLens[best1];
1448 }
709665b5 1449 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1450 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1451 return 0; //lots of waves not psk or fsk
1452 }
e0165dcf 1453 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1454
1455 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
2eec55c8 1456 if (fskAdj) return fcs;
1457 return fcLens[best1];
6de43508 1458}
1459
1460//by marshmellow - demodulate PSK1 wave
1461//uses wave lengths (# Samples)
1462int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1463{
e0165dcf 1464 if (size == 0) return -1;
2eec55c8 1465 uint16_t loopCnt = 4096; //don't need to loop through entire array...
e0165dcf 1466 if (*size<loopCnt) loopCnt = *size;
1467
db829602 1468 size_t numBits=0;
e0165dcf 1469 uint8_t curPhase = *invert;
1470 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1471 uint8_t fc=0, fullWaveLen=0, tol=1;
1472 uint16_t errCnt=0, waveLenCnt=0;
2eec55c8 1473 fc = countFC(dest, *size, 0);
e0165dcf 1474 if (fc!=2 && fc!=4 && fc!=8) return -1;
1475 //PrintAndLog("DEBUG: FC: %d",fc);
1476 *clock = DetectPSKClock(dest, *size, *clock);
2eec55c8 1477 if (*clock == 0) return -1;
e0165dcf 1478 int avgWaveVal=0, lastAvgWaveVal=0;
1479 //find first phase shift
1480 for (i=0; i<loopCnt; i++){
1481 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1482 waveEnd = i+1;
1483 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1484 waveLenCnt = waveEnd-waveStart;
db829602 1485 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
e0165dcf 1486 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1487 firstFullWave = waveStart;
1488 fullWaveLen=waveLenCnt;
1489 //if average wave value is > graph 0 then it is an up wave or a 1
2eec55c8 1490 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
e0165dcf 1491 break;
1492 }
1493 waveStart = i+1;
1494 avgWaveVal = 0;
1495 }
2eec55c8 1496 avgWaveVal += dest[i+2];
e0165dcf 1497 }
db829602 1498 if (firstFullWave == 0) {
1499 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1500 // so skip a little to ensure we are past any Start Signal
1501 firstFullWave = 160;
1502 memset(dest, curPhase, firstFullWave / *clock);
1503 } else {
1504 memset(dest, curPhase^1, firstFullWave / *clock);
1505 }
1506 //advance bits
1507 numBits += (firstFullWave / *clock);
1508 //set start of wave as clock align
1509 lastClkBit = firstFullWave;
cf194819 1510 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1511 if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
e0165dcf 1512 waveStart = 0;
e0165dcf 1513 dest[numBits++] = curPhase; //set first read bit
2eec55c8 1514 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
e0165dcf 1515 //top edge of wave = start of new wave
1516 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1517 if (waveStart == 0) {
1518 waveStart = i+1;
2eec55c8 1519 waveLenCnt = 0;
e0165dcf 1520 avgWaveVal = dest[i+1];
1521 } else { //waveEnd
1522 waveEnd = i+1;
1523 waveLenCnt = waveEnd-waveStart;
1524 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1525 if (waveLenCnt > fc){
1526 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
2eec55c8 1527 //this wave is a phase shift
e0165dcf 1528 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1529 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
2eec55c8 1530 curPhase ^= 1;
e0165dcf 1531 dest[numBits++] = curPhase;
1532 lastClkBit += *clock;
2eec55c8 1533 } else if (i < lastClkBit+10+fc){
e0165dcf 1534 //noise after a phase shift - ignore
1535 } else { //phase shift before supposed to based on clock
1536 errCnt++;
2767fc02 1537 dest[numBits++] = 7;
e0165dcf 1538 }
1539 } else if (i+1 > lastClkBit + *clock + tol + fc){
1540 lastClkBit += *clock; //no phase shift but clock bit
1541 dest[numBits++] = curPhase;
1542 }
2eec55c8 1543 avgWaveVal = 0;
1544 waveStart = i+1;
e0165dcf 1545 }
1546 }
2eec55c8 1547 avgWaveVal += dest[i+1];
e0165dcf 1548 }
1549 *size = numBits;
1550 return errCnt;
6de43508 1551}
d1869c33 1552
1553//by marshmellow
1554//attempt to identify a Sequence Terminator in ASK modulated raw wave
1555bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1556 size_t bufsize = *size;
1557 //need to loop through all samples and identify our clock, look for the ST pattern
1558 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1559 int clk = 0;
1560 int tol = 0;
b96bcc79 1561 int i, j, skip, start, end, low, high, minClk, waveStart;
d1869c33 1562 bool complete = false;
01d0f8ae 1563 int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1564 int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed...
d1869c33 1565 size_t testsize = (bufsize < 512) ? bufsize : 512;
b96bcc79 1566 int phaseoff = 0;
d1869c33 1567 high = low = 128;
1568 memset(tmpbuff, 0, sizeof(tmpbuff));
1569
1570 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1571 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1572 return false; //just noise
1573 }
d1869c33 1574 i = 0;
1575 j = 0;
1576 minClk = 255;
1577 // get to first full low to prime loop and skip incomplete first pulse
1578 while ((buffer[i] < high) && (i < bufsize))
1579 ++i;
1580 while ((buffer[i] > low) && (i < bufsize))
1581 ++i;
1582 skip = i;
1583
1584 // populate tmpbuff buffer with pulse lengths
1585 while (i < bufsize) {
1586 // measure from low to low
1587 while ((buffer[i] > low) && (i < bufsize))
1588 ++i;
1589 start= i;
1590 while ((buffer[i] < high) && (i < bufsize))
1591 ++i;
b96bcc79 1592 //first high point for this wave
1593 waveStart = i;
d1869c33 1594 while ((buffer[i] > low) && (i < bufsize))
1595 ++i;
01d0f8ae 1596 if (j >= (bufsize/32)) {
d1869c33 1597 break;
1598 }
b96bcc79 1599 waveLen[j] = i - waveStart; //first high to first low
d1869c33 1600 tmpbuff[j++] = i - start;
1601 if (i-start < minClk && i < bufsize) {
1602 minClk = i - start;
1603 }
1604 }
1605 // set clock - might be able to get this externally and remove this work...
1606 if (!clk) {
1607 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1608 tol = fndClk[clkCnt]/8;
1609 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1610 clk=fndClk[clkCnt];
1611 break;
1612 }
1613 }
1614 // clock not found - ERROR
1615 if (!clk) {
1616 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1617 return false;
1618 }
1619 } else tol = clk/8;
1620
1621 *foundclock = clk;
1622
1623 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1624 start = -1;
1625 for (i = 0; i < j - 4; ++i) {
1626 skip += tmpbuff[i];
b96bcc79 1627 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1628 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1629 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1630 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
d1869c33 1631 start = i + 3;
1632 break;
1633 }
1634 }
1635 }
1636 }
1637 }
1638 // first ST not found - ERROR
1639 if (start < 0) {
1640 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1641 return false;
01d0f8ae 1642 } else {
1643 if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j);
d1869c33 1644 }
b96bcc79 1645 if (waveLen[i+2] > clk*1+tol)
1646 phaseoff = 0;
1647 else
1648 phaseoff = clk/2;
1649
d1869c33 1650 // skip over the remainder of ST
1651 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1652
1653 // now do it again to find the end
1654 end = skip;
1655 for (i += 3; i < j - 4; ++i) {
1656 end += tmpbuff[i];
01d0f8ae 1657 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
b96bcc79 1658 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1659 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1660 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
d1869c33 1661 complete = true;
1662 break;
1663 }
1664 }
1665 }
1666 }
1667 }
b96bcc79 1668 end -= phaseoff;
d1869c33 1669 //didn't find second ST - ERROR
1670 if (!complete) {
1671 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1672 return false;
1673 }
b96bcc79 1674 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
d1869c33 1675 //now begin to trim out ST so we can use normal demod cmds
1676 start = skip;
1677 size_t datalen = end - start;
1678 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
01d0f8ae 1679 if ( clk - (datalen % clk) <= clk/8) {
1680 // padd the amount off - could be problematic... but shouldn't happen often
1681 datalen += clk - (datalen % clk);
1682 } else if ( (datalen % clk) <= clk/8 ) {
1683 // padd the amount off - could be problematic... but shouldn't happen often
1684 datalen -= datalen % clk;
1685 } else {
d1869c33 1686 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1687 return false;
d1869c33 1688 }
1689 // if datalen is less than one t55xx block - ERROR
1690 if (datalen/clk < 8*4) {
1691 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1692 return false;
1693 }
1694 size_t dataloc = start;
01d0f8ae 1695 if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
1696 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1697 for ( i=0; i <= (clk/8); ++i ) {
1698 if ( buffer[dataloc - (clk*4) - i] <= low ) {
1699 dataloc -= i;
1700 break;
1701 }
1702 }
1703 }
1704
d1869c33 1705 size_t newloc = 0;
1706 i=0;
01d0f8ae 1707 if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
1708
d1869c33 1709 // warning - overwriting buffer given with raw wave data with ST removed...
1710 while ( dataloc < bufsize-(clk/2) ) {
cf194819 1711 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
d1869c33 1712 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1713 for(i=0; i < clk/2-tol; ++i) {
1714 buffer[dataloc+i] = high+5;
1715 }
1716 }
1717 for (i=0; i<datalen; ++i) {
1718 if (i+newloc < bufsize) {
1719 if (i+newloc < dataloc)
1720 buffer[i+newloc] = buffer[dataloc];
1721
01d0f8ae 1722 dataloc++;
d1869c33 1723 }
1724 }
1725 newloc += i;
cf194819 1726 //skip next ST - we just assume it will be there from now on...
01d0f8ae 1727 if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
d1869c33 1728 dataloc += clk*4;
1729 }
1730 *size = newloc;
1731 return true;
1732}
Impressum, Datenschutz