]> git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
em4x05 getting better
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "lfdemod.h"
13 #include <string.h>
14
15 //to allow debug print calls when used not on device
16 void dummy(char *fmt, ...){}
17
18 #ifndef ON_DEVICE
19 #include "ui.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #define prnt PrintAndLog
23 #else
24 uint8_t g_debugMode=0;
25 #define prnt dummy
26 #endif
27
28 uint8_t justNoise(uint8_t *BitStream, size_t size)
29 {
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37 }
38
39 //by marshmellow
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42 {
43 *high=0;
44 *low=255;
45 // get high and low thresholds
46 for (size_t i=0; i < size; i++){
47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
53 return 1;
54 }
55
56 // by marshmellow
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60 {
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
65 if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits);
66 return (ans == pType);
67 }
68
69 // by marshmellow
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73 {
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
76 for (int word = 0; word < (bLen); word+=pLen) {
77 for (int bit=0; bit < pLen; bit++) {
78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
81 if (word+pLen >= bLen) break;
82
83 j--; // overwrite parity with next data
84 // if parity fails then return 0
85 switch (pType) {
86 case 3: if (BitStream[j]==1) {return 0;} break; //should be 0 spacer bit
87 case 2: if (BitStream[j]==0) {return 0;} break; //should be 1 spacer bit
88 default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity
89 }
90 bitCnt+=(pLen-1);
91 parityWd = 0;
92 }
93 // if we got here then all the parities passed
94 //return ID start index and size
95 return bitCnt;
96 }
97
98 // by marshmellow
99 // takes a array of binary values, length of bits per parity (includes parity bit),
100 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
101 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
102 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
103 {
104 uint32_t parityWd = 0;
105 size_t j = 0, bitCnt = 0;
106 for (int word = 0; word < sourceLen; word+=pLen-1) {
107 for (int bit=0; bit < pLen-1; bit++){
108 parityWd = (parityWd << 1) | BitSource[word+bit];
109 dest[j++] = (BitSource[word+bit]);
110 }
111 // if parity fails then return 0
112 switch (pType) {
113 case 3: dest[j++]=0; break; // marker bit which should be a 0
114 case 2: dest[j++]=1; break; // marker bit which should be a 1
115 default:
116 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
117 break;
118 }
119 bitCnt += pLen;
120 parityWd = 0;
121 }
122 // if we got here then all the parities passed
123 //return ID start index and size
124 return bitCnt;
125 }
126
127 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
128 {
129 uint32_t num = 0;
130 for(int i = 0 ; i < numbits ; i++)
131 {
132 num = (num << 1) | (*src);
133 src++;
134 }
135 return num;
136 }
137
138 //least significant bit first
139 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
140 {
141 uint32_t num = 0;
142 for(int i = 0 ; i < numbits ; i++)
143 {
144 num = (num << 1) | *(src + (numbits-(i+1)));
145 }
146 return num;
147 }
148
149 //by marshmellow
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
152 {
153 // Sanity check. If preamble length is bigger than bitstream length.
154 if ( *size <= pLen ) return 0;
155
156 uint8_t foundCnt=0;
157 for (int idx=0; idx < *size - pLen; idx++){
158 if (memcmp(BitStream+idx, preamble, pLen) == 0){
159 //first index found
160 foundCnt++;
161 if (foundCnt == 1){
162 *startIdx = idx;
163 }
164 if (foundCnt == 2){
165 *size = idx - *startIdx;
166 return 1;
167 }
168 }
169 }
170 return 0;
171 }
172
173 //by marshmellow
174 //takes 1s and 0s and searches for EM410x format - output EM ID
175 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
176 {
177 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
178 // otherwise could be a void with no arguments
179 //set defaults
180 uint32_t i = 0;
181 if (BitStream[1]>1) return 0; //allow only 1s and 0s
182
183 // 111111111 bit pattern represent start of frame
184 // include 0 in front to help get start pos
185 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
186 uint32_t idx = 0;
187 uint32_t parityBits = 0;
188 uint8_t errChk = 0;
189 uint8_t FmtLen = 10;
190 *startIdx = 0;
191 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
192 if (errChk == 0 || *size < 64) return 0;
193 if (*size > 64) FmtLen = 22;
194 *startIdx += 1; //get rid of 0 from preamble
195 idx = *startIdx + 9;
196 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
197 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
198 //check even parity - quit if failed
199 if (parityTest(parityBits, 5, 0) == 0) return 0;
200 //set uint64 with ID from BitStream
201 for (uint8_t ii=0; ii<4; ii++){
202 *hi = (*hi << 1) | (*lo >> 63);
203 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
204 }
205 }
206 if (errChk != 0) return 1;
207 //skip last 5 bit parity test for simplicity.
208 // *size = 64 | 128;
209 return 0;
210 }
211
212 //by marshmellow
213 //demodulates strong heavily clipped samples
214 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
215 {
216 size_t bitCnt=0, smplCnt=0, errCnt=0;
217 uint8_t waveHigh = 0;
218 for (size_t i=0; i < *size; i++){
219 if (BinStream[i] >= high && waveHigh){
220 smplCnt++;
221 } else if (BinStream[i] <= low && !waveHigh){
222 smplCnt++;
223 } else { //transition
224 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
225 if (smplCnt > clk-(clk/4)-1) { //full clock
226 if (smplCnt > clk + (clk/4)+1) { //too many samples
227 errCnt++;
228 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
229 BinStream[bitCnt++]=7;
230 } else if (waveHigh) {
231 BinStream[bitCnt++] = invert;
232 BinStream[bitCnt++] = invert;
233 } else if (!waveHigh) {
234 BinStream[bitCnt++] = invert ^ 1;
235 BinStream[bitCnt++] = invert ^ 1;
236 }
237 waveHigh ^= 1;
238 smplCnt = 0;
239 } else if (smplCnt > (clk/2) - (clk/4)-1) {
240 if (waveHigh) {
241 BinStream[bitCnt++] = invert;
242 } else if (!waveHigh) {
243 BinStream[bitCnt++] = invert ^ 1;
244 }
245 waveHigh ^= 1;
246 smplCnt = 0;
247 } else if (!bitCnt) {
248 //first bit
249 waveHigh = (BinStream[i] >= high);
250 smplCnt = 1;
251 } else {
252 smplCnt++;
253 //transition bit oops
254 }
255 } else { //haven't hit new high or new low yet
256 smplCnt++;
257 }
258 }
259 }
260 *size = bitCnt;
261 return errCnt;
262 }
263
264 //by marshmellow
265 void askAmp(uint8_t *BitStream, size_t size)
266 {
267 uint8_t Last = 128;
268 for(size_t i = 1; i<size; i++){
269 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
270 Last = 255;
271 else if(BitStream[i-1]-BitStream[i]>=20) //large jump down
272 Last = 0;
273
274 BitStream[i-1] = Last;
275 }
276 return;
277 }
278
279 //by marshmellow
280 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
281 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
282 {
283 if (*size==0) return -1;
284 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
285 if (*clk==0 || start < 0) return -3;
286 if (*invert != 1) *invert = 0;
287 if (amp==1) askAmp(BinStream, *size);
288 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
289
290 uint8_t initLoopMax = 255;
291 if (initLoopMax > *size) initLoopMax = *size;
292 // Detect high and lows
293 //25% clip in case highs and lows aren't clipped [marshmellow]
294 int high, low;
295 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
296 return -2; //just noise
297
298 size_t errCnt = 0;
299 // if clean clipped waves detected run alternate demod
300 if (DetectCleanAskWave(BinStream, *size, high, low)) {
301 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
302 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
303 if (askType) //askman
304 return manrawdecode(BinStream, size, 0);
305 else //askraw
306 return errCnt;
307 }
308 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
309
310 int lastBit; //set first clock check - can go negative
311 size_t i, bitnum = 0; //output counter
312 uint8_t midBit = 0;
313 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
314 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
315 size_t MaxBits = 3072; //max bits to collect
316 lastBit = start - *clk;
317
318 for (i = start; i < *size; ++i) {
319 if (i-lastBit >= *clk-tol){
320 if (BinStream[i] >= high) {
321 BinStream[bitnum++] = *invert;
322 } else if (BinStream[i] <= low) {
323 BinStream[bitnum++] = *invert ^ 1;
324 } else if (i-lastBit >= *clk+tol) {
325 if (bitnum > 0) {
326 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
327 BinStream[bitnum++]=7;
328 errCnt++;
329 }
330 } else { //in tolerance - looking for peak
331 continue;
332 }
333 midBit = 0;
334 lastBit += *clk;
335 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
336 if (BinStream[i] >= high) {
337 BinStream[bitnum++] = *invert;
338 } else if (BinStream[i] <= low) {
339 BinStream[bitnum++] = *invert ^ 1;
340 } else if (i-lastBit >= *clk/2+tol) {
341 BinStream[bitnum] = BinStream[bitnum-1];
342 bitnum++;
343 } else { //in tolerance - looking for peak
344 continue;
345 }
346 midBit = 1;
347 }
348 if (bitnum >= MaxBits) break;
349 }
350 *size = bitnum;
351 return errCnt;
352 }
353
354 //by marshmellow
355 //take 10 and 01 and manchester decode
356 //run through 2 times and take least errCnt
357 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
358 {
359 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
360 size_t i, ii;
361 uint16_t bestErr = 1000, bestRun = 0;
362 if (*size < 16) return -1;
363 //find correct start position [alignment]
364 for (ii=0;ii<2;++ii){
365 for (i=ii; i<*size-3; i+=2)
366 if (BitStream[i]==BitStream[i+1])
367 errCnt++;
368
369 if (bestErr>errCnt){
370 bestErr=errCnt;
371 bestRun=ii;
372 }
373 errCnt=0;
374 }
375 //decode
376 for (i=bestRun; i < *size-3; i+=2){
377 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
378 BitStream[bitnum++]=invert;
379 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
380 BitStream[bitnum++]=invert^1;
381 } else {
382 BitStream[bitnum++]=7;
383 }
384 if(bitnum>MaxBits) break;
385 }
386 *size=bitnum;
387 return bestErr;
388 }
389
390 uint32_t manchesterEncode2Bytes(uint16_t datain) {
391 uint32_t output = 0;
392 uint8_t curBit = 0;
393 for (uint8_t i=0; i<16; i++) {
394 curBit = (datain >> (15-i) & 1);
395 output |= (1<<(((15-i)*2)+curBit));
396 }
397 return output;
398 }
399
400 //by marshmellow
401 //encode binary data into binary manchester
402 int ManchesterEncode(uint8_t *BitStream, size_t size)
403 {
404 size_t modIdx=20000, i=0;
405 if (size>modIdx) return -1;
406 for (size_t idx=0; idx < size; idx++){
407 BitStream[idx+modIdx++] = BitStream[idx];
408 BitStream[idx+modIdx++] = BitStream[idx]^1;
409 }
410 for (; i<(size*2); i++){
411 BitStream[i] = BitStream[i+20000];
412 }
413 return i;
414 }
415
416 //by marshmellow
417 //take 01 or 10 = 1 and 11 or 00 = 0
418 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
419 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
420 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
421 {
422 uint16_t bitnum = 0;
423 uint16_t errCnt = 0;
424 size_t i = offset;
425 uint16_t MaxBits=512;
426 //if not enough samples - error
427 if (*size < 51) return -1;
428 //check for phase change faults - skip one sample if faulty
429 uint8_t offsetA = 1, offsetB = 1;
430 for (; i<48; i+=2){
431 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
432 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
433 }
434 if (!offsetA && offsetB) offset++;
435 for (i=offset; i<*size-3; i+=2){
436 //check for phase error
437 if (BitStream[i+1]==BitStream[i+2]) {
438 BitStream[bitnum++]=7;
439 errCnt++;
440 }
441 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
442 BitStream[bitnum++]=1^invert;
443 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
444 BitStream[bitnum++]=invert;
445 } else {
446 BitStream[bitnum++]=7;
447 errCnt++;
448 }
449 if(bitnum>MaxBits) break;
450 }
451 *size=bitnum;
452 return errCnt;
453 }
454
455 // by marshmellow
456 // demod gProxIIDemod
457 // error returns as -x
458 // success returns start position in BitStream
459 // BitStream must contain previously askrawdemod and biphasedemoded data
460 int gProxII_Demod(uint8_t BitStream[], size_t *size)
461 {
462 size_t startIdx=0;
463 uint8_t preamble[] = {1,1,1,1,1,0};
464
465 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
466 if (errChk == 0) return -3; //preamble not found
467 if (*size != 96) return -2; //should have found 96 bits
468 //check first 6 spacer bits to verify format
469 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
470 //confirmed proper separator bits found
471 //return start position
472 return (int) startIdx;
473 }
474 return -5; //spacer bits not found - not a valid gproxII
475 }
476
477 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
478 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
479 {
480 size_t last_transition = 0;
481 size_t idx = 1;
482 //uint32_t maxVal=0;
483 if (fchigh==0) fchigh=10;
484 if (fclow==0) fclow=8;
485 //set the threshold close to 0 (graph) or 128 std to avoid static
486 uint8_t threshold_value = 123;
487 size_t preLastSample = 0;
488 size_t LastSample = 0;
489 size_t currSample = 0;
490 // sync to first lo-hi transition, and threshold
491
492 // Need to threshold first sample
493 // skip 160 samples to allow antenna/samples to settle
494 if(dest[160] < threshold_value) dest[0] = 0;
495 else dest[0] = 1;
496
497 size_t numBits = 0;
498 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
499 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
500 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
501 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
502 for(idx = 161; idx < size-20; idx++) {
503 // threshold current value
504
505 if (dest[idx] < threshold_value) dest[idx] = 0;
506 else dest[idx] = 1;
507
508 // Check for 0->1 transition
509 if (dest[idx-1] < dest[idx]) {
510 preLastSample = LastSample;
511 LastSample = currSample;
512 currSample = idx-last_transition;
513 if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3)
514 //do nothing with extra garbage
515 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
516 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
517 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
518 dest[numBits-1]=1;
519 }
520 dest[numBits++]=1;
521
522 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
523 //do nothing with beginning garbage
524 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
525 dest[numBits++]=1;
526 } else { //9+ = 10 sample waves (or 6+ = 7)
527 dest[numBits++]=0;
528 }
529 last_transition = idx;
530 }
531 }
532 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
533 }
534
535 //translate 11111100000 to 10
536 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
537 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
538 uint8_t invert, uint8_t fchigh, uint8_t fclow)
539 {
540 uint8_t lastval=dest[0];
541 size_t idx=0;
542 size_t numBits=0;
543 uint32_t n=1;
544 for( idx=1; idx < size; idx++) {
545 n++;
546 if (dest[idx]==lastval) continue; //skip until we hit a transition
547
548 //find out how many bits (n) we collected
549 //if lastval was 1, we have a 1->0 crossing
550 if (dest[idx-1]==1) {
551 n = (n * fclow + rfLen/2) / rfLen;
552 } else {// 0->1 crossing
553 n = (n * fchigh + rfLen/2) / rfLen;
554 }
555 if (n == 0) n = 1;
556
557 //add to our destination the bits we collected
558 memset(dest+numBits, dest[idx-1]^invert , n);
559 numBits += n;
560 n=0;
561 lastval=dest[idx];
562 }//end for
563 // if valid extra bits at the end were all the same frequency - add them in
564 if (n > rfLen/fchigh) {
565 if (dest[idx-2]==1) {
566 n = (n * fclow + rfLen/2) / rfLen;
567 } else {
568 n = (n * fchigh + rfLen/2) / rfLen;
569 }
570 memset(dest+numBits, dest[idx-1]^invert , n);
571 numBits += n;
572 }
573 return numBits;
574 }
575
576 //by marshmellow (from holiman's base)
577 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
578 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
579 {
580 // FSK demodulator
581 size = fsk_wave_demod(dest, size, fchigh, fclow);
582 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
583 return size;
584 }
585
586 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
587 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
588 {
589 if (justNoise(dest, *size)) return -1;
590
591 size_t numStart=0, size2=*size, startIdx=0;
592 // FSK demodulator
593 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
594 if (*size < 96*2) return -2;
595 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
596 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
597 // find bitstring in array
598 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
599 if (errChk == 0) return -3; //preamble not found
600
601 numStart = startIdx + sizeof(preamble);
602 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
603 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
604 if (dest[idx] == dest[idx+1]){
605 return -4; //not manchester data
606 }
607 *hi2 = (*hi2<<1)|(*hi>>31);
608 *hi = (*hi<<1)|(*lo>>31);
609 //Then, shift in a 0 or one into low
610 if (dest[idx] && !dest[idx+1]) // 1 0
611 *lo=(*lo<<1)|1;
612 else // 0 1
613 *lo=(*lo<<1)|0;
614 }
615 return (int)startIdx;
616 }
617
618 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
619 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
620 {
621 if (justNoise(dest, *size)) return -1;
622
623 size_t numStart=0, size2=*size, startIdx=0;
624 // FSK demodulator
625 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
626 if (*size < 96) return -2;
627
628 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
629 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
630
631 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
632 if (errChk == 0) return -3; //preamble not found
633
634 numStart = startIdx + sizeof(preamble);
635 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
636 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
637 if (dest[idx] == dest[idx+1])
638 return -4; //not manchester data
639 *hi2 = (*hi2<<1)|(*hi>>31);
640 *hi = (*hi<<1)|(*lo>>31);
641 //Then, shift in a 0 or one into low
642 if (dest[idx] && !dest[idx+1]) // 1 0
643 *lo=(*lo<<1)|1;
644 else // 0 1
645 *lo=(*lo<<1)|0;
646 }
647 return (int)startIdx;
648 }
649
650 int IOdemodFSK(uint8_t *dest, size_t size)
651 {
652 if (justNoise(dest, size)) return -1;
653 //make sure buffer has data
654 if (size < 66*64) return -2;
655 // FSK demodulator
656 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
657 if (size < 65) return -3; //did we get a good demod?
658 //Index map
659 //0 10 20 30 40 50 60
660 //| | | | | | |
661 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
662 //-----------------------------------------------------------------------------
663 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
664 //
665 //XSF(version)facility:codeone+codetwo
666 //Handle the data
667 size_t startIdx = 0;
668 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
669 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
670 if (errChk == 0) return -4; //preamble not found
671
672 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
673 //confirmed proper separator bits found
674 //return start position
675 return (int) startIdx;
676 }
677 return -5;
678 }
679
680 // by marshmellow
681 // find viking preamble 0xF200 in already demoded data
682 int VikingDemod_AM(uint8_t *dest, size_t *size) {
683 //make sure buffer has data
684 if (*size < 64*2) return -2;
685
686 size_t startIdx = 0;
687 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
688 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
689 if (errChk == 0) return -4; //preamble not found
690 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
691 ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
692 ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
693 if ( checkCalc != 0xA8 ) return -5;
694 if (*size != 64) return -6;
695 //return start position
696 return (int) startIdx;
697 }
698
699 // find presco preamble 0x10D in already demoded data
700 int PrescoDemod(uint8_t *dest, size_t *size) {
701 //make sure buffer has data
702 if (*size < 64*2) return -2;
703
704 size_t startIdx = 0;
705 uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
706 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
707 if (errChk == 0) return -4; //preamble not found
708 //return start position
709 return (int) startIdx;
710 }
711
712 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
713 // BitStream must contain previously askrawdemod and biphasedemoded data
714 int FDXBdemodBI(uint8_t *dest, size_t *size)
715 {
716 //make sure buffer has enough data
717 if (*size < 128) return -1;
718
719 size_t startIdx = 0;
720 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
721
722 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
723 if (errChk == 0) return -2; //preamble not found
724 return (int)startIdx;
725 }
726
727 // by marshmellow
728 // FSK Demod then try to locate an AWID ID
729 int AWIDdemodFSK(uint8_t *dest, size_t *size)
730 {
731 //make sure buffer has enough data
732 if (*size < 96*50) return -1;
733
734 if (justNoise(dest, *size)) return -2;
735
736 // FSK demodulator
737 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
738 if (*size < 96) return -3; //did we get a good demod?
739
740 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
741 size_t startIdx = 0;
742 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
743 if (errChk == 0) return -4; //preamble not found
744 if (*size != 96) return -5;
745 return (int)startIdx;
746 }
747
748 // by marshmellow
749 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
750 int PyramiddemodFSK(uint8_t *dest, size_t *size)
751 {
752 //make sure buffer has data
753 if (*size < 128*50) return -5;
754
755 //test samples are not just noise
756 if (justNoise(dest, *size)) return -1;
757
758 // FSK demodulator
759 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
760 if (*size < 128) return -2; //did we get a good demod?
761
762 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
763 size_t startIdx = 0;
764 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
765 if (errChk == 0) return -4; //preamble not found
766 if (*size != 128) return -3;
767 return (int)startIdx;
768 }
769
770 // by marshmellow
771 // to detect a wave that has heavily clipped (clean) samples
772 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
773 {
774 bool allArePeaks = true;
775 uint16_t cntPeaks=0;
776 size_t loopEnd = 512+160;
777 if (loopEnd > size) loopEnd = size;
778 for (size_t i=160; i<loopEnd; i++){
779 if (dest[i]>low && dest[i]<high)
780 allArePeaks = false;
781 else
782 cntPeaks++;
783 }
784 if (!allArePeaks){
785 if (cntPeaks > 300) return true;
786 }
787 return allArePeaks;
788 }
789 // by marshmellow
790 // to help detect clocks on heavily clipped samples
791 // based on count of low to low
792 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
793 {
794 uint8_t fndClk[] = {8,16,32,40,50,64,128};
795 size_t startwave;
796 size_t i = 100;
797 size_t minClk = 255;
798 // get to first full low to prime loop and skip incomplete first pulse
799 while ((dest[i] < high) && (i < size))
800 ++i;
801 while ((dest[i] > low) && (i < size))
802 ++i;
803
804 // loop through all samples
805 while (i < size) {
806 // measure from low to low
807 while ((dest[i] > low) && (i < size))
808 ++i;
809 startwave= i;
810 while ((dest[i] < high) && (i < size))
811 ++i;
812 while ((dest[i] > low) && (i < size))
813 ++i;
814 //get minimum measured distance
815 if (i-startwave < minClk && i < size)
816 minClk = i - startwave;
817 }
818 // set clock
819 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
820 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
821 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
822 return fndClk[clkCnt];
823 }
824 return 0;
825 }
826
827 // by marshmellow
828 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
829 // maybe somehow adjust peak trimming value based on samples to fix?
830 // return start index of best starting position for that clock and return clock (by reference)
831 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
832 {
833 size_t i=1;
834 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
835 uint8_t clkEnd = 9;
836 uint8_t loopCnt = 255; //don't need to loop through entire array...
837 if (size <= loopCnt+60) return -1; //not enough samples
838 size -= 60; //sometimes there is a strange end wave - filter out this....
839 //if we already have a valid clock
840 uint8_t clockFnd=0;
841 for (;i<clkEnd;++i)
842 if (clk[i] == *clock) clockFnd = i;
843 //clock found but continue to find best startpos
844
845 //get high and low peak
846 int peak, low;
847 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
848
849 //test for large clean peaks
850 if (!clockFnd){
851 if (DetectCleanAskWave(dest, size, peak, low)==1){
852 int ans = DetectStrongAskClock(dest, size, peak, low);
853 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
854 for (i=clkEnd-1; i>0; i--){
855 if (clk[i] == ans) {
856 *clock = ans;
857 //clockFnd = i;
858 return 0; // for strong waves i don't use the 'best start position' yet...
859 //break; //clock found but continue to find best startpos [not yet]
860 }
861 }
862 }
863 }
864 uint8_t ii;
865 uint8_t clkCnt, tol = 0;
866 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
867 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
868 size_t errCnt = 0;
869 size_t arrLoc, loopEnd;
870
871 if (clockFnd>0) {
872 clkCnt = clockFnd;
873 clkEnd = clockFnd+1;
874 }
875 else clkCnt=1;
876
877 //test each valid clock from smallest to greatest to see which lines up
878 for(; clkCnt < clkEnd; clkCnt++){
879 if (clk[clkCnt] <= 32){
880 tol=1;
881 }else{
882 tol=0;
883 }
884 //if no errors allowed - keep start within the first clock
885 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
886 bestErr[clkCnt]=1000;
887 //try lining up the peaks by moving starting point (try first few clocks)
888 for (ii=0; ii < loopCnt; ii++){
889 if (dest[ii] < peak && dest[ii] > low) continue;
890
891 errCnt=0;
892 // now that we have the first one lined up test rest of wave array
893 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
894 for (i=0; i < loopEnd; ++i){
895 arrLoc = ii + (i * clk[clkCnt]);
896 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
897 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
898 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
899 }else{ //error no peak detected
900 errCnt++;
901 }
902 }
903 //if we found no errors then we can stop here and a low clock (common clocks)
904 // this is correct one - return this clock
905 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
906 if(errCnt==0 && clkCnt<7) {
907 if (!clockFnd) *clock = clk[clkCnt];
908 return ii;
909 }
910 //if we found errors see if it is lowest so far and save it as best run
911 if(errCnt<bestErr[clkCnt]){
912 bestErr[clkCnt]=errCnt;
913 bestStart[clkCnt]=ii;
914 }
915 }
916 }
917 uint8_t iii;
918 uint8_t best=0;
919 for (iii=1; iii<clkEnd; ++iii){
920 if (bestErr[iii] < bestErr[best]){
921 if (bestErr[iii] == 0) bestErr[iii]=1;
922 // current best bit to error ratio vs new bit to error ratio
923 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
924 best = iii;
925 }
926 }
927 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
928 }
929 if (!clockFnd) *clock = clk[best];
930 return bestStart[best];
931 }
932
933 //by marshmellow
934 //detect psk clock by reading each phase shift
935 // a phase shift is determined by measuring the sample length of each wave
936 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
937 {
938 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
939 uint16_t loopCnt = 4096; //don't need to loop through entire array...
940 if (size == 0) return 0;
941 if (size<loopCnt) loopCnt = size-20;
942
943 //if we already have a valid clock quit
944 size_t i=1;
945 for (; i < 8; ++i)
946 if (clk[i] == clock) return clock;
947
948 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
949 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
950 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
951 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
952 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
953 fc = countFC(dest, size, 0);
954 if (fc!=2 && fc!=4 && fc!=8) return -1;
955 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
956
957 //find first full wave
958 for (i=160; i<loopCnt; i++){
959 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
960 if (waveStart == 0) {
961 waveStart = i+1;
962 //prnt("DEBUG: waveStart: %d",waveStart);
963 } else {
964 waveEnd = i+1;
965 //prnt("DEBUG: waveEnd: %d",waveEnd);
966 waveLenCnt = waveEnd-waveStart;
967 if (waveLenCnt > fc){
968 firstFullWave = waveStart;
969 fullWaveLen=waveLenCnt;
970 break;
971 }
972 waveStart=0;
973 }
974 }
975 }
976 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
977
978 //test each valid clock from greatest to smallest to see which lines up
979 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
980 lastClkBit = firstFullWave; //set end of wave as clock align
981 waveStart = 0;
982 errCnt=0;
983 peakcnt=0;
984 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
985
986 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
987 //top edge of wave = start of new wave
988 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
989 if (waveStart == 0) {
990 waveStart = i+1;
991 waveLenCnt=0;
992 } else { //waveEnd
993 waveEnd = i+1;
994 waveLenCnt = waveEnd-waveStart;
995 if (waveLenCnt > fc){
996 //if this wave is a phase shift
997 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
998 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
999 peakcnt++;
1000 lastClkBit+=clk[clkCnt];
1001 } else if (i<lastClkBit+8){
1002 //noise after a phase shift - ignore
1003 } else { //phase shift before supposed to based on clock
1004 errCnt++;
1005 }
1006 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1007 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1008 }
1009 waveStart=i+1;
1010 }
1011 }
1012 }
1013 if (errCnt == 0){
1014 return clk[clkCnt];
1015 }
1016 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1017 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1018 }
1019 //all tested with errors
1020 //return the highest clk with the most peaks found
1021 uint8_t best=7;
1022 for (i=7; i>=1; i--){
1023 if (peaksdet[i] > peaksdet[best]) {
1024 best = i;
1025 }
1026 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1027 }
1028 return clk[best];
1029 }
1030
1031 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1032 //find shortest transition from high to low
1033 size_t i = 0;
1034 size_t transition1 = 0;
1035 int lowestTransition = 255;
1036 bool lastWasHigh = false;
1037
1038 //find first valid beginning of a high or low wave
1039 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1040 ++i;
1041 while ((dest[i] < peak && dest[i] > low) && (i < size))
1042 ++i;
1043 lastWasHigh = (dest[i] >= peak);
1044
1045 if (i==size) return 0;
1046 transition1 = i;
1047
1048 for (;i < size; i++) {
1049 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1050 lastWasHigh = (dest[i] >= peak);
1051 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1052 transition1 = i;
1053 }
1054 }
1055 if (lowestTransition == 255) lowestTransition = 0;
1056 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1057 return lowestTransition;
1058 }
1059
1060 //by marshmellow
1061 //detect nrz clock by reading #peaks vs no peaks(or errors)
1062 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1063 {
1064 size_t i=0;
1065 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1066 size_t loopCnt = 4096; //don't need to loop through entire array...
1067 if (size == 0) return 0;
1068 if (size<loopCnt) loopCnt = size-20;
1069 //if we already have a valid clock quit
1070 for (; i < 8; ++i)
1071 if (clk[i] == clock) return clock;
1072
1073 //get high and low peak
1074 int peak, low;
1075 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1076
1077 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1078 size_t ii;
1079 uint8_t clkCnt;
1080 uint8_t tol = 0;
1081 uint16_t smplCnt = 0;
1082 int16_t peakcnt = 0;
1083 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1084 uint16_t maxPeak = 255;
1085 bool firstpeak = false;
1086 //test for large clipped waves
1087 for (i=0; i<loopCnt; i++){
1088 if (dest[i] >= peak || dest[i] <= low){
1089 if (!firstpeak) continue;
1090 smplCnt++;
1091 } else {
1092 firstpeak=true;
1093 if (smplCnt > 6 ){
1094 if (maxPeak > smplCnt){
1095 maxPeak = smplCnt;
1096 //prnt("maxPk: %d",maxPeak);
1097 }
1098 peakcnt++;
1099 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1100 smplCnt=0;
1101 }
1102 }
1103 }
1104 bool errBitHigh = 0;
1105 bool bitHigh = 0;
1106 uint8_t ignoreCnt = 0;
1107 uint8_t ignoreWindow = 4;
1108 bool lastPeakHigh = 0;
1109 int lastBit = 0;
1110 peakcnt=0;
1111 //test each valid clock from smallest to greatest to see which lines up
1112 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1113 //ignore clocks smaller than smallest peak
1114 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1115 //try lining up the peaks by moving starting point (try first 256)
1116 for (ii=20; ii < loopCnt; ++ii){
1117 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1118 peakcnt = 0;
1119 bitHigh = false;
1120 ignoreCnt = 0;
1121 lastBit = ii-clk[clkCnt];
1122 //loop through to see if this start location works
1123 for (i = ii; i < size-20; ++i) {
1124 //if we are at a clock bit
1125 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1126 //test high/low
1127 if (dest[i] >= peak || dest[i] <= low) {
1128 //if same peak don't count it
1129 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1130 peakcnt++;
1131 }
1132 lastPeakHigh = (dest[i] >= peak);
1133 bitHigh = true;
1134 errBitHigh = false;
1135 ignoreCnt = ignoreWindow;
1136 lastBit += clk[clkCnt];
1137 } else if (i == lastBit + clk[clkCnt] + tol) {
1138 lastBit += clk[clkCnt];
1139 }
1140 //else if not a clock bit and no peaks
1141 } else if (dest[i] < peak && dest[i] > low){
1142 if (ignoreCnt==0){
1143 bitHigh=false;
1144 if (errBitHigh==true) peakcnt--;
1145 errBitHigh=false;
1146 } else {
1147 ignoreCnt--;
1148 }
1149 // else if not a clock bit but we have a peak
1150 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1151 //error bar found no clock...
1152 errBitHigh=true;
1153 }
1154 }
1155 if(peakcnt>peaksdet[clkCnt]) {
1156 peaksdet[clkCnt]=peakcnt;
1157 }
1158 }
1159 }
1160 }
1161 int iii=7;
1162 uint8_t best=0;
1163 for (iii=7; iii > 0; iii--){
1164 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1165 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1166 best = iii;
1167 }
1168 } else if (peaksdet[iii] > peaksdet[best]){
1169 best = iii;
1170 }
1171 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1172 }
1173
1174 return clk[best];
1175 }
1176
1177 // by marshmellow
1178 // convert psk1 demod to psk2 demod
1179 // only transition waves are 1s
1180 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1181 {
1182 size_t i=1;
1183 uint8_t lastBit=BitStream[0];
1184 for (; i<size; i++){
1185 if (BitStream[i]==7){
1186 //ignore errors
1187 } else if (lastBit!=BitStream[i]){
1188 lastBit=BitStream[i];
1189 BitStream[i]=1;
1190 } else {
1191 BitStream[i]=0;
1192 }
1193 }
1194 return;
1195 }
1196
1197 // by marshmellow
1198 // convert psk2 demod to psk1 demod
1199 // from only transition waves are 1s to phase shifts change bit
1200 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1201 {
1202 uint8_t phase=0;
1203 for (size_t i=0; i<size; i++){
1204 if (BitStream[i]==1){
1205 phase ^=1;
1206 }
1207 BitStream[i]=phase;
1208 }
1209 return;
1210 }
1211
1212 // redesigned by marshmellow adjusted from existing decode functions
1213 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1214 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1215 {
1216 //26 bit 40134 format (don't know other formats)
1217 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1218 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1219 size_t startidx = 0;
1220 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1221 // if didn't find preamble try again inverting
1222 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1223 *invert ^= 1;
1224 }
1225 if (*size != 64 && *size != 224) return -2;
1226 if (*invert==1)
1227 for (size_t i = startidx; i < *size; i++)
1228 bitStream[i] ^= 1;
1229
1230 return (int) startidx;
1231 }
1232
1233 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1234 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1235 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1236 if (justNoise(dest, *size)) return -1;
1237 *clk = DetectNRZClock(dest, *size, *clk);
1238 if (*clk==0) return -2;
1239 size_t i, gLen = 4096;
1240 if (gLen>*size) gLen = *size-20;
1241 int high, low;
1242 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1243
1244 uint8_t bit=0;
1245 //convert wave samples to 1's and 0's
1246 for(i=20; i < *size-20; i++){
1247 if (dest[i] >= high) bit = 1;
1248 if (dest[i] <= low) bit = 0;
1249 dest[i] = bit;
1250 }
1251 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1252 size_t lastBit = 0;
1253 size_t numBits = 0;
1254 for(i=21; i < *size-20; i++) {
1255 //if transition detected or large number of same bits - store the passed bits
1256 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1257 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1258 numBits += (i - lastBit + (*clk/4)) / *clk;
1259 lastBit = i-1;
1260 }
1261 }
1262 *size = numBits;
1263 return 0;
1264 }
1265
1266 //by marshmellow
1267 //detects the bit clock for FSK given the high and low Field Clocks
1268 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1269 {
1270 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1271 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1272 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1273 uint8_t rfLensFnd = 0;
1274 uint8_t lastFCcnt = 0;
1275 uint16_t fcCounter = 0;
1276 uint16_t rfCounter = 0;
1277 uint8_t firstBitFnd = 0;
1278 size_t i;
1279 if (size == 0) return 0;
1280
1281 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1282 rfLensFnd=0;
1283 fcCounter=0;
1284 rfCounter=0;
1285 firstBitFnd=0;
1286 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1287 // prime i to first peak / up transition
1288 for (i = 160; i < size-20; i++)
1289 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1290 break;
1291
1292 for (; i < size-20; i++){
1293 fcCounter++;
1294 rfCounter++;
1295
1296 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1297 continue;
1298 // else new peak
1299 // if we got less than the small fc + tolerance then set it to the small fc
1300 if (fcCounter < fcLow+fcTol)
1301 fcCounter = fcLow;
1302 else //set it to the large fc
1303 fcCounter = fcHigh;
1304
1305 //look for bit clock (rf/xx)
1306 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1307 //not the same size as the last wave - start of new bit sequence
1308 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1309 for (int ii=0; ii<15; ii++){
1310 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1311 rfCnts[ii]++;
1312 rfCounter = 0;
1313 break;
1314 }
1315 }
1316 if (rfCounter > 0 && rfLensFnd < 15){
1317 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1318 rfCnts[rfLensFnd]++;
1319 rfLens[rfLensFnd++] = rfCounter;
1320 }
1321 } else {
1322 firstBitFnd++;
1323 }
1324 rfCounter=0;
1325 lastFCcnt=fcCounter;
1326 }
1327 fcCounter=0;
1328 }
1329 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1330
1331 for (i=0; i<15; i++){
1332 //get highest 2 RF values (might need to get more values to compare or compare all?)
1333 if (rfCnts[i]>rfCnts[rfHighest]){
1334 rfHighest3=rfHighest2;
1335 rfHighest2=rfHighest;
1336 rfHighest=i;
1337 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1338 rfHighest3=rfHighest2;
1339 rfHighest2=i;
1340 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1341 rfHighest3=i;
1342 }
1343 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1344 }
1345 // set allowed clock remainder tolerance to be 1 large field clock length+1
1346 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1347 uint8_t tol1 = fcHigh+1;
1348
1349 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1350
1351 // loop to find the highest clock that has a remainder less than the tolerance
1352 // compare samples counted divided by
1353 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1354 int ii=7;
1355 for (; ii>=2; ii--){
1356 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1357 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1358 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1359 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1360 break;
1361 }
1362 }
1363 }
1364 }
1365
1366 if (ii<0) return 0; // oops we went too far
1367
1368 return clk[ii];
1369 }
1370
1371 //by marshmellow
1372 //countFC is to detect the field clock lengths.
1373 //counts and returns the 2 most common wave lengths
1374 //mainly used for FSK field clock detection
1375 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1376 {
1377 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1378 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1379 uint8_t fcLensFnd = 0;
1380 uint8_t lastFCcnt = 0;
1381 uint8_t fcCounter = 0;
1382 size_t i;
1383 if (size < 180) return 0;
1384
1385 // prime i to first up transition
1386 for (i = 160; i < size-20; i++)
1387 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1388 break;
1389
1390 for (; i < size-20; i++){
1391 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1392 // new up transition
1393 fcCounter++;
1394 if (fskAdj){
1395 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1396 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1397 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1398 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1399 // save last field clock count (fc/xx)
1400 lastFCcnt = fcCounter;
1401 }
1402 // find which fcLens to save it to:
1403 for (int ii=0; ii<15; ii++){
1404 if (fcLens[ii]==fcCounter){
1405 fcCnts[ii]++;
1406 fcCounter=0;
1407 break;
1408 }
1409 }
1410 if (fcCounter>0 && fcLensFnd<15){
1411 //add new fc length
1412 fcCnts[fcLensFnd]++;
1413 fcLens[fcLensFnd++]=fcCounter;
1414 }
1415 fcCounter=0;
1416 } else {
1417 // count sample
1418 fcCounter++;
1419 }
1420 }
1421
1422 uint8_t best1=14, best2=14, best3=14;
1423 uint16_t maxCnt1=0;
1424 // go through fclens and find which ones are bigest 2
1425 for (i=0; i<15; i++){
1426 // get the 3 best FC values
1427 if (fcCnts[i]>maxCnt1) {
1428 best3=best2;
1429 best2=best1;
1430 maxCnt1=fcCnts[i];
1431 best1=i;
1432 } else if(fcCnts[i]>fcCnts[best2]){
1433 best3=best2;
1434 best2=i;
1435 } else if(fcCnts[i]>fcCnts[best3]){
1436 best3=i;
1437 }
1438 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1439 }
1440 if (fcLens[best1]==0) return 0;
1441 uint8_t fcH=0, fcL=0;
1442 if (fcLens[best1]>fcLens[best2]){
1443 fcH=fcLens[best1];
1444 fcL=fcLens[best2];
1445 } else{
1446 fcH=fcLens[best2];
1447 fcL=fcLens[best1];
1448 }
1449 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1450 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1451 return 0; //lots of waves not psk or fsk
1452 }
1453 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1454
1455 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1456 if (fskAdj) return fcs;
1457 return fcLens[best1];
1458 }
1459
1460 //by marshmellow - demodulate PSK1 wave
1461 //uses wave lengths (# Samples)
1462 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1463 {
1464 if (size == 0) return -1;
1465 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1466 if (*size<loopCnt) loopCnt = *size;
1467
1468 size_t numBits=0;
1469 uint8_t curPhase = *invert;
1470 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1471 uint8_t fc=0, fullWaveLen=0, tol=1;
1472 uint16_t errCnt=0, waveLenCnt=0;
1473 fc = countFC(dest, *size, 0);
1474 if (fc!=2 && fc!=4 && fc!=8) return -1;
1475 //PrintAndLog("DEBUG: FC: %d",fc);
1476 *clock = DetectPSKClock(dest, *size, *clock);
1477 if (*clock == 0) return -1;
1478 int avgWaveVal=0, lastAvgWaveVal=0;
1479 //find first phase shift
1480 for (i=0; i<loopCnt; i++){
1481 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1482 waveEnd = i+1;
1483 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1484 waveLenCnt = waveEnd-waveStart;
1485 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
1486 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1487 firstFullWave = waveStart;
1488 fullWaveLen=waveLenCnt;
1489 //if average wave value is > graph 0 then it is an up wave or a 1
1490 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
1491 break;
1492 }
1493 waveStart = i+1;
1494 avgWaveVal = 0;
1495 }
1496 avgWaveVal += dest[i+2];
1497 }
1498 if (firstFullWave == 0) {
1499 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1500 // so skip a little to ensure we are past any Start Signal
1501 firstFullWave = 160;
1502 memset(dest, curPhase, firstFullWave / *clock);
1503 } else {
1504 memset(dest, curPhase^1, firstFullWave / *clock);
1505 }
1506 //advance bits
1507 numBits += (firstFullWave / *clock);
1508 //set start of wave as clock align
1509 lastClkBit = firstFullWave;
1510 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1511 if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
1512 waveStart = 0;
1513 dest[numBits++] = curPhase; //set first read bit
1514 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1515 //top edge of wave = start of new wave
1516 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1517 if (waveStart == 0) {
1518 waveStart = i+1;
1519 waveLenCnt = 0;
1520 avgWaveVal = dest[i+1];
1521 } else { //waveEnd
1522 waveEnd = i+1;
1523 waveLenCnt = waveEnd-waveStart;
1524 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1525 if (waveLenCnt > fc){
1526 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1527 //this wave is a phase shift
1528 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1529 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1530 curPhase ^= 1;
1531 dest[numBits++] = curPhase;
1532 lastClkBit += *clock;
1533 } else if (i < lastClkBit+10+fc){
1534 //noise after a phase shift - ignore
1535 } else { //phase shift before supposed to based on clock
1536 errCnt++;
1537 dest[numBits++] = 7;
1538 }
1539 } else if (i+1 > lastClkBit + *clock + tol + fc){
1540 lastClkBit += *clock; //no phase shift but clock bit
1541 dest[numBits++] = curPhase;
1542 }
1543 avgWaveVal = 0;
1544 waveStart = i+1;
1545 }
1546 }
1547 avgWaveVal += dest[i+1];
1548 }
1549 *size = numBits;
1550 return errCnt;
1551 }
1552
1553 //by marshmellow
1554 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1555 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1556 size_t bufsize = *size;
1557 //need to loop through all samples and identify our clock, look for the ST pattern
1558 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1559 int clk = 0;
1560 int tol = 0;
1561 int i, j, skip, start, end, low, high, minClk, waveStart;
1562 bool complete = false;
1563 int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1564 int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed...
1565 size_t testsize = (bufsize < 512) ? bufsize : 512;
1566 int phaseoff = 0;
1567 high = low = 128;
1568 memset(tmpbuff, 0, sizeof(tmpbuff));
1569
1570 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1571 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1572 return false; //just noise
1573 }
1574 i = 0;
1575 j = 0;
1576 minClk = 255;
1577 // get to first full low to prime loop and skip incomplete first pulse
1578 while ((buffer[i] < high) && (i < bufsize))
1579 ++i;
1580 while ((buffer[i] > low) && (i < bufsize))
1581 ++i;
1582 skip = i;
1583
1584 // populate tmpbuff buffer with pulse lengths
1585 while (i < bufsize) {
1586 // measure from low to low
1587 while ((buffer[i] > low) && (i < bufsize))
1588 ++i;
1589 start= i;
1590 while ((buffer[i] < high) && (i < bufsize))
1591 ++i;
1592 //first high point for this wave
1593 waveStart = i;
1594 while ((buffer[i] > low) && (i < bufsize))
1595 ++i;
1596 if (j >= (bufsize/32)) {
1597 break;
1598 }
1599 waveLen[j] = i - waveStart; //first high to first low
1600 tmpbuff[j++] = i - start;
1601 if (i-start < minClk && i < bufsize) {
1602 minClk = i - start;
1603 }
1604 }
1605 // set clock - might be able to get this externally and remove this work...
1606 if (!clk) {
1607 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1608 tol = fndClk[clkCnt]/8;
1609 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1610 clk=fndClk[clkCnt];
1611 break;
1612 }
1613 }
1614 // clock not found - ERROR
1615 if (!clk) {
1616 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1617 return false;
1618 }
1619 } else tol = clk/8;
1620
1621 *foundclock = clk;
1622
1623 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1624 start = -1;
1625 for (i = 0; i < j - 4; ++i) {
1626 skip += tmpbuff[i];
1627 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1628 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1629 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1630 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1631 start = i + 3;
1632 break;
1633 }
1634 }
1635 }
1636 }
1637 }
1638 // first ST not found - ERROR
1639 if (start < 0) {
1640 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1641 return false;
1642 } else {
1643 if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j);
1644 }
1645 if (waveLen[i+2] > clk*1+tol)
1646 phaseoff = 0;
1647 else
1648 phaseoff = clk/2;
1649
1650 // skip over the remainder of ST
1651 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1652
1653 // now do it again to find the end
1654 end = skip;
1655 for (i += 3; i < j - 4; ++i) {
1656 end += tmpbuff[i];
1657 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1658 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1659 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1660 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1661 complete = true;
1662 break;
1663 }
1664 }
1665 }
1666 }
1667 }
1668 end -= phaseoff;
1669 //didn't find second ST - ERROR
1670 if (!complete) {
1671 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1672 return false;
1673 }
1674 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1675 //now begin to trim out ST so we can use normal demod cmds
1676 start = skip;
1677 size_t datalen = end - start;
1678 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1679 if ( clk - (datalen % clk) <= clk/8) {
1680 // padd the amount off - could be problematic... but shouldn't happen often
1681 datalen += clk - (datalen % clk);
1682 } else if ( (datalen % clk) <= clk/8 ) {
1683 // padd the amount off - could be problematic... but shouldn't happen often
1684 datalen -= datalen % clk;
1685 } else {
1686 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1687 return false;
1688 }
1689 // if datalen is less than one t55xx block - ERROR
1690 if (datalen/clk < 8*4) {
1691 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1692 return false;
1693 }
1694 size_t dataloc = start;
1695 if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
1696 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1697 for ( i=0; i <= (clk/8); ++i ) {
1698 if ( buffer[dataloc - (clk*4) - i] <= low ) {
1699 dataloc -= i;
1700 break;
1701 }
1702 }
1703 }
1704
1705 size_t newloc = 0;
1706 i=0;
1707 if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
1708
1709 // warning - overwriting buffer given with raw wave data with ST removed...
1710 while ( dataloc < bufsize-(clk/2) ) {
1711 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1712 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1713 for(i=0; i < clk/2-tol; ++i) {
1714 buffer[dataloc+i] = high+5;
1715 }
1716 }
1717 for (i=0; i<datalen; ++i) {
1718 if (i+newloc < bufsize) {
1719 if (i+newloc < dataloc)
1720 buffer[i+newloc] = buffer[dataloc];
1721
1722 dataloc++;
1723 }
1724 }
1725 newloc += i;
1726 //skip next ST - we just assume it will be there from now on...
1727 if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
1728 dataloc += clk*4;
1729 }
1730 *size = newloc;
1731 return true;
1732 }
Impressum, Datenschutz