1 //-----------------------------------------------------------------------------
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint8_t *trace
= (uint8_t *) BigBuf
;
24 static int traceLen
= 0;
25 static int rsamples
= 0;
26 static int tracing
= TRUE
;
27 static uint32_t iso14a_timeout
;
29 // CARD TO READER - manchester
30 // Sequence D: 11110000 modulation with subcarrier during first half
31 // Sequence E: 00001111 modulation with subcarrier during second half
32 // Sequence F: 00000000 no modulation with subcarrier
33 // READER TO CARD - miller
34 // Sequence X: 00001100 drop after half a period
35 // Sequence Y: 00000000 no drop
36 // Sequence Z: 11000000 drop at start
44 static const uint8_t OddByteParity
[256] = {
45 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
49 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
64 void iso14a_set_trigger(int enable
) {
68 void iso14a_clear_tracelen(void) {
71 void iso14a_set_tracing(int enable
) {
75 //-----------------------------------------------------------------------------
76 // Generate the parity value for a byte sequence
78 //-----------------------------------------------------------------------------
79 byte_t
oddparity (const byte_t bt
)
81 return OddByteParity
[bt
];
84 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
89 // Generate the encrypted data
90 for (i
= 0; i
< iLen
; i
++) {
91 // Save the encrypted parity bit
92 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
97 void AppendCrc14443a(uint8_t* data
, int len
)
99 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
102 int LogTrace(const uint8_t * btBytes
, int iLen
, int iSamples
, uint32_t dwParity
, int bReader
)
104 // Return when trace is full
105 if (traceLen
>= TRACE_LENGTH
) return FALSE
;
107 // Trace the random, i'm curious
108 rsamples
+= iSamples
;
109 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
110 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
111 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
112 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
114 trace
[traceLen
- 1] |= 0x80;
116 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
117 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
118 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
119 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
120 trace
[traceLen
++] = iLen
;
121 memcpy(trace
+ traceLen
, btBytes
, iLen
);
126 //-----------------------------------------------------------------------------
127 // The software UART that receives commands from the reader, and its state
129 //-----------------------------------------------------------------------------
133 STATE_START_OF_COMMUNICATION
,
157 static RAMFUNC
int MillerDecoding(int bit
)
162 if(!Uart
.bitBuffer
) {
163 Uart
.bitBuffer
= bit
^ 0xFF0;
167 Uart
.bitBuffer
<<= 4;
168 Uart
.bitBuffer
^= bit
;
173 if(Uart
.state
!= STATE_UNSYNCD
) {
176 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
182 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
188 if(bit
!= bitright
) { bit
= bitright
; }
190 if(Uart
.posCnt
== 1) {
191 // measurement first half bitperiod
193 Uart
.drop
= DROP_FIRST_HALF
;
197 // measurement second half bitperiod
198 if(!bit
& (Uart
.drop
== DROP_NONE
)) {
199 Uart
.drop
= DROP_SECOND_HALF
;
202 // measured a drop in first and second half
203 // which should not be possible
204 Uart
.state
= STATE_ERROR_WAIT
;
211 case STATE_START_OF_COMMUNICATION
:
213 if(Uart
.drop
== DROP_SECOND_HALF
) {
214 // error, should not happen in SOC
215 Uart
.state
= STATE_ERROR_WAIT
;
220 Uart
.state
= STATE_MILLER_Z
;
227 if(Uart
.drop
== DROP_NONE
) {
228 // logic '0' followed by sequence Y
229 // end of communication
230 Uart
.state
= STATE_UNSYNCD
;
233 // if(Uart.drop == DROP_FIRST_HALF) {
234 // Uart.state = STATE_MILLER_Z; stay the same
235 // we see a logic '0' }
236 if(Uart
.drop
== DROP_SECOND_HALF
) {
237 // we see a logic '1'
238 Uart
.shiftReg
|= 0x100;
239 Uart
.state
= STATE_MILLER_X
;
245 if(Uart
.drop
== DROP_NONE
) {
246 // sequence Y, we see a '0'
247 Uart
.state
= STATE_MILLER_Y
;
250 if(Uart
.drop
== DROP_FIRST_HALF
) {
251 // Would be STATE_MILLER_Z
252 // but Z does not follow X, so error
253 Uart
.state
= STATE_ERROR_WAIT
;
256 if(Uart
.drop
== DROP_SECOND_HALF
) {
257 // We see a '1' and stay in state X
258 Uart
.shiftReg
|= 0x100;
266 if(Uart
.drop
== DROP_NONE
) {
267 // logic '0' followed by sequence Y
268 // end of communication
269 Uart
.state
= STATE_UNSYNCD
;
272 if(Uart
.drop
== DROP_FIRST_HALF
) {
274 Uart
.state
= STATE_MILLER_Z
;
276 if(Uart
.drop
== DROP_SECOND_HALF
) {
277 // We see a '1' and go to state X
278 Uart
.shiftReg
|= 0x100;
279 Uart
.state
= STATE_MILLER_X
;
283 case STATE_ERROR_WAIT
:
284 // That went wrong. Now wait for at least two bit periods
285 // and try to sync again
286 if(Uart
.drop
== DROP_NONE
) {
288 Uart
.state
= STATE_UNSYNCD
;
293 Uart
.state
= STATE_UNSYNCD
;
298 Uart
.drop
= DROP_NONE
;
300 // should have received at least one whole byte...
301 if((Uart
.bitCnt
== 2) && EOC
&& (Uart
.byteCnt
> 0)) {
305 if(Uart
.bitCnt
== 9) {
306 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
309 Uart
.parityBits
<<= 1;
310 Uart
.parityBits
^= ((Uart
.shiftReg
>> 8) & 0x01);
313 // when End of Communication received and
314 // all data bits processed..
321 Uart.output[Uart.byteCnt] = 0xAA;
323 Uart.output[Uart.byteCnt] = error & 0xFF;
325 Uart.output[Uart.byteCnt] = 0xAA;
327 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
329 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
331 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
333 Uart.output[Uart.byteCnt] = 0xAA;
341 bit
= Uart
.bitBuffer
& 0xf0;
345 // should have been high or at least (4 * 128) / fc
346 // according to ISO this should be at least (9 * 128 + 20) / fc
347 if(Uart
.highCnt
== 8) {
348 // we went low, so this could be start of communication
349 // it turns out to be safer to choose a less significant
350 // syncbit... so we check whether the neighbour also represents the drop
351 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
352 Uart
.syncBit
= bit
& 8;
354 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
355 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
356 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
357 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
358 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
359 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
362 // the first half bit period is expected in next sample
367 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
370 Uart
.state
= STATE_START_OF_COMMUNICATION
;
371 Uart
.drop
= DROP_FIRST_HALF
;
382 if(Uart
.highCnt
< 8) {
391 //=============================================================================
392 // ISO 14443 Type A - Manchester
393 //=============================================================================
398 DEMOD_START_OF_COMMUNICATION
,
421 static RAMFUNC
int ManchesterDecoding(int v
)
437 if(Demod
.state
==DEMOD_UNSYNCD
) {
438 Demod
.output
[Demod
.len
] = 0xfa;
441 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
444 Demod
.syncBit
= 0x08;
451 Demod
.syncBit
= 0x04;
458 Demod
.syncBit
= 0x02;
461 if(bit
& 0x01 && Demod
.syncBit
) {
462 Demod
.syncBit
= 0x01;
467 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
468 Demod
.sub
= SUB_FIRST_HALF
;
471 Demod
.parityBits
= 0;
474 if(trigger
) LED_A_OFF();
475 switch(Demod
.syncBit
) {
476 case 0x08: Demod
.samples
= 3; break;
477 case 0x04: Demod
.samples
= 2; break;
478 case 0x02: Demod
.samples
= 1; break;
479 case 0x01: Demod
.samples
= 0; break;
486 //modulation = bit & Demod.syncBit;
487 modulation
= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
491 if(Demod
.posCount
==0) {
494 Demod
.sub
= SUB_FIRST_HALF
;
497 Demod
.sub
= SUB_NONE
;
502 if(modulation
&& (Demod
.sub
== SUB_FIRST_HALF
)) {
503 if(Demod
.state
!=DEMOD_ERROR_WAIT
) {
504 Demod
.state
= DEMOD_ERROR_WAIT
;
505 Demod
.output
[Demod
.len
] = 0xaa;
509 else if(modulation
) {
510 Demod
.sub
= SUB_SECOND_HALF
;
513 switch(Demod
.state
) {
514 case DEMOD_START_OF_COMMUNICATION
:
515 if(Demod
.sub
== SUB_FIRST_HALF
) {
516 Demod
.state
= DEMOD_MANCHESTER_D
;
519 Demod
.output
[Demod
.len
] = 0xab;
520 Demod
.state
= DEMOD_ERROR_WAIT
;
525 case DEMOD_MANCHESTER_D
:
526 case DEMOD_MANCHESTER_E
:
527 if(Demod
.sub
== SUB_FIRST_HALF
) {
529 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
530 Demod
.state
= DEMOD_MANCHESTER_D
;
532 else if(Demod
.sub
== SUB_SECOND_HALF
) {
534 Demod
.shiftReg
>>= 1;
535 Demod
.state
= DEMOD_MANCHESTER_E
;
538 Demod
.state
= DEMOD_MANCHESTER_F
;
542 case DEMOD_MANCHESTER_F
:
543 // Tag response does not need to be a complete byte!
544 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
545 if(Demod
.bitCount
> 0) {
546 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
547 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
549 // No parity bit, so just shift a 0
550 Demod
.parityBits
<<= 1;
553 Demod
.state
= DEMOD_UNSYNCD
;
557 Demod
.output
[Demod
.len
] = 0xad;
558 Demod
.state
= DEMOD_ERROR_WAIT
;
563 case DEMOD_ERROR_WAIT
:
564 Demod
.state
= DEMOD_UNSYNCD
;
568 Demod
.output
[Demod
.len
] = 0xdd;
569 Demod
.state
= DEMOD_UNSYNCD
;
573 if(Demod
.bitCount
>=9) {
574 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
577 Demod
.parityBits
<<= 1;
578 Demod
.parityBits
^= ((Demod
.shiftReg
>> 8) & 0x01);
585 Demod.output[Demod.len] = 0xBB;
587 Demod.output[Demod.len] = error & 0xFF;
589 Demod.output[Demod.len] = 0xBB;
591 Demod.output[Demod.len] = bit & 0xFF;
593 Demod.output[Demod.len] = Demod.buffer & 0xFF;
595 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
597 Demod.output[Demod.len] = 0xBB;
604 } // end (state != UNSYNCED)
609 //=============================================================================
610 // Finally, a `sniffer' for ISO 14443 Type A
611 // Both sides of communication!
612 //=============================================================================
614 //-----------------------------------------------------------------------------
615 // Record the sequence of commands sent by the reader to the tag, with
616 // triggering so that we start recording at the point that the tag is moved
618 //-----------------------------------------------------------------------------
619 void RAMFUNC
SnoopIso14443a(void)
621 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
622 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
623 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
624 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
625 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
627 // We won't start recording the frames that we acquire until we trigger;
628 // a good trigger condition to get started is probably when we see a
629 // response from the tag.
630 int triggered
= FALSE
; // FALSE to wait first for card
632 // The command (reader -> tag) that we're receiving.
633 // The length of a received command will in most cases be no more than 18 bytes.
634 // So 32 should be enough!
635 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
636 // The response (tag -> reader) that we're receiving.
637 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
639 // As we receive stuff, we copy it from receivedCmd or receivedResponse
640 // into trace, along with its length and other annotations.
641 //uint8_t *trace = (uint8_t *)BigBuf;
643 traceLen
= 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
645 // The DMA buffer, used to stream samples from the FPGA
646 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
652 // Count of samples received so far, so that we can include timing
653 // information in the trace buffer.
657 memset(trace
, 0x44, RECV_CMD_OFFSET
);
659 // Set up the demodulator for tag -> reader responses.
660 Demod
.output
= receivedResponse
;
662 Demod
.state
= DEMOD_UNSYNCD
;
664 // Setup for the DMA.
667 lastRxCounter
= DMA_BUFFER_SIZE
;
668 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
670 // And the reader -> tag commands
671 memset(&Uart
, 0, sizeof(Uart
));
672 Uart
.output
= receivedCmd
;
673 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
674 Uart
.state
= STATE_UNSYNCD
;
676 // And put the FPGA in the appropriate mode
677 // Signal field is off with the appropriate LED
679 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
680 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
683 // And now we loop, receiving samples.
687 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
689 if(behindBy
> maxBehindBy
) {
690 maxBehindBy
= behindBy
;
692 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
696 if(behindBy
< 1) continue;
702 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
703 upTo
-= DMA_BUFFER_SIZE
;
704 lastRxCounter
+= DMA_BUFFER_SIZE
;
705 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
706 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
710 if(MillerDecoding((smpl
& 0xF0) >> 4)) {
711 rsamples
= samples
- Uart
.samples
;
714 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
715 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
716 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
717 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
718 trace
[traceLen
++] = ((Uart
.parityBits
>> 0) & 0xff);
719 trace
[traceLen
++] = ((Uart
.parityBits
>> 8) & 0xff);
720 trace
[traceLen
++] = ((Uart
.parityBits
>> 16) & 0xff);
721 trace
[traceLen
++] = ((Uart
.parityBits
>> 24) & 0xff);
722 trace
[traceLen
++] = Uart
.byteCnt
;
723 memcpy(trace
+traceLen
, receivedCmd
, Uart
.byteCnt
);
724 traceLen
+= Uart
.byteCnt
;
725 if(traceLen
> TRACE_LENGTH
) break;
727 /* And ready to receive another command. */
728 Uart
.state
= STATE_UNSYNCD
;
729 /* And also reset the demod code, which might have been */
730 /* false-triggered by the commands from the reader. */
731 Demod
.state
= DEMOD_UNSYNCD
;
735 if(ManchesterDecoding(smpl
& 0x0F)) {
736 rsamples
= samples
- Demod
.samples
;
739 // timestamp, as a count of samples
740 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
741 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
742 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
743 trace
[traceLen
++] = 0x80 | ((rsamples
>> 24) & 0xff);
744 trace
[traceLen
++] = ((Demod
.parityBits
>> 0) & 0xff);
745 trace
[traceLen
++] = ((Demod
.parityBits
>> 8) & 0xff);
746 trace
[traceLen
++] = ((Demod
.parityBits
>> 16) & 0xff);
747 trace
[traceLen
++] = ((Demod
.parityBits
>> 24) & 0xff);
749 trace
[traceLen
++] = Demod
.len
;
750 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
751 traceLen
+= Demod
.len
;
752 if(traceLen
> TRACE_LENGTH
) break;
756 // And ready to receive another response.
757 memset(&Demod
, 0, sizeof(Demod
));
758 Demod
.output
= receivedResponse
;
759 Demod
.state
= DEMOD_UNSYNCD
;
764 DbpString("cancelled_a");
769 DbpString("COMMAND FINISHED");
771 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
772 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
775 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
776 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
777 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
784 //-----------------------------------------------------------------------------
785 // Prepare tag messages
786 //-----------------------------------------------------------------------------
787 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
793 // Correction bit, might be removed when not needed
798 ToSendStuffBit(1); // 1
804 ToSend
[++ToSendMax
] = SEC_D
;
806 for(i
= 0; i
< len
; i
++) {
811 for(j
= 0; j
< 8; j
++) {
813 ToSend
[++ToSendMax
] = SEC_D
;
815 ToSend
[++ToSendMax
] = SEC_E
;
820 // Get the parity bit
821 if ((dwParity
>> i
) & 0x01) {
822 ToSend
[++ToSendMax
] = SEC_D
;
824 ToSend
[++ToSendMax
] = SEC_E
;
829 ToSend
[++ToSendMax
] = SEC_F
;
831 // Convert from last byte pos to length
835 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
836 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
839 //-----------------------------------------------------------------------------
840 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
841 //-----------------------------------------------------------------------------
842 static void CodeStrangeAnswerAsTag()
848 // Correction bit, might be removed when not needed
853 ToSendStuffBit(1); // 1
859 ToSend
[++ToSendMax
] = SEC_D
;
862 ToSend
[++ToSendMax
] = SEC_E
;
865 ToSend
[++ToSendMax
] = SEC_E
;
868 ToSend
[++ToSendMax
] = SEC_D
;
871 ToSend
[++ToSendMax
] = SEC_F
;
873 // Flush the buffer in FPGA!!
874 for(i
= 0; i
< 5; i
++) {
875 ToSend
[++ToSendMax
] = SEC_F
;
878 // Convert from last byte pos to length
882 static void Code4bitAnswerAsTag(uint8_t cmd
)
888 // Correction bit, might be removed when not needed
893 ToSendStuffBit(1); // 1
899 ToSend
[++ToSendMax
] = SEC_D
;
902 for(i
= 0; i
< 4; i
++) {
904 ToSend
[++ToSendMax
] = SEC_D
;
906 ToSend
[++ToSendMax
] = SEC_E
;
912 ToSend
[++ToSendMax
] = SEC_F
;
914 // Flush the buffer in FPGA!!
915 for(i
= 0; i
< 5; i
++) {
916 ToSend
[++ToSendMax
] = SEC_F
;
919 // Convert from last byte pos to length
923 //-----------------------------------------------------------------------------
924 // Wait for commands from reader
925 // Stop when button is pressed
926 // Or return TRUE when command is captured
927 //-----------------------------------------------------------------------------
928 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
930 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
931 // only, since we are receiving, not transmitting).
932 // Signal field is off with the appropriate LED
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
936 // Now run a `software UART' on the stream of incoming samples.
937 Uart
.output
= received
;
938 Uart
.byteCntMax
= maxLen
;
939 Uart
.state
= STATE_UNSYNCD
;
944 if(BUTTON_PRESS()) return FALSE
;
946 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
947 AT91C_BASE_SSC
->SSC_THR
= 0x00;
949 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
950 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
951 if(MillerDecoding((b
& 0xf0) >> 4)) {
955 if(MillerDecoding(b
& 0x0f)) {
962 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
);
964 //-----------------------------------------------------------------------------
965 // Main loop of simulated tag: receive commands from reader, decide what
966 // response to send, and send it.
967 //-----------------------------------------------------------------------------
968 void SimulateIso14443aTag(int tagType
, int TagUid
)
970 // This function contains the tag emulation
972 // Prepare protocol messages
973 // static const uint8_t cmd1[] = { 0x26 };
974 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
976 static const uint8_t response1
[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
977 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
980 // static const uint8_t cmd2[] = { 0x93, 0x20 };
981 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
984 static const uint8_t response2
[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
987 // When reader selects us during cascade1 it will send cmd3
988 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
989 uint8_t response3
[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
990 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
992 // send cascade2 2nd half of UID
993 static const uint8_t response2a
[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
994 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
996 // When reader selects us during cascade2 it will send cmd3a
997 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
998 uint8_t response3a
[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
999 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1001 static const uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1006 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
1008 // 144 data bits (18 * 8)
1011 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
1012 // 1 just for the case
1016 // 166 bytes, since every bit that needs to be send costs us a byte
1019 // Respond with card type
1020 uint8_t *resp1
= (((uint8_t *)BigBuf
) + 800);
1023 // Anticollision cascade1 - respond with uid
1024 uint8_t *resp2
= (((uint8_t *)BigBuf
) + 970);
1027 // Anticollision cascade2 - respond with 2nd half of uid if asked
1028 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1029 uint8_t *resp2a
= (((uint8_t *)BigBuf
) + 1140);
1032 // Acknowledge select - cascade 1
1033 uint8_t *resp3
= (((uint8_t *)BigBuf
) + 1310);
1036 // Acknowledge select - cascade 2
1037 uint8_t *resp3a
= (((uint8_t *)BigBuf
) + 1480);
1040 // Response to a read request - not implemented atm
1041 uint8_t *resp4
= (((uint8_t *)BigBuf
) + 1550);
1044 // Authenticate response - nonce
1045 uint8_t *resp5
= (((uint8_t *)BigBuf
) + 1720);
1048 uint8_t *receivedCmd
= (uint8_t *)BigBuf
;
1055 // To control where we are in the protocol
1059 // Just to allow some checks
1067 memset(receivedCmd
, 0x44, 400);
1069 // Prepare the responses of the anticollision phase
1070 // there will be not enough time to do this at the moment the reader sends it REQA
1072 // Answer to request
1073 CodeIso14443aAsTag(response1
, sizeof(response1
));
1074 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1076 // Send our UID (cascade 1)
1077 CodeIso14443aAsTag(response2
, sizeof(response2
));
1078 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1080 // Answer to select (cascade1)
1081 CodeIso14443aAsTag(response3
, sizeof(response3
));
1082 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1084 // Send the cascade 2 2nd part of the uid
1085 CodeIso14443aAsTag(response2a
, sizeof(response2a
));
1086 memcpy(resp2a
, ToSend
, ToSendMax
); resp2aLen
= ToSendMax
;
1088 // Answer to select (cascade 2)
1089 CodeIso14443aAsTag(response3a
, sizeof(response3a
));
1090 memcpy(resp3a
, ToSend
, ToSendMax
); resp3aLen
= ToSendMax
;
1092 // Strange answer is an example of rare message size (3 bits)
1093 CodeStrangeAnswerAsTag();
1094 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1096 // Authentication answer (random nonce)
1097 CodeIso14443aAsTag(response5
, sizeof(response5
));
1098 memcpy(resp5
, ToSend
, ToSendMax
); resp5Len
= ToSendMax
;
1100 // We need to listen to the high-frequency, peak-detected path.
1101 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1109 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, 100)) {
1110 DbpString("button press");
1113 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1114 // Okay, look at the command now.
1116 i
= 1; // first byte transmitted
1117 if(receivedCmd
[0] == 0x26) {
1118 // Received a REQUEST
1119 resp
= resp1
; respLen
= resp1Len
; order
= 1;
1120 //DbpString("Hello request from reader:");
1121 } else if(receivedCmd
[0] == 0x52) {
1122 // Received a WAKEUP
1123 resp
= resp1
; respLen
= resp1Len
; order
= 6;
1124 // //DbpString("Wakeup request from reader:");
1126 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // greg - cascade 1 anti-collision
1127 // Received request for UID (cascade 1)
1128 resp
= resp2
; respLen
= resp2Len
; order
= 2;
1129 // DbpString("UID (cascade 1) request from reader:");
1130 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1133 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] ==0x95) { // greg - cascade 2 anti-collision
1134 // Received request for UID (cascade 2)
1135 resp
= resp2a
; respLen
= resp2aLen
; order
= 20;
1136 // DbpString("UID (cascade 2) request from reader:");
1137 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1140 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] ==0x93) { // greg - cascade 1 select
1141 // Received a SELECT
1142 resp
= resp3
; respLen
= resp3Len
; order
= 3;
1143 // DbpString("Select (cascade 1) request from reader:");
1144 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1147 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] ==0x95) { // greg - cascade 2 select
1148 // Received a SELECT
1149 resp
= resp3a
; respLen
= resp3aLen
; order
= 30;
1150 // DbpString("Select (cascade 2) request from reader:");
1151 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1154 } else if(receivedCmd
[0] == 0x30) {
1156 resp
= resp4
; respLen
= resp4Len
; order
= 4; // Do nothing
1157 Dbprintf("Read request from reader: %x %x %x",
1158 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1161 } else if(receivedCmd
[0] == 0x50) {
1163 resp
= resp1
; respLen
= 0; order
= 5; // Do nothing
1164 DbpString("Reader requested we HALT!:");
1166 } else if(receivedCmd
[0] == 0x60) {
1167 // Received an authentication request
1168 resp
= resp5
; respLen
= resp5Len
; order
= 7;
1169 Dbprintf("Authenticate request from reader: %x %x %x",
1170 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1172 } else if(receivedCmd
[0] == 0xE0) {
1173 // Received a RATS request
1174 resp
= resp1
; respLen
= 0;order
= 70;
1175 Dbprintf("RATS request from reader: %x %x %x",
1176 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1178 // Never seen this command before
1179 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1181 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1182 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1183 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1185 resp
= resp1
; respLen
= 0; order
= 0;
1188 // Count number of wakeups received after a halt
1189 if(order
== 6 && lastorder
== 5) { happened
++; }
1191 // Count number of other messages after a halt
1192 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1194 // Look at last parity bit to determine timing of answer
1195 if((Uart
.parityBits
& 0x01) || receivedCmd
[0] == 0x52) {
1196 // 1236, so correction bit needed
1200 memset(receivedCmd
, 0x44, 32);
1202 if(cmdsRecvd
> 999) {
1203 DbpString("1000 commands later...");
1210 if(respLen
<= 0) continue;
1211 //----------------------------
1214 fdt_indicator
= FALSE
;
1216 EmSendCmd14443aRaw(resp
, respLen
, receivedCmd
[0] == 0x52);
1217 /* // Modulate Manchester
1218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1219 AT91C_BASE_SSC->SSC_THR = 0x00;
1222 // ### Transmit the response ###
1225 fdt_indicator = FALSE;
1227 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1228 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1231 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1239 AT91C_BASE_SSC->SSC_THR = b;
1245 if(BUTTON_PRESS()) {
1252 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1256 //-----------------------------------------------------------------------------
1257 // Transmit the command (to the tag) that was placed in ToSend[].
1258 //-----------------------------------------------------------------------------
1259 static void TransmitFor14443a(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1269 for(c
= 0; c
< *wait
;) {
1270 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1271 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1274 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1275 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1283 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1284 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1290 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1291 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1296 if (samples
) *samples
= (c
+ *wait
) << 3;
1299 //-----------------------------------------------------------------------------
1300 // Code a 7-bit command without parity bit
1301 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1302 //-----------------------------------------------------------------------------
1303 void ShortFrameFromReader(const uint8_t bt
)
1311 // Start of Communication (Seq. Z)
1312 ToSend
[++ToSendMax
] = SEC_Z
;
1316 for(j
= 0; j
< 7; j
++) {
1319 ToSend
[++ToSendMax
] = SEC_X
;
1324 ToSend
[++ToSendMax
] = SEC_Z
;
1328 ToSend
[++ToSendMax
] = SEC_Y
;
1335 // End of Communication
1338 ToSend
[++ToSendMax
] = SEC_Z
;
1342 ToSend
[++ToSendMax
] = SEC_Y
;
1346 ToSend
[++ToSendMax
] = SEC_Y
;
1349 ToSend
[++ToSendMax
] = SEC_Y
;
1350 ToSend
[++ToSendMax
] = SEC_Y
;
1351 ToSend
[++ToSendMax
] = SEC_Y
;
1353 // Convert from last character reference to length
1357 //-----------------------------------------------------------------------------
1358 // Prepare reader command to send to FPGA
1360 //-----------------------------------------------------------------------------
1361 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1369 // Start of Communication (Seq. Z)
1370 ToSend
[++ToSendMax
] = SEC_Z
;
1373 // Generate send structure for the data bits
1374 for (i
= 0; i
< len
; i
++) {
1375 // Get the current byte to send
1378 for (j
= 0; j
< 8; j
++) {
1381 ToSend
[++ToSendMax
] = SEC_X
;
1386 ToSend
[++ToSendMax
] = SEC_Z
;
1389 ToSend
[++ToSendMax
] = SEC_Y
;
1396 // Get the parity bit
1397 if ((dwParity
>> i
) & 0x01) {
1399 ToSend
[++ToSendMax
] = SEC_X
;
1404 ToSend
[++ToSendMax
] = SEC_Z
;
1407 ToSend
[++ToSendMax
] = SEC_Y
;
1413 // End of Communication
1416 ToSend
[++ToSendMax
] = SEC_Z
;
1419 ToSend
[++ToSendMax
] = SEC_Y
;
1423 ToSend
[++ToSendMax
] = SEC_Y
;
1426 ToSend
[++ToSendMax
] = SEC_Y
;
1427 ToSend
[++ToSendMax
] = SEC_Y
;
1428 ToSend
[++ToSendMax
] = SEC_Y
;
1430 // Convert from last character reference to length
1434 //-----------------------------------------------------------------------------
1435 // Wait for commands from reader
1436 // Stop when button is pressed (return 1) or field was gone (return 2)
1437 // Or return 0 when command is captured
1438 //-----------------------------------------------------------------------------
1439 static int EmGetCmd(uint8_t *received
, int *len
, int maxLen
)
1443 uint32_t timer
= 0, vtime
= 0;
1447 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1448 // only, since we are receiving, not transmitting).
1449 // Signal field is off with the appropriate LED
1451 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1453 // Set ADC to read field strength
1454 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1455 AT91C_BASE_ADC
->ADC_MR
=
1456 ADC_MODE_PRESCALE(32) |
1457 ADC_MODE_STARTUP_TIME(16) |
1458 ADC_MODE_SAMPLE_HOLD_TIME(8);
1459 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1461 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1463 // Now run a 'software UART' on the stream of incoming samples.
1464 Uart
.output
= received
;
1465 Uart
.byteCntMax
= maxLen
;
1466 Uart
.state
= STATE_UNSYNCD
;
1471 if (BUTTON_PRESS()) return 1;
1473 // test if the field exists
1474 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1476 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1477 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1478 if (analogCnt
>= 32) {
1479 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1480 vtime
= GetTickCount();
1481 if (!timer
) timer
= vtime
;
1482 // 50ms no field --> card to idle state
1483 if (vtime
- timer
> 50) return 2;
1485 if (timer
) timer
= 0;
1491 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1492 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1494 // receive and test the miller decoding
1495 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1496 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1497 if(MillerDecoding((b
& 0xf0) >> 4)) {
1498 *len
= Uart
.byteCnt
;
1499 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1502 if(MillerDecoding(b
& 0x0f)) {
1503 *len
= Uart
.byteCnt
;
1504 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1511 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
)
1516 // Modulate Manchester
1517 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1518 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1521 // include correction bit
1523 if((Uart
.parityBits
& 0x01) || correctionNeeded
) {
1524 // 1236, so correction bit needed
1530 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1531 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1534 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1536 b
= 0xff; // was 0x00
1542 AT91C_BASE_SSC
->SSC_THR
= b
;
1546 if(BUTTON_PRESS()) {
1554 int EmSend4bitEx(uint8_t resp
, int correctionNeeded
){
1555 Code4bitAnswerAsTag(resp
);
1556 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1557 if (tracing
) LogTrace(&resp
, 1, GetDeltaCountUS(), GetParity(&resp
, 1), FALSE
);
1561 int EmSend4bit(uint8_t resp
){
1562 return EmSend4bitEx(resp
, 0);
1565 int EmSendCmdExPar(uint8_t *resp
, int respLen
, int correctionNeeded
, uint32_t par
){
1566 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1567 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1568 if (tracing
) LogTrace(resp
, respLen
, GetDeltaCountUS(), par
, FALSE
);
1572 int EmSendCmdEx(uint8_t *resp
, int respLen
, int correctionNeeded
){
1573 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1576 int EmSendCmd(uint8_t *resp
, int respLen
){
1577 return EmSendCmdExPar(resp
, respLen
, 0, GetParity(resp
, respLen
));
1580 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1581 return EmSendCmdExPar(resp
, respLen
, 0, par
);
1584 //-----------------------------------------------------------------------------
1585 // Wait a certain time for tag response
1586 // If a response is captured return TRUE
1587 // If it takes to long return FALSE
1588 //-----------------------------------------------------------------------------
1589 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1591 // buffer needs to be 512 bytes
1594 // Set FPGA mode to "reader listen mode", no modulation (listen
1595 // only, since we are receiving, not transmitting).
1596 // Signal field is on with the appropriate LED
1598 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1600 // Now get the answer from the card
1601 Demod
.output
= receivedResponse
;
1603 Demod
.state
= DEMOD_UNSYNCD
;
1606 if (elapsed
) *elapsed
= 0;
1612 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1613 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1614 if (elapsed
) (*elapsed
)++;
1616 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1617 if(c
< iso14a_timeout
) { c
++; } else { return FALSE
; }
1618 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1619 if(ManchesterDecoding((b
>>4) & 0xf)) {
1620 *samples
= ((c
- 1) << 3) + 4;
1623 if(ManchesterDecoding(b
& 0x0f)) {
1631 void ReaderTransmitShort(const uint8_t* bt
)
1636 ShortFrameFromReader(*bt
);
1639 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1641 // Store reader command in buffer
1642 if (tracing
) LogTrace(bt
,1,0,GetParity(bt
,1),TRUE
);
1645 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
)
1650 // This is tied to other size changes
1651 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1652 CodeIso14443aAsReaderPar(frame
,len
,par
);
1655 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1659 // Store reader command in buffer
1660 if (tracing
) LogTrace(frame
,len
,0,par
,TRUE
);
1664 void ReaderTransmit(uint8_t* frame
, int len
)
1666 // Generate parity and redirect
1667 ReaderTransmitPar(frame
,len
,GetParity(frame
,len
));
1670 int ReaderReceive(uint8_t* receivedAnswer
)
1673 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1674 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1675 if(samples
== 0) return FALSE
;
1679 int ReaderReceivePar(uint8_t* receivedAnswer
, uint32_t * parptr
)
1682 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1683 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1684 *parptr
= Demod
.parityBits
;
1685 if(samples
== 0) return FALSE
;
1689 /* performs iso14443a anticolision procedure
1690 * fills the uid pointer unless NULL
1691 * fills resp_data unless NULL */
1692 int iso14443a_select_card(uint8_t * uid_ptr
, iso14a_card_select_t
* resp_data
, uint32_t * cuid_ptr
) {
1693 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1694 uint8_t sel_all
[] = { 0x93,0x20 };
1695 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1696 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1698 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1700 uint8_t sak
= 0x04; // cascade uid
1701 int cascade_level
= 0;
1706 memset(uid_ptr
, 0, 8);
1708 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1709 ReaderTransmitShort(wupa
);
1711 if(!ReaderReceive(resp
)) return 0;
1714 memcpy(resp_data
->atqa
, resp
, 2);
1716 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1717 // which case we need to make a cascade 2 request and select - this is a long UID
1718 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1719 for(; sak
& 0x04; cascade_level
++)
1721 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1722 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1725 ReaderTransmit(sel_all
,sizeof(sel_all
));
1726 if (!ReaderReceive(resp
)) return 0;
1727 if(uid_ptr
) memcpy(uid_ptr
+ cascade_level
*4, resp
, 4);
1729 // calculate crypto UID
1730 if(cuid_ptr
) *cuid_ptr
= bytes_to_num(resp
, 4);
1732 // Construct SELECT UID command
1733 memcpy(sel_uid
+2,resp
,5);
1734 AppendCrc14443a(sel_uid
,7);
1735 ReaderTransmit(sel_uid
,sizeof(sel_uid
));
1738 if (!ReaderReceive(resp
)) return 0;
1742 resp_data
->sak
= sak
;
1743 resp_data
->ats_len
= 0;
1745 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1746 if (uid_ptr
[0] == 0x88) {
1747 memcpy(uid_ptr
, uid_ptr
+ 1, 7);
1751 if( (sak
& 0x20) == 0)
1752 return 2; // non iso14443a compliant tag
1754 // Request for answer to select
1755 if(resp_data
) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1756 AppendCrc14443a(rats
, 2);
1757 ReaderTransmit(rats
, sizeof(rats
));
1759 if (!(len
= ReaderReceive(resp
))) return 0;
1761 memcpy(resp_data
->ats
, resp
, sizeof(resp_data
->ats
));
1762 resp_data
->ats_len
= len
;
1768 void iso14443a_setup() {
1771 // Start from off (no field generated)
1772 // Signal field is off with the appropriate LED
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1777 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1779 // Now give it time to spin up.
1780 // Signal field is on with the appropriate LED
1782 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1785 iso14a_timeout
= 2048; //default
1788 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1789 uint8_t real_cmd
[cmd_len
+4];
1790 real_cmd
[0] = 0x0a; //I-Block
1791 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1792 memcpy(real_cmd
+2, cmd
, cmd_len
);
1793 AppendCrc14443a(real_cmd
,cmd_len
+2);
1795 ReaderTransmit(real_cmd
, cmd_len
+4);
1796 size_t len
= ReaderReceive(data
);
1798 return -1; //DATA LINK ERROR
1804 //-----------------------------------------------------------------------------
1805 // Read an ISO 14443a tag. Send out commands and store answers.
1807 //-----------------------------------------------------------------------------
1808 void ReaderIso14443a(UsbCommand
* c
, UsbCommand
* ack
)
1810 iso14a_command_t param
= c
->arg
[0];
1811 uint8_t * cmd
= c
->d
.asBytes
;
1812 size_t len
= c
->arg
[1];
1814 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(1);
1816 if(param
& ISO14A_CONNECT
) {
1818 ack
->arg
[0] = iso14443a_select_card(ack
->d
.asBytes
, (iso14a_card_select_t
*) (ack
->d
.asBytes
+12), NULL
);
1819 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1822 if(param
& ISO14A_SET_TIMEOUT
) {
1823 iso14a_timeout
= c
->arg
[2];
1826 if(param
& ISO14A_SET_TIMEOUT
) {
1827 iso14a_timeout
= c
->arg
[2];
1830 if(param
& ISO14A_APDU
) {
1831 ack
->arg
[0] = iso14_apdu(cmd
, len
, ack
->d
.asBytes
);
1832 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1835 if(param
& ISO14A_RAW
) {
1836 if(param
& ISO14A_APPEND_CRC
) {
1837 AppendCrc14443a(cmd
,len
);
1840 ReaderTransmit(cmd
,len
);
1841 ack
->arg
[0] = ReaderReceive(ack
->d
.asBytes
);
1842 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1845 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(0);
1847 if(param
& ISO14A_NO_DISCONNECT
)
1850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1853 //-----------------------------------------------------------------------------
1854 // Read an ISO 14443a tag. Send out commands and store answers.
1856 //-----------------------------------------------------------------------------
1857 void ReaderMifare(uint32_t parameter
)
1860 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1861 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1863 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1876 byte_t par_mask
= 0xff;
1883 byte_t nt
[4] = {0,0,0,0};
1884 byte_t nt_attacked
[4], nt_noattack
[4];
1885 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1886 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1887 num_to_bytes(parameter
, 4, nt_noattack
);
1888 int isOK
= 0, isNULL
= 0;
1893 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1895 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1898 // Test if the action was cancelled
1899 if(BUTTON_PRESS()) {
1903 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) continue;
1905 // Transmit MIFARE_CLASSIC_AUTH
1906 ReaderTransmit(mf_auth
, sizeof(mf_auth
));
1908 // Receive the (16 bit) "random" nonce
1909 if (!ReaderReceive(receivedAnswer
)) continue;
1910 memcpy(nt
, receivedAnswer
, 4);
1912 // Transmit reader nonce and reader answer
1913 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
),par
);
1915 // Receive 4 bit answer
1916 if (ReaderReceive(receivedAnswer
))
1918 if ( (parameter
!= 0) && (memcmp(nt
, nt_noattack
, 4) == 0) ) continue;
1920 isNULL
= (nt_attacked
[0] = 0) && (nt_attacked
[1] = 0) && (nt_attacked
[2] = 0) && (nt_attacked
[3] = 0);
1921 if ( (isNULL
!= 0 ) && (memcmp(nt
, nt_attacked
, 4) != 0) ) continue;
1926 memcpy(nt_attacked
, nt
, 4);
1928 par_low
= par
& 0x07;
1932 if(led_on
) LED_B_ON(); else LED_B_OFF();
1933 par_list
[nt_diff
] = par
;
1934 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
1936 // Test if the information is complete
1937 if (nt_diff
== 0x07) {
1942 nt_diff
= (nt_diff
+ 1) & 0x07;
1943 mf_nr_ar
[3] = nt_diff
<< 5;
1950 par
= (((par
>> 3) + 1) << 3) | par_low
;
1955 LogTrace(nt
, 4, 0, GetParity(nt
, 4), TRUE
);
1956 LogTrace(par_list
, 8, 0, GetParity(par_list
, 8), TRUE
);
1957 LogTrace(ks_list
, 8, 0, GetParity(ks_list
, 8), TRUE
);
1959 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1960 memcpy(ack
.d
.asBytes
+ 0, uid
, 4);
1961 memcpy(ack
.d
.asBytes
+ 4, nt
, 4);
1962 memcpy(ack
.d
.asBytes
+ 8, par_list
, 8);
1963 memcpy(ack
.d
.asBytes
+ 16, ks_list
, 8);
1966 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1970 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1974 if (MF_DBGLEVEL
>= 1) DbpString("COMMAND mifare FINISHED");
1978 //-----------------------------------------------------------------------------
1979 // MIFARE 1K simulate.
1981 //-----------------------------------------------------------------------------
1982 void Mifare1ksim(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1984 int cardSTATE
= MFEMUL_NOFIELD
;
1986 int vHf
= 0; // in mV
1987 int nextCycleTimeout
= 0;
1989 // uint32_t timer = 0;
1990 uint32_t selTimer
= 0;
1991 uint32_t authTimer
= 0;
1994 uint8_t cardWRBL
= 0;
1995 uint8_t cardAUTHSC
= 0;
1996 uint8_t cardAUTHKEY
= 0xff; // no authentication
1997 uint32_t cardRn
= 0;
1998 uint32_t cardRr
= 0;
2000 uint32_t rn_enc
= 0;
2002 uint32_t cardINTREG
= 0;
2003 uint8_t cardINTBLOCK
= 0;
2004 struct Crypto1State mpcs
= {0, 0};
2005 struct Crypto1State
*pcs
;
2008 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2009 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2011 static uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2013 static uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2014 static uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2016 static uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2017 static uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2019 static uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2020 // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
2021 static uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2027 // Authenticate response - nonce
2028 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2030 // get UID from emul memory
2031 emlGetMemBt(receivedCmd
, 7, 1);
2032 _7BUID
= !(receivedCmd
[0] == 0x00);
2033 if (!_7BUID
) { // ---------- 4BUID
2036 emlGetMemBt(rUIDBCC1
, 0, 4);
2037 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2038 } else { // ---------- 7BUID
2042 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2043 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2044 emlGetMemBt(rUIDBCC2
, 3, 4);
2045 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2048 // -------------------------------------- test area
2050 // -------------------------------------- END test area
2051 // start mkseconds counter
2054 // We need to listen to the high-frequency, peak-detected path.
2055 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2058 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2061 if (MF_DBGLEVEL
>= 1) Dbprintf("Started. 7buid=%d", _7BUID
);
2062 // calibrate mkseconds counter
2067 if(BUTTON_PRESS()) {
2071 // find reader field
2072 // Vref = 3300mV, and an 10:1 voltage divider on the input
2073 // can measure voltages up to 33000 mV
2074 if (cardSTATE
== MFEMUL_NOFIELD
) {
2075 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2076 if (vHf
> MF_MINFIELDV
) {
2077 cardSTATE_TO_IDLE();
2082 if (cardSTATE
!= MFEMUL_NOFIELD
) {
2083 res
= EmGetCmd(receivedCmd
, &len
, 100); // (+ nextCycleTimeout)
2085 cardSTATE
= MFEMUL_NOFIELD
;
2092 nextCycleTimeout
= 0;
2094 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2096 if (len
!= 4 && cardSTATE
!= MFEMUL_NOFIELD
) { // len != 4 <---- speed up the code 4 authentication
2097 // REQ or WUP request in ANY state and WUP in HALTED state
2098 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2099 selTimer
= GetTickCount();
2100 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2101 cardSTATE
= MFEMUL_SELECT1
;
2103 // init crypto block
2106 crypto1_destroy(pcs
);
2111 switch (cardSTATE
) {
2112 case MFEMUL_NOFIELD
:{
2115 case MFEMUL_HALTED
:{
2121 case MFEMUL_SELECT1
:{
2123 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2124 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2130 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2132 EmSendCmd(rSAK
, sizeof(rSAK
));
2134 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2136 cuid
= bytes_to_num(rUIDBCC1
, 4);
2138 cardSTATE
= MFEMUL_WORK
;
2140 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2143 cardSTATE
= MFEMUL_SELECT2
;
2150 case MFEMUL_SELECT2
:{
2153 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2154 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2160 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2161 EmSendCmd(rSAK
, sizeof(rSAK
));
2163 cuid
= bytes_to_num(rUIDBCC2
, 4);
2164 cardSTATE
= MFEMUL_WORK
;
2166 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2170 // i guess there is a command). go into the work state.
2171 if (len
!= 4) break;
2172 cardSTATE
= MFEMUL_WORK
;
2178 rn_enc
= bytes_to_num(receivedCmd
, 4);
2179 cardRn
= rn_enc
^ crypto1_word(pcs
, rn_enc
, 1);
2180 cardRr
= bytes_to_num(&receivedCmd
[4], 4) ^ crypto1_word(pcs
, 0, 0);
2182 if (cardRr
!= prng_successor(nonce
, 64)){
2183 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr
, prng_successor(nonce
, 64));
2184 cardSTATE_TO_IDLE();
2187 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2188 num_to_bytes(ans
, 4, rAUTH_AT
);
2190 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2191 cardSTATE
= MFEMUL_AUTH2
;
2193 cardSTATE_TO_IDLE();
2195 if (cardSTATE
!= MFEMUL_AUTH2
) break;
2199 cardSTATE
= MFEMUL_WORK
;
2200 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2204 lbWORK
: if (len
== 0) break;
2206 if (cardAUTHKEY
== 0xff) {
2207 // first authentication
2208 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2209 authTimer
= GetTickCount();
2211 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2212 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2215 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2216 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2217 num_to_bytes(nonce
, 4, rAUTH_AT
);
2218 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2221 // last working revision
2222 // EmSendCmd14443aRaw(resp1, resp1Len, 0);
2223 // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
2225 cardSTATE
= MFEMUL_AUTH1
;
2226 nextCycleTimeout
= 10;
2231 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2233 // nested authentication
2234 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2235 authTimer
= GetTickCount();
2237 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2238 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2241 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2242 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2243 num_to_bytes(ans
, 4, rAUTH_AT
);
2244 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2247 cardSTATE
= MFEMUL_AUTH1
;
2248 nextCycleTimeout
= 10;
2253 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2254 // BUT... ACK --> NACK
2255 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2256 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2260 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2261 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2262 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2267 if (len
== 4 && receivedCmd
[0] == 0x30) {
2268 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2269 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2272 emlGetMem(response
, receivedCmd
[1], 1);
2273 AppendCrc14443a(response
, 16);
2274 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2275 EmSendCmdPar(response
, 18, par
);
2280 if (len
== 4 && receivedCmd
[0] == 0xA0) {
2281 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2282 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2285 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2286 nextCycleTimeout
= 50;
2287 cardSTATE
= MFEMUL_WRITEBL2
;
2288 cardWRBL
= receivedCmd
[1];
2292 // works with cardINTREG
2294 // increment, decrement, restore
2295 if (len
== 4 && (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2)) {
2296 if (receivedCmd
[1] >= 16 * 4 ||
2297 receivedCmd
[1] / 4 != cardAUTHSC
||
2298 emlCheckValBl(receivedCmd
[1])) {
2299 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2302 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2303 if (receivedCmd
[0] == 0xC1)
2304 cardSTATE
= MFEMUL_INTREG_INC
;
2305 if (receivedCmd
[0] == 0xC0)
2306 cardSTATE
= MFEMUL_INTREG_DEC
;
2307 if (receivedCmd
[0] == 0xC2)
2308 cardSTATE
= MFEMUL_INTREG_REST
;
2309 cardWRBL
= receivedCmd
[1];
2316 if (len
== 4 && receivedCmd
[0] == 0xB0) {
2317 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2318 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2322 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2323 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2325 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2331 if (len
== 4 && (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00)) {
2334 cardSTATE
= MFEMUL_HALTED
;
2335 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2339 // command not allowed
2341 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2348 case MFEMUL_WRITEBL2
:{
2350 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2351 emlSetMem(receivedCmd
, cardWRBL
, 1);
2352 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2353 cardSTATE
= MFEMUL_WORK
;
2356 cardSTATE_TO_IDLE();
2362 case MFEMUL_INTREG_INC
:{
2363 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2364 memcpy(&ans
, receivedCmd
, 4);
2365 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2366 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2367 cardSTATE_TO_IDLE();
2370 cardINTREG
= cardINTREG
+ ans
;
2371 cardSTATE
= MFEMUL_WORK
;
2374 case MFEMUL_INTREG_DEC
:{
2375 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2376 memcpy(&ans
, receivedCmd
, 4);
2377 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2378 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2379 cardSTATE_TO_IDLE();
2382 cardINTREG
= cardINTREG
- ans
;
2383 cardSTATE
= MFEMUL_WORK
;
2386 case MFEMUL_INTREG_REST
:{
2387 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2388 memcpy(&ans
, receivedCmd
, 4);
2389 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2390 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2391 cardSTATE_TO_IDLE();
2394 cardSTATE
= MFEMUL_WORK
;
2402 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2405 // add trace trailer
2406 memset(rAUTH_NT
, 0x44, 4);
2407 LogTrace(rAUTH_NT
, 4, 0, 0, TRUE
);
2409 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);