]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
removed redundant Dbprintfs from SnoopIso1443a (issue 25)
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22
23 static uint8_t *trace = (uint8_t *) BigBuf;
24 static int traceLen = 0;
25 static int rsamples = 0;
26 static int tracing = TRUE;
27 static uint32_t iso14a_timeout;
28
29 // CARD TO READER - manchester
30 // Sequence D: 11110000 modulation with subcarrier during first half
31 // Sequence E: 00001111 modulation with subcarrier during second half
32 // Sequence F: 00000000 no modulation with subcarrier
33 // READER TO CARD - miller
34 // Sequence X: 00001100 drop after half a period
35 // Sequence Y: 00000000 no drop
36 // Sequence Z: 11000000 drop at start
37 #define SEC_D 0xf0
38 #define SEC_E 0x0f
39 #define SEC_F 0x00
40 #define SEC_X 0x0c
41 #define SEC_Y 0x00
42 #define SEC_Z 0xc0
43
44 static const uint8_t OddByteParity[256] = {
45 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
49 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
61 };
62
63 uint8_t trigger = 0;
64 void iso14a_set_trigger(int enable) {
65 trigger = enable;
66 }
67
68 void iso14a_clear_tracelen(void) {
69 traceLen = 0;
70 }
71 void iso14a_set_tracing(int enable) {
72 tracing = enable;
73 }
74
75 //-----------------------------------------------------------------------------
76 // Generate the parity value for a byte sequence
77 //
78 //-----------------------------------------------------------------------------
79 byte_t oddparity (const byte_t bt)
80 {
81 return OddByteParity[bt];
82 }
83
84 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
85 {
86 int i;
87 uint32_t dwPar = 0;
88
89 // Generate the encrypted data
90 for (i = 0; i < iLen; i++) {
91 // Save the encrypted parity bit
92 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
93 }
94 return dwPar;
95 }
96
97 void AppendCrc14443a(uint8_t* data, int len)
98 {
99 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
100 }
101
102 int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
103 {
104 // Return when trace is full
105 if (traceLen >= TRACE_LENGTH) return FALSE;
106
107 // Trace the random, i'm curious
108 rsamples += iSamples;
109 trace[traceLen++] = ((rsamples >> 0) & 0xff);
110 trace[traceLen++] = ((rsamples >> 8) & 0xff);
111 trace[traceLen++] = ((rsamples >> 16) & 0xff);
112 trace[traceLen++] = ((rsamples >> 24) & 0xff);
113 if (!bReader) {
114 trace[traceLen - 1] |= 0x80;
115 }
116 trace[traceLen++] = ((dwParity >> 0) & 0xff);
117 trace[traceLen++] = ((dwParity >> 8) & 0xff);
118 trace[traceLen++] = ((dwParity >> 16) & 0xff);
119 trace[traceLen++] = ((dwParity >> 24) & 0xff);
120 trace[traceLen++] = iLen;
121 memcpy(trace + traceLen, btBytes, iLen);
122 traceLen += iLen;
123 return TRUE;
124 }
125
126 //-----------------------------------------------------------------------------
127 // The software UART that receives commands from the reader, and its state
128 // variables.
129 //-----------------------------------------------------------------------------
130 static struct {
131 enum {
132 STATE_UNSYNCD,
133 STATE_START_OF_COMMUNICATION,
134 STATE_MILLER_X,
135 STATE_MILLER_Y,
136 STATE_MILLER_Z,
137 STATE_ERROR_WAIT
138 } state;
139 uint16_t shiftReg;
140 int bitCnt;
141 int byteCnt;
142 int byteCntMax;
143 int posCnt;
144 int syncBit;
145 int parityBits;
146 int samples;
147 int highCnt;
148 int bitBuffer;
149 enum {
150 DROP_NONE,
151 DROP_FIRST_HALF,
152 DROP_SECOND_HALF
153 } drop;
154 uint8_t *output;
155 } Uart;
156
157 static RAMFUNC int MillerDecoding(int bit)
158 {
159 int error = 0;
160 int bitright;
161
162 if(!Uart.bitBuffer) {
163 Uart.bitBuffer = bit ^ 0xFF0;
164 return FALSE;
165 }
166 else {
167 Uart.bitBuffer <<= 4;
168 Uart.bitBuffer ^= bit;
169 }
170
171 int EOC = FALSE;
172
173 if(Uart.state != STATE_UNSYNCD) {
174 Uart.posCnt++;
175
176 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
177 bit = 0x00;
178 }
179 else {
180 bit = 0x01;
181 }
182 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
183 bitright = 0x00;
184 }
185 else {
186 bitright = 0x01;
187 }
188 if(bit != bitright) { bit = bitright; }
189
190 if(Uart.posCnt == 1) {
191 // measurement first half bitperiod
192 if(!bit) {
193 Uart.drop = DROP_FIRST_HALF;
194 }
195 }
196 else {
197 // measurement second half bitperiod
198 if(!bit & (Uart.drop == DROP_NONE)) {
199 Uart.drop = DROP_SECOND_HALF;
200 }
201 else if(!bit) {
202 // measured a drop in first and second half
203 // which should not be possible
204 Uart.state = STATE_ERROR_WAIT;
205 error = 0x01;
206 }
207
208 Uart.posCnt = 0;
209
210 switch(Uart.state) {
211 case STATE_START_OF_COMMUNICATION:
212 Uart.shiftReg = 0;
213 if(Uart.drop == DROP_SECOND_HALF) {
214 // error, should not happen in SOC
215 Uart.state = STATE_ERROR_WAIT;
216 error = 0x02;
217 }
218 else {
219 // correct SOC
220 Uart.state = STATE_MILLER_Z;
221 }
222 break;
223
224 case STATE_MILLER_Z:
225 Uart.bitCnt++;
226 Uart.shiftReg >>= 1;
227 if(Uart.drop == DROP_NONE) {
228 // logic '0' followed by sequence Y
229 // end of communication
230 Uart.state = STATE_UNSYNCD;
231 EOC = TRUE;
232 }
233 // if(Uart.drop == DROP_FIRST_HALF) {
234 // Uart.state = STATE_MILLER_Z; stay the same
235 // we see a logic '0' }
236 if(Uart.drop == DROP_SECOND_HALF) {
237 // we see a logic '1'
238 Uart.shiftReg |= 0x100;
239 Uart.state = STATE_MILLER_X;
240 }
241 break;
242
243 case STATE_MILLER_X:
244 Uart.shiftReg >>= 1;
245 if(Uart.drop == DROP_NONE) {
246 // sequence Y, we see a '0'
247 Uart.state = STATE_MILLER_Y;
248 Uart.bitCnt++;
249 }
250 if(Uart.drop == DROP_FIRST_HALF) {
251 // Would be STATE_MILLER_Z
252 // but Z does not follow X, so error
253 Uart.state = STATE_ERROR_WAIT;
254 error = 0x03;
255 }
256 if(Uart.drop == DROP_SECOND_HALF) {
257 // We see a '1' and stay in state X
258 Uart.shiftReg |= 0x100;
259 Uart.bitCnt++;
260 }
261 break;
262
263 case STATE_MILLER_Y:
264 Uart.bitCnt++;
265 Uart.shiftReg >>= 1;
266 if(Uart.drop == DROP_NONE) {
267 // logic '0' followed by sequence Y
268 // end of communication
269 Uart.state = STATE_UNSYNCD;
270 EOC = TRUE;
271 }
272 if(Uart.drop == DROP_FIRST_HALF) {
273 // we see a '0'
274 Uart.state = STATE_MILLER_Z;
275 }
276 if(Uart.drop == DROP_SECOND_HALF) {
277 // We see a '1' and go to state X
278 Uart.shiftReg |= 0x100;
279 Uart.state = STATE_MILLER_X;
280 }
281 break;
282
283 case STATE_ERROR_WAIT:
284 // That went wrong. Now wait for at least two bit periods
285 // and try to sync again
286 if(Uart.drop == DROP_NONE) {
287 Uart.highCnt = 6;
288 Uart.state = STATE_UNSYNCD;
289 }
290 break;
291
292 default:
293 Uart.state = STATE_UNSYNCD;
294 Uart.highCnt = 0;
295 break;
296 }
297
298 Uart.drop = DROP_NONE;
299
300 // should have received at least one whole byte...
301 if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
302 return TRUE;
303 }
304
305 if(Uart.bitCnt == 9) {
306 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
307 Uart.byteCnt++;
308
309 Uart.parityBits <<= 1;
310 Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
311
312 if(EOC) {
313 // when End of Communication received and
314 // all data bits processed..
315 return TRUE;
316 }
317 Uart.bitCnt = 0;
318 }
319
320 /*if(error) {
321 Uart.output[Uart.byteCnt] = 0xAA;
322 Uart.byteCnt++;
323 Uart.output[Uart.byteCnt] = error & 0xFF;
324 Uart.byteCnt++;
325 Uart.output[Uart.byteCnt] = 0xAA;
326 Uart.byteCnt++;
327 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
328 Uart.byteCnt++;
329 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
330 Uart.byteCnt++;
331 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
332 Uart.byteCnt++;
333 Uart.output[Uart.byteCnt] = 0xAA;
334 Uart.byteCnt++;
335 return TRUE;
336 }*/
337 }
338
339 }
340 else {
341 bit = Uart.bitBuffer & 0xf0;
342 bit >>= 4;
343 bit ^= 0x0F;
344 if(bit) {
345 // should have been high or at least (4 * 128) / fc
346 // according to ISO this should be at least (9 * 128 + 20) / fc
347 if(Uart.highCnt == 8) {
348 // we went low, so this could be start of communication
349 // it turns out to be safer to choose a less significant
350 // syncbit... so we check whether the neighbour also represents the drop
351 Uart.posCnt = 1; // apparently we are busy with our first half bit period
352 Uart.syncBit = bit & 8;
353 Uart.samples = 3;
354 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
355 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
356 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
357 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
358 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
359 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
360 Uart.syncBit = 8;
361
362 // the first half bit period is expected in next sample
363 Uart.posCnt = 0;
364 Uart.samples = 3;
365 }
366 }
367 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
368
369 Uart.syncBit <<= 4;
370 Uart.state = STATE_START_OF_COMMUNICATION;
371 Uart.drop = DROP_FIRST_HALF;
372 Uart.bitCnt = 0;
373 Uart.byteCnt = 0;
374 Uart.parityBits = 0;
375 error = 0;
376 }
377 else {
378 Uart.highCnt = 0;
379 }
380 }
381 else {
382 if(Uart.highCnt < 8) {
383 Uart.highCnt++;
384 }
385 }
386 }
387
388 return FALSE;
389 }
390
391 //=============================================================================
392 // ISO 14443 Type A - Manchester
393 //=============================================================================
394
395 static struct {
396 enum {
397 DEMOD_UNSYNCD,
398 DEMOD_START_OF_COMMUNICATION,
399 DEMOD_MANCHESTER_D,
400 DEMOD_MANCHESTER_E,
401 DEMOD_MANCHESTER_F,
402 DEMOD_ERROR_WAIT
403 } state;
404 int bitCount;
405 int posCount;
406 int syncBit;
407 int parityBits;
408 uint16_t shiftReg;
409 int buffer;
410 int buff;
411 int samples;
412 int len;
413 enum {
414 SUB_NONE,
415 SUB_FIRST_HALF,
416 SUB_SECOND_HALF
417 } sub;
418 uint8_t *output;
419 } Demod;
420
421 static RAMFUNC int ManchesterDecoding(int v)
422 {
423 int bit;
424 int modulation;
425 int error = 0;
426
427 if(!Demod.buff) {
428 Demod.buff = 1;
429 Demod.buffer = v;
430 return FALSE;
431 }
432 else {
433 bit = Demod.buffer;
434 Demod.buffer = v;
435 }
436
437 if(Demod.state==DEMOD_UNSYNCD) {
438 Demod.output[Demod.len] = 0xfa;
439 Demod.syncBit = 0;
440 //Demod.samples = 0;
441 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
442
443 if(bit & 0x08) {
444 Demod.syncBit = 0x08;
445 }
446
447 if(bit & 0x04) {
448 if(Demod.syncBit) {
449 bit <<= 4;
450 }
451 Demod.syncBit = 0x04;
452 }
453
454 if(bit & 0x02) {
455 if(Demod.syncBit) {
456 bit <<= 2;
457 }
458 Demod.syncBit = 0x02;
459 }
460
461 if(bit & 0x01 && Demod.syncBit) {
462 Demod.syncBit = 0x01;
463 }
464
465 if(Demod.syncBit) {
466 Demod.len = 0;
467 Demod.state = DEMOD_START_OF_COMMUNICATION;
468 Demod.sub = SUB_FIRST_HALF;
469 Demod.bitCount = 0;
470 Demod.shiftReg = 0;
471 Demod.parityBits = 0;
472 Demod.samples = 0;
473 if(Demod.posCount) {
474 if(trigger) LED_A_OFF();
475 switch(Demod.syncBit) {
476 case 0x08: Demod.samples = 3; break;
477 case 0x04: Demod.samples = 2; break;
478 case 0x02: Demod.samples = 1; break;
479 case 0x01: Demod.samples = 0; break;
480 }
481 }
482 error = 0;
483 }
484 }
485 else {
486 //modulation = bit & Demod.syncBit;
487 modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
488
489 Demod.samples += 4;
490
491 if(Demod.posCount==0) {
492 Demod.posCount = 1;
493 if(modulation) {
494 Demod.sub = SUB_FIRST_HALF;
495 }
496 else {
497 Demod.sub = SUB_NONE;
498 }
499 }
500 else {
501 Demod.posCount = 0;
502 if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
503 if(Demod.state!=DEMOD_ERROR_WAIT) {
504 Demod.state = DEMOD_ERROR_WAIT;
505 Demod.output[Demod.len] = 0xaa;
506 error = 0x01;
507 }
508 }
509 else if(modulation) {
510 Demod.sub = SUB_SECOND_HALF;
511 }
512
513 switch(Demod.state) {
514 case DEMOD_START_OF_COMMUNICATION:
515 if(Demod.sub == SUB_FIRST_HALF) {
516 Demod.state = DEMOD_MANCHESTER_D;
517 }
518 else {
519 Demod.output[Demod.len] = 0xab;
520 Demod.state = DEMOD_ERROR_WAIT;
521 error = 0x02;
522 }
523 break;
524
525 case DEMOD_MANCHESTER_D:
526 case DEMOD_MANCHESTER_E:
527 if(Demod.sub == SUB_FIRST_HALF) {
528 Demod.bitCount++;
529 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
530 Demod.state = DEMOD_MANCHESTER_D;
531 }
532 else if(Demod.sub == SUB_SECOND_HALF) {
533 Demod.bitCount++;
534 Demod.shiftReg >>= 1;
535 Demod.state = DEMOD_MANCHESTER_E;
536 }
537 else {
538 Demod.state = DEMOD_MANCHESTER_F;
539 }
540 break;
541
542 case DEMOD_MANCHESTER_F:
543 // Tag response does not need to be a complete byte!
544 if(Demod.len > 0 || Demod.bitCount > 0) {
545 if(Demod.bitCount > 0) {
546 Demod.shiftReg >>= (9 - Demod.bitCount);
547 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
548 Demod.len++;
549 // No parity bit, so just shift a 0
550 Demod.parityBits <<= 1;
551 }
552
553 Demod.state = DEMOD_UNSYNCD;
554 return TRUE;
555 }
556 else {
557 Demod.output[Demod.len] = 0xad;
558 Demod.state = DEMOD_ERROR_WAIT;
559 error = 0x03;
560 }
561 break;
562
563 case DEMOD_ERROR_WAIT:
564 Demod.state = DEMOD_UNSYNCD;
565 break;
566
567 default:
568 Demod.output[Demod.len] = 0xdd;
569 Demod.state = DEMOD_UNSYNCD;
570 break;
571 }
572
573 if(Demod.bitCount>=9) {
574 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
575 Demod.len++;
576
577 Demod.parityBits <<= 1;
578 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
579
580 Demod.bitCount = 0;
581 Demod.shiftReg = 0;
582 }
583
584 /*if(error) {
585 Demod.output[Demod.len] = 0xBB;
586 Demod.len++;
587 Demod.output[Demod.len] = error & 0xFF;
588 Demod.len++;
589 Demod.output[Demod.len] = 0xBB;
590 Demod.len++;
591 Demod.output[Demod.len] = bit & 0xFF;
592 Demod.len++;
593 Demod.output[Demod.len] = Demod.buffer & 0xFF;
594 Demod.len++;
595 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
596 Demod.len++;
597 Demod.output[Demod.len] = 0xBB;
598 Demod.len++;
599 return TRUE;
600 }*/
601
602 }
603
604 } // end (state != UNSYNCED)
605
606 return FALSE;
607 }
608
609 //=============================================================================
610 // Finally, a `sniffer' for ISO 14443 Type A
611 // Both sides of communication!
612 //=============================================================================
613
614 //-----------------------------------------------------------------------------
615 // Record the sequence of commands sent by the reader to the tag, with
616 // triggering so that we start recording at the point that the tag is moved
617 // near the reader.
618 //-----------------------------------------------------------------------------
619 void RAMFUNC SnoopIso14443a(void)
620 {
621 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
622 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
623 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
624 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
625 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
626
627 // We won't start recording the frames that we acquire until we trigger;
628 // a good trigger condition to get started is probably when we see a
629 // response from the tag.
630 int triggered = FALSE; // FALSE to wait first for card
631
632 // The command (reader -> tag) that we're receiving.
633 // The length of a received command will in most cases be no more than 18 bytes.
634 // So 32 should be enough!
635 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
636 // The response (tag -> reader) that we're receiving.
637 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
638
639 // As we receive stuff, we copy it from receivedCmd or receivedResponse
640 // into trace, along with its length and other annotations.
641 //uint8_t *trace = (uint8_t *)BigBuf;
642
643 traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
644
645 // The DMA buffer, used to stream samples from the FPGA
646 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
647 int lastRxCounter;
648 int8_t *upTo;
649 int smpl;
650 int maxBehindBy = 0;
651
652 // Count of samples received so far, so that we can include timing
653 // information in the trace buffer.
654 int samples = 0;
655 int rsamples = 0;
656
657 memset(trace, 0x44, RECV_CMD_OFFSET);
658
659 // Set up the demodulator for tag -> reader responses.
660 Demod.output = receivedResponse;
661 Demod.len = 0;
662 Demod.state = DEMOD_UNSYNCD;
663
664 // Setup for the DMA.
665 FpgaSetupSsc();
666 upTo = dmaBuf;
667 lastRxCounter = DMA_BUFFER_SIZE;
668 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
669
670 // And the reader -> tag commands
671 memset(&Uart, 0, sizeof(Uart));
672 Uart.output = receivedCmd;
673 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
674 Uart.state = STATE_UNSYNCD;
675
676 // And put the FPGA in the appropriate mode
677 // Signal field is off with the appropriate LED
678 LED_D_OFF();
679 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
680 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
681
682
683 // And now we loop, receiving samples.
684 for(;;) {
685 LED_A_ON();
686 WDT_HIT();
687 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
688 (DMA_BUFFER_SIZE-1);
689 if(behindBy > maxBehindBy) {
690 maxBehindBy = behindBy;
691 if(behindBy > 400) {
692 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
693 goto done;
694 }
695 }
696 if(behindBy < 1) continue;
697
698 LED_A_OFF();
699 smpl = upTo[0];
700 upTo++;
701 lastRxCounter -= 1;
702 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
703 upTo -= DMA_BUFFER_SIZE;
704 lastRxCounter += DMA_BUFFER_SIZE;
705 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
706 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
707 }
708
709 samples += 4;
710 if(MillerDecoding((smpl & 0xF0) >> 4)) {
711 rsamples = samples - Uart.samples;
712 LED_C_ON();
713 if(triggered) {
714 trace[traceLen++] = ((rsamples >> 0) & 0xff);
715 trace[traceLen++] = ((rsamples >> 8) & 0xff);
716 trace[traceLen++] = ((rsamples >> 16) & 0xff);
717 trace[traceLen++] = ((rsamples >> 24) & 0xff);
718 trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
719 trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
720 trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
721 trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
722 trace[traceLen++] = Uart.byteCnt;
723 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
724 traceLen += Uart.byteCnt;
725 if(traceLen > TRACE_LENGTH) break;
726 }
727 /* And ready to receive another command. */
728 Uart.state = STATE_UNSYNCD;
729 /* And also reset the demod code, which might have been */
730 /* false-triggered by the commands from the reader. */
731 Demod.state = DEMOD_UNSYNCD;
732 LED_B_OFF();
733 }
734
735 if(ManchesterDecoding(smpl & 0x0F)) {
736 rsamples = samples - Demod.samples;
737 LED_B_ON();
738
739 // timestamp, as a count of samples
740 trace[traceLen++] = ((rsamples >> 0) & 0xff);
741 trace[traceLen++] = ((rsamples >> 8) & 0xff);
742 trace[traceLen++] = ((rsamples >> 16) & 0xff);
743 trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
744 trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
745 trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
746 trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
747 trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
748 // length
749 trace[traceLen++] = Demod.len;
750 memcpy(trace+traceLen, receivedResponse, Demod.len);
751 traceLen += Demod.len;
752 if(traceLen > TRACE_LENGTH) break;
753
754 triggered = TRUE;
755
756 // And ready to receive another response.
757 memset(&Demod, 0, sizeof(Demod));
758 Demod.output = receivedResponse;
759 Demod.state = DEMOD_UNSYNCD;
760 LED_C_OFF();
761 }
762
763 if(BUTTON_PRESS()) {
764 DbpString("cancelled_a");
765 goto done;
766 }
767 }
768
769 DbpString("COMMAND FINISHED");
770
771 done:
772 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
773 Dbprintf("maxBehindBy=%x, Uart.state=%x, Uart.byteCnt=%x", maxBehindBy, Uart.state, Uart.byteCnt);
774 Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
775 LED_A_OFF();
776 LED_B_OFF();
777 LED_C_OFF();
778 LED_D_OFF();
779 }
780
781 //-----------------------------------------------------------------------------
782 // Prepare tag messages
783 //-----------------------------------------------------------------------------
784 static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
785 {
786 int i;
787
788 ToSendReset();
789
790 // Correction bit, might be removed when not needed
791 ToSendStuffBit(0);
792 ToSendStuffBit(0);
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(1); // 1
796 ToSendStuffBit(0);
797 ToSendStuffBit(0);
798 ToSendStuffBit(0);
799
800 // Send startbit
801 ToSend[++ToSendMax] = SEC_D;
802
803 for(i = 0; i < len; i++) {
804 int j;
805 uint8_t b = cmd[i];
806
807 // Data bits
808 for(j = 0; j < 8; j++) {
809 if(b & 1) {
810 ToSend[++ToSendMax] = SEC_D;
811 } else {
812 ToSend[++ToSendMax] = SEC_E;
813 }
814 b >>= 1;
815 }
816
817 // Get the parity bit
818 if ((dwParity >> i) & 0x01) {
819 ToSend[++ToSendMax] = SEC_D;
820 } else {
821 ToSend[++ToSendMax] = SEC_E;
822 }
823 }
824
825 // Send stopbit
826 ToSend[++ToSendMax] = SEC_F;
827
828 // Convert from last byte pos to length
829 ToSendMax++;
830 }
831
832 static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
833 CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
834 }
835
836 //-----------------------------------------------------------------------------
837 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
838 //-----------------------------------------------------------------------------
839 static void CodeStrangeAnswerAsTag()
840 {
841 int i;
842
843 ToSendReset();
844
845 // Correction bit, might be removed when not needed
846 ToSendStuffBit(0);
847 ToSendStuffBit(0);
848 ToSendStuffBit(0);
849 ToSendStuffBit(0);
850 ToSendStuffBit(1); // 1
851 ToSendStuffBit(0);
852 ToSendStuffBit(0);
853 ToSendStuffBit(0);
854
855 // Send startbit
856 ToSend[++ToSendMax] = SEC_D;
857
858 // 0
859 ToSend[++ToSendMax] = SEC_E;
860
861 // 0
862 ToSend[++ToSendMax] = SEC_E;
863
864 // 1
865 ToSend[++ToSendMax] = SEC_D;
866
867 // Send stopbit
868 ToSend[++ToSendMax] = SEC_F;
869
870 // Flush the buffer in FPGA!!
871 for(i = 0; i < 5; i++) {
872 ToSend[++ToSendMax] = SEC_F;
873 }
874
875 // Convert from last byte pos to length
876 ToSendMax++;
877 }
878
879 static void Code4bitAnswerAsTag(uint8_t cmd)
880 {
881 int i;
882
883 ToSendReset();
884
885 // Correction bit, might be removed when not needed
886 ToSendStuffBit(0);
887 ToSendStuffBit(0);
888 ToSendStuffBit(0);
889 ToSendStuffBit(0);
890 ToSendStuffBit(1); // 1
891 ToSendStuffBit(0);
892 ToSendStuffBit(0);
893 ToSendStuffBit(0);
894
895 // Send startbit
896 ToSend[++ToSendMax] = SEC_D;
897
898 uint8_t b = cmd;
899 for(i = 0; i < 4; i++) {
900 if(b & 1) {
901 ToSend[++ToSendMax] = SEC_D;
902 } else {
903 ToSend[++ToSendMax] = SEC_E;
904 }
905 b >>= 1;
906 }
907
908 // Send stopbit
909 ToSend[++ToSendMax] = SEC_F;
910
911 // Flush the buffer in FPGA!!
912 for(i = 0; i < 5; i++) {
913 ToSend[++ToSendMax] = SEC_F;
914 }
915
916 // Convert from last byte pos to length
917 ToSendMax++;
918 }
919
920 //-----------------------------------------------------------------------------
921 // Wait for commands from reader
922 // Stop when button is pressed
923 // Or return TRUE when command is captured
924 //-----------------------------------------------------------------------------
925 static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
926 {
927 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
928 // only, since we are receiving, not transmitting).
929 // Signal field is off with the appropriate LED
930 LED_D_OFF();
931 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
932
933 // Now run a `software UART' on the stream of incoming samples.
934 Uart.output = received;
935 Uart.byteCntMax = maxLen;
936 Uart.state = STATE_UNSYNCD;
937
938 for(;;) {
939 WDT_HIT();
940
941 if(BUTTON_PRESS()) return FALSE;
942
943 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
944 AT91C_BASE_SSC->SSC_THR = 0x00;
945 }
946 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
947 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
948 if(MillerDecoding((b & 0xf0) >> 4)) {
949 *len = Uart.byteCnt;
950 return TRUE;
951 }
952 if(MillerDecoding(b & 0x0f)) {
953 *len = Uart.byteCnt;
954 return TRUE;
955 }
956 }
957 }
958 }
959 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
960
961 //-----------------------------------------------------------------------------
962 // Main loop of simulated tag: receive commands from reader, decide what
963 // response to send, and send it.
964 //-----------------------------------------------------------------------------
965 void SimulateIso14443aTag(int tagType, int TagUid)
966 {
967 // This function contains the tag emulation
968
969 // Prepare protocol messages
970 // static const uint8_t cmd1[] = { 0x26 };
971 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
972 //
973 static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
974 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
975
976 // UID response
977 // static const uint8_t cmd2[] = { 0x93, 0x20 };
978 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
979
980 // my desfire
981 static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
982
983
984 // When reader selects us during cascade1 it will send cmd3
985 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
986 uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
987 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
988
989 // send cascade2 2nd half of UID
990 static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
991 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
992
993 // When reader selects us during cascade2 it will send cmd3a
994 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
995 uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
996 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
997
998 static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
999
1000 uint8_t *resp;
1001 int respLen;
1002
1003 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
1004 // This will need
1005 // 144 data bits (18 * 8)
1006 // 18 parity bits
1007 // 2 Start and stop
1008 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
1009 // 1 just for the case
1010 // ----------- +
1011 // 166
1012 //
1013 // 166 bytes, since every bit that needs to be send costs us a byte
1014 //
1015
1016 // Respond with card type
1017 uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
1018 int resp1Len;
1019
1020 // Anticollision cascade1 - respond with uid
1021 uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
1022 int resp2Len;
1023
1024 // Anticollision cascade2 - respond with 2nd half of uid if asked
1025 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1026 uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
1027 int resp2aLen;
1028
1029 // Acknowledge select - cascade 1
1030 uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
1031 int resp3Len;
1032
1033 // Acknowledge select - cascade 2
1034 uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
1035 int resp3aLen;
1036
1037 // Response to a read request - not implemented atm
1038 uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
1039 int resp4Len;
1040
1041 // Authenticate response - nonce
1042 uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
1043 int resp5Len;
1044
1045 uint8_t *receivedCmd = (uint8_t *)BigBuf;
1046 int len;
1047
1048 int i;
1049 int u;
1050 uint8_t b;
1051
1052 // To control where we are in the protocol
1053 int order = 0;
1054 int lastorder;
1055
1056 // Just to allow some checks
1057 int happened = 0;
1058 int happened2 = 0;
1059
1060 int cmdsRecvd = 0;
1061
1062 int fdt_indicator;
1063
1064 memset(receivedCmd, 0x44, 400);
1065
1066 // Prepare the responses of the anticollision phase
1067 // there will be not enough time to do this at the moment the reader sends it REQA
1068
1069 // Answer to request
1070 CodeIso14443aAsTag(response1, sizeof(response1));
1071 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1072
1073 // Send our UID (cascade 1)
1074 CodeIso14443aAsTag(response2, sizeof(response2));
1075 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1076
1077 // Answer to select (cascade1)
1078 CodeIso14443aAsTag(response3, sizeof(response3));
1079 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1080
1081 // Send the cascade 2 2nd part of the uid
1082 CodeIso14443aAsTag(response2a, sizeof(response2a));
1083 memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
1084
1085 // Answer to select (cascade 2)
1086 CodeIso14443aAsTag(response3a, sizeof(response3a));
1087 memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
1088
1089 // Strange answer is an example of rare message size (3 bits)
1090 CodeStrangeAnswerAsTag();
1091 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1092
1093 // Authentication answer (random nonce)
1094 CodeIso14443aAsTag(response5, sizeof(response5));
1095 memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
1096
1097 // We need to listen to the high-frequency, peak-detected path.
1098 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1099 FpgaSetupSsc();
1100
1101 cmdsRecvd = 0;
1102
1103 LED_A_ON();
1104 for(;;) {
1105
1106 if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
1107 DbpString("button press");
1108 break;
1109 }
1110 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1111 // Okay, look at the command now.
1112 lastorder = order;
1113 i = 1; // first byte transmitted
1114 if(receivedCmd[0] == 0x26) {
1115 // Received a REQUEST
1116 resp = resp1; respLen = resp1Len; order = 1;
1117 //DbpString("Hello request from reader:");
1118 } else if(receivedCmd[0] == 0x52) {
1119 // Received a WAKEUP
1120 resp = resp1; respLen = resp1Len; order = 6;
1121 // //DbpString("Wakeup request from reader:");
1122
1123 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
1124 // Received request for UID (cascade 1)
1125 resp = resp2; respLen = resp2Len; order = 2;
1126 // DbpString("UID (cascade 1) request from reader:");
1127 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1128
1129
1130 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
1131 // Received request for UID (cascade 2)
1132 resp = resp2a; respLen = resp2aLen; order = 20;
1133 // DbpString("UID (cascade 2) request from reader:");
1134 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1135
1136
1137 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
1138 // Received a SELECT
1139 resp = resp3; respLen = resp3Len; order = 3;
1140 // DbpString("Select (cascade 1) request from reader:");
1141 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1142
1143
1144 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
1145 // Received a SELECT
1146 resp = resp3a; respLen = resp3aLen; order = 30;
1147 // DbpString("Select (cascade 2) request from reader:");
1148 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1149
1150
1151 } else if(receivedCmd[0] == 0x30) {
1152 // Received a READ
1153 resp = resp4; respLen = resp4Len; order = 4; // Do nothing
1154 Dbprintf("Read request from reader: %x %x %x",
1155 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1156
1157
1158 } else if(receivedCmd[0] == 0x50) {
1159 // Received a HALT
1160 resp = resp1; respLen = 0; order = 5; // Do nothing
1161 DbpString("Reader requested we HALT!:");
1162
1163 } else if(receivedCmd[0] == 0x60) {
1164 // Received an authentication request
1165 resp = resp5; respLen = resp5Len; order = 7;
1166 Dbprintf("Authenticate request from reader: %x %x %x",
1167 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1168
1169 } else if(receivedCmd[0] == 0xE0) {
1170 // Received a RATS request
1171 resp = resp1; respLen = 0;order = 70;
1172 Dbprintf("RATS request from reader: %x %x %x",
1173 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1174 } else {
1175 // Never seen this command before
1176 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1177 len,
1178 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1179 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1180 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1181 // Do not respond
1182 resp = resp1; respLen = 0; order = 0;
1183 }
1184
1185 // Count number of wakeups received after a halt
1186 if(order == 6 && lastorder == 5) { happened++; }
1187
1188 // Count number of other messages after a halt
1189 if(order != 6 && lastorder == 5) { happened2++; }
1190
1191 // Look at last parity bit to determine timing of answer
1192 if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
1193 // 1236, so correction bit needed
1194 i = 0;
1195 }
1196
1197 memset(receivedCmd, 0x44, 32);
1198
1199 if(cmdsRecvd > 999) {
1200 DbpString("1000 commands later...");
1201 break;
1202 }
1203 else {
1204 cmdsRecvd++;
1205 }
1206
1207 if(respLen <= 0) continue;
1208 //----------------------------
1209 u = 0;
1210 b = 0x00;
1211 fdt_indicator = FALSE;
1212
1213 EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
1214 /* // Modulate Manchester
1215 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1216 AT91C_BASE_SSC->SSC_THR = 0x00;
1217 FpgaSetupSsc();
1218
1219 // ### Transmit the response ###
1220 u = 0;
1221 b = 0x00;
1222 fdt_indicator = FALSE;
1223 for(;;) {
1224 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1225 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1226 (void)b;
1227 }
1228 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1229 if(i > respLen) {
1230 b = 0x00;
1231 u++;
1232 } else {
1233 b = resp[i];
1234 i++;
1235 }
1236 AT91C_BASE_SSC->SSC_THR = b;
1237
1238 if(u > 4) {
1239 break;
1240 }
1241 }
1242 if(BUTTON_PRESS()) {
1243 break;
1244 }
1245 }
1246 */
1247 }
1248
1249 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1250 LED_A_OFF();
1251 }
1252
1253 //-----------------------------------------------------------------------------
1254 // Transmit the command (to the tag) that was placed in ToSend[].
1255 //-----------------------------------------------------------------------------
1256 static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
1257 {
1258 int c;
1259
1260 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1261
1262 if (wait)
1263 if(*wait < 10)
1264 *wait = 10;
1265
1266 for(c = 0; c < *wait;) {
1267 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1268 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1269 c++;
1270 }
1271 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1272 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1273 (void)r;
1274 }
1275 WDT_HIT();
1276 }
1277
1278 c = 0;
1279 for(;;) {
1280 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1281 AT91C_BASE_SSC->SSC_THR = cmd[c];
1282 c++;
1283 if(c >= len) {
1284 break;
1285 }
1286 }
1287 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1288 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1289 (void)r;
1290 }
1291 WDT_HIT();
1292 }
1293 if (samples) *samples = (c + *wait) << 3;
1294 }
1295
1296 //-----------------------------------------------------------------------------
1297 // Code a 7-bit command without parity bit
1298 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1299 //-----------------------------------------------------------------------------
1300 void ShortFrameFromReader(const uint8_t bt)
1301 {
1302 int j;
1303 int last;
1304 uint8_t b;
1305
1306 ToSendReset();
1307
1308 // Start of Communication (Seq. Z)
1309 ToSend[++ToSendMax] = SEC_Z;
1310 last = 0;
1311
1312 b = bt;
1313 for(j = 0; j < 7; j++) {
1314 if(b & 1) {
1315 // Sequence X
1316 ToSend[++ToSendMax] = SEC_X;
1317 last = 1;
1318 } else {
1319 if(last == 0) {
1320 // Sequence Z
1321 ToSend[++ToSendMax] = SEC_Z;
1322 }
1323 else {
1324 // Sequence Y
1325 ToSend[++ToSendMax] = SEC_Y;
1326 last = 0;
1327 }
1328 }
1329 b >>= 1;
1330 }
1331
1332 // End of Communication
1333 if(last == 0) {
1334 // Sequence Z
1335 ToSend[++ToSendMax] = SEC_Z;
1336 }
1337 else {
1338 // Sequence Y
1339 ToSend[++ToSendMax] = SEC_Y;
1340 last = 0;
1341 }
1342 // Sequence Y
1343 ToSend[++ToSendMax] = SEC_Y;
1344
1345 // Just to be sure!
1346 ToSend[++ToSendMax] = SEC_Y;
1347 ToSend[++ToSendMax] = SEC_Y;
1348 ToSend[++ToSendMax] = SEC_Y;
1349
1350 // Convert from last character reference to length
1351 ToSendMax++;
1352 }
1353
1354 //-----------------------------------------------------------------------------
1355 // Prepare reader command to send to FPGA
1356 //
1357 //-----------------------------------------------------------------------------
1358 void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1359 {
1360 int i, j;
1361 int last;
1362 uint8_t b;
1363
1364 ToSendReset();
1365
1366 // Start of Communication (Seq. Z)
1367 ToSend[++ToSendMax] = SEC_Z;
1368 last = 0;
1369
1370 // Generate send structure for the data bits
1371 for (i = 0; i < len; i++) {
1372 // Get the current byte to send
1373 b = cmd[i];
1374
1375 for (j = 0; j < 8; j++) {
1376 if (b & 1) {
1377 // Sequence X
1378 ToSend[++ToSendMax] = SEC_X;
1379 last = 1;
1380 } else {
1381 if (last == 0) {
1382 // Sequence Z
1383 ToSend[++ToSendMax] = SEC_Z;
1384 } else {
1385 // Sequence Y
1386 ToSend[++ToSendMax] = SEC_Y;
1387 last = 0;
1388 }
1389 }
1390 b >>= 1;
1391 }
1392
1393 // Get the parity bit
1394 if ((dwParity >> i) & 0x01) {
1395 // Sequence X
1396 ToSend[++ToSendMax] = SEC_X;
1397 last = 1;
1398 } else {
1399 if (last == 0) {
1400 // Sequence Z
1401 ToSend[++ToSendMax] = SEC_Z;
1402 } else {
1403 // Sequence Y
1404 ToSend[++ToSendMax] = SEC_Y;
1405 last = 0;
1406 }
1407 }
1408 }
1409
1410 // End of Communication
1411 if (last == 0) {
1412 // Sequence Z
1413 ToSend[++ToSendMax] = SEC_Z;
1414 } else {
1415 // Sequence Y
1416 ToSend[++ToSendMax] = SEC_Y;
1417 last = 0;
1418 }
1419 // Sequence Y
1420 ToSend[++ToSendMax] = SEC_Y;
1421
1422 // Just to be sure!
1423 ToSend[++ToSendMax] = SEC_Y;
1424 ToSend[++ToSendMax] = SEC_Y;
1425 ToSend[++ToSendMax] = SEC_Y;
1426
1427 // Convert from last character reference to length
1428 ToSendMax++;
1429 }
1430
1431 //-----------------------------------------------------------------------------
1432 // Wait for commands from reader
1433 // Stop when button is pressed (return 1) or field was gone (return 2)
1434 // Or return 0 when command is captured
1435 //-----------------------------------------------------------------------------
1436 static int EmGetCmd(uint8_t *received, int *len, int maxLen)
1437 {
1438 *len = 0;
1439
1440 uint32_t timer = 0, vtime = 0;
1441 int analogCnt = 0;
1442 int analogAVG = 0;
1443
1444 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1445 // only, since we are receiving, not transmitting).
1446 // Signal field is off with the appropriate LED
1447 LED_D_OFF();
1448 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1449
1450 // Set ADC to read field strength
1451 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1452 AT91C_BASE_ADC->ADC_MR =
1453 ADC_MODE_PRESCALE(32) |
1454 ADC_MODE_STARTUP_TIME(16) |
1455 ADC_MODE_SAMPLE_HOLD_TIME(8);
1456 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1457 // start ADC
1458 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1459
1460 // Now run a 'software UART' on the stream of incoming samples.
1461 Uart.output = received;
1462 Uart.byteCntMax = maxLen;
1463 Uart.state = STATE_UNSYNCD;
1464
1465 for(;;) {
1466 WDT_HIT();
1467
1468 if (BUTTON_PRESS()) return 1;
1469
1470 // test if the field exists
1471 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1472 analogCnt++;
1473 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1474 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1475 if (analogCnt >= 32) {
1476 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1477 vtime = GetTickCount();
1478 if (!timer) timer = vtime;
1479 // 50ms no field --> card to idle state
1480 if (vtime - timer > 50) return 2;
1481 } else
1482 if (timer) timer = 0;
1483 analogCnt = 0;
1484 analogAVG = 0;
1485 }
1486 }
1487 // transmit none
1488 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1489 AT91C_BASE_SSC->SSC_THR = 0x00;
1490 }
1491 // receive and test the miller decoding
1492 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1493 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1494 if(MillerDecoding((b & 0xf0) >> 4)) {
1495 *len = Uart.byteCnt;
1496 if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
1497 return 0;
1498 }
1499 if(MillerDecoding(b & 0x0f)) {
1500 *len = Uart.byteCnt;
1501 if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
1502 return 0;
1503 }
1504 }
1505 }
1506 }
1507
1508 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
1509 {
1510 int i, u = 0;
1511 uint8_t b = 0;
1512
1513 // Modulate Manchester
1514 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1515 AT91C_BASE_SSC->SSC_THR = 0x00;
1516 FpgaSetupSsc();
1517
1518 // include correction bit
1519 i = 1;
1520 if((Uart.parityBits & 0x01) || correctionNeeded) {
1521 // 1236, so correction bit needed
1522 i = 0;
1523 }
1524
1525 // send cycle
1526 for(;;) {
1527 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1528 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1529 (void)b;
1530 }
1531 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1532 if(i > respLen) {
1533 b = 0xff; // was 0x00
1534 u++;
1535 } else {
1536 b = resp[i];
1537 i++;
1538 }
1539 AT91C_BASE_SSC->SSC_THR = b;
1540
1541 if(u > 4) break;
1542 }
1543 if(BUTTON_PRESS()) {
1544 break;
1545 }
1546 }
1547
1548 return 0;
1549 }
1550
1551 int EmSend4bitEx(uint8_t resp, int correctionNeeded){
1552 Code4bitAnswerAsTag(resp);
1553 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1554 if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE);
1555 return res;
1556 }
1557
1558 int EmSend4bit(uint8_t resp){
1559 return EmSend4bitEx(resp, 0);
1560 }
1561
1562 int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){
1563 CodeIso14443aAsTagPar(resp, respLen, par);
1564 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1565 if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE);
1566 return res;
1567 }
1568
1569 int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
1570 return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
1571 }
1572
1573 int EmSendCmd(uint8_t *resp, int respLen){
1574 return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen));
1575 }
1576
1577 int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
1578 return EmSendCmdExPar(resp, respLen, 0, par);
1579 }
1580
1581 //-----------------------------------------------------------------------------
1582 // Wait a certain time for tag response
1583 // If a response is captured return TRUE
1584 // If it takes to long return FALSE
1585 //-----------------------------------------------------------------------------
1586 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1587 {
1588 // buffer needs to be 512 bytes
1589 int c;
1590
1591 // Set FPGA mode to "reader listen mode", no modulation (listen
1592 // only, since we are receiving, not transmitting).
1593 // Signal field is on with the appropriate LED
1594 LED_D_ON();
1595 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1596
1597 // Now get the answer from the card
1598 Demod.output = receivedResponse;
1599 Demod.len = 0;
1600 Demod.state = DEMOD_UNSYNCD;
1601
1602 uint8_t b;
1603 if (elapsed) *elapsed = 0;
1604
1605 c = 0;
1606 for(;;) {
1607 WDT_HIT();
1608
1609 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1610 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1611 if (elapsed) (*elapsed)++;
1612 }
1613 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1614 if(c < iso14a_timeout) { c++; } else { return FALSE; }
1615 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1616 if(ManchesterDecoding((b>>4) & 0xf)) {
1617 *samples = ((c - 1) << 3) + 4;
1618 return TRUE;
1619 }
1620 if(ManchesterDecoding(b & 0x0f)) {
1621 *samples = c << 3;
1622 return TRUE;
1623 }
1624 }
1625 }
1626 }
1627
1628 void ReaderTransmitShort(const uint8_t* bt)
1629 {
1630 int wait = 0;
1631 int samples = 0;
1632
1633 ShortFrameFromReader(*bt);
1634
1635 // Select the card
1636 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1637
1638 // Store reader command in buffer
1639 if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
1640 }
1641
1642 void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
1643 {
1644 int wait = 0;
1645 int samples = 0;
1646
1647 // This is tied to other size changes
1648 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1649 CodeIso14443aAsReaderPar(frame,len,par);
1650
1651 // Select the card
1652 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1653 if(trigger)
1654 LED_A_ON();
1655
1656 // Store reader command in buffer
1657 if (tracing) LogTrace(frame,len,0,par,TRUE);
1658 }
1659
1660
1661 void ReaderTransmit(uint8_t* frame, int len)
1662 {
1663 // Generate parity and redirect
1664 ReaderTransmitPar(frame,len,GetParity(frame,len));
1665 }
1666
1667 int ReaderReceive(uint8_t* receivedAnswer)
1668 {
1669 int samples = 0;
1670 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1671 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1672 if(samples == 0) return FALSE;
1673 return Demod.len;
1674 }
1675
1676 int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
1677 {
1678 int samples = 0;
1679 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1680 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1681 *parptr = Demod.parityBits;
1682 if(samples == 0) return FALSE;
1683 return Demod.len;
1684 }
1685
1686 /* performs iso14443a anticolision procedure
1687 * fills the uid pointer unless NULL
1688 * fills resp_data unless NULL */
1689 int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) {
1690 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1691 uint8_t sel_all[] = { 0x93,0x20 };
1692 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1693 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1694
1695 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1696
1697 uint8_t sak = 0x04; // cascade uid
1698 int cascade_level = 0;
1699
1700 int len;
1701
1702 // clear uid
1703 memset(uid_ptr, 0, 8);
1704
1705 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1706 ReaderTransmitShort(wupa);
1707 // Receive the ATQA
1708 if(!ReaderReceive(resp)) return 0;
1709
1710 if(resp_data)
1711 memcpy(resp_data->atqa, resp, 2);
1712
1713 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1714 // which case we need to make a cascade 2 request and select - this is a long UID
1715 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1716 for(; sak & 0x04; cascade_level++)
1717 {
1718 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1719 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1720
1721 // SELECT_ALL
1722 ReaderTransmit(sel_all,sizeof(sel_all));
1723 if (!ReaderReceive(resp)) return 0;
1724 if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4);
1725
1726 // calculate crypto UID
1727 if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4);
1728
1729 // Construct SELECT UID command
1730 memcpy(sel_uid+2,resp,5);
1731 AppendCrc14443a(sel_uid,7);
1732 ReaderTransmit(sel_uid,sizeof(sel_uid));
1733
1734 // Receive the SAK
1735 if (!ReaderReceive(resp)) return 0;
1736 sak = resp[0];
1737 }
1738 if(resp_data) {
1739 resp_data->sak = sak;
1740 resp_data->ats_len = 0;
1741 }
1742 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1743 if (uid_ptr[0] == 0x88) {
1744 memcpy(uid_ptr, uid_ptr + 1, 7);
1745 uid_ptr[7] = 0;
1746 }
1747
1748 if( (sak & 0x20) == 0)
1749 return 2; // non iso14443a compliant tag
1750
1751 // Request for answer to select
1752 if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1753 AppendCrc14443a(rats, 2);
1754 ReaderTransmit(rats, sizeof(rats));
1755
1756 if (!(len = ReaderReceive(resp))) return 0;
1757
1758 memcpy(resp_data->ats, resp, sizeof(resp_data->ats));
1759 resp_data->ats_len = len;
1760 }
1761
1762 return 1;
1763 }
1764
1765 void iso14443a_setup() {
1766 // Setup SSC
1767 FpgaSetupSsc();
1768 // Start from off (no field generated)
1769 // Signal field is off with the appropriate LED
1770 LED_D_OFF();
1771 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1772 SpinDelay(200);
1773
1774 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1775
1776 // Now give it time to spin up.
1777 // Signal field is on with the appropriate LED
1778 LED_D_ON();
1779 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1780 SpinDelay(200);
1781
1782 iso14a_timeout = 2048; //default
1783 }
1784
1785 int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1786 uint8_t real_cmd[cmd_len+4];
1787 real_cmd[0] = 0x0a; //I-Block
1788 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1789 memcpy(real_cmd+2, cmd, cmd_len);
1790 AppendCrc14443a(real_cmd,cmd_len+2);
1791
1792 ReaderTransmit(real_cmd, cmd_len+4);
1793 size_t len = ReaderReceive(data);
1794 if(!len)
1795 return -1; //DATA LINK ERROR
1796
1797 return len;
1798 }
1799
1800
1801 //-----------------------------------------------------------------------------
1802 // Read an ISO 14443a tag. Send out commands and store answers.
1803 //
1804 //-----------------------------------------------------------------------------
1805 void ReaderIso14443a(UsbCommand * c, UsbCommand * ack)
1806 {
1807 iso14a_command_t param = c->arg[0];
1808 uint8_t * cmd = c->d.asBytes;
1809 size_t len = c->arg[1];
1810
1811 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1);
1812
1813 if(param & ISO14A_CONNECT) {
1814 iso14443a_setup();
1815 ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL);
1816 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1817 }
1818
1819 if(param & ISO14A_SET_TIMEOUT) {
1820 iso14a_timeout = c->arg[2];
1821 }
1822
1823 if(param & ISO14A_SET_TIMEOUT) {
1824 iso14a_timeout = c->arg[2];
1825 }
1826
1827 if(param & ISO14A_APDU) {
1828 ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes);
1829 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1830 }
1831
1832 if(param & ISO14A_RAW) {
1833 if(param & ISO14A_APPEND_CRC) {
1834 AppendCrc14443a(cmd,len);
1835 len += 2;
1836 }
1837 ReaderTransmit(cmd,len);
1838 ack->arg[0] = ReaderReceive(ack->d.asBytes);
1839 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1840 }
1841
1842 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0);
1843
1844 if(param & ISO14A_NO_DISCONNECT)
1845 return;
1846
1847 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1848 LEDsoff();
1849 }
1850 //-----------------------------------------------------------------------------
1851 // Read an ISO 14443a tag. Send out commands and store answers.
1852 //
1853 //-----------------------------------------------------------------------------
1854 void ReaderMifare(uint32_t parameter)
1855 {
1856 // Mifare AUTH
1857 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1858 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1859
1860 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1861 traceLen = 0;
1862 tracing = false;
1863
1864 iso14443a_setup();
1865
1866 LED_A_ON();
1867 LED_B_OFF();
1868 LED_C_OFF();
1869
1870 byte_t nt_diff = 0;
1871 LED_A_OFF();
1872 byte_t par = 0;
1873 byte_t par_mask = 0xff;
1874 byte_t par_low = 0;
1875 int led_on = TRUE;
1876 uint8_t uid[8];
1877 uint32_t cuid;
1878
1879 tracing = FALSE;
1880 byte_t nt[4] = {0,0,0,0};
1881 byte_t nt_attacked[4], nt_noattack[4];
1882 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
1883 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
1884 num_to_bytes(parameter, 4, nt_noattack);
1885 int isOK = 0, isNULL = 0;
1886
1887 while(TRUE)
1888 {
1889 LED_C_ON();
1890 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1891 SpinDelay(200);
1892 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1893 LED_C_OFF();
1894
1895 // Test if the action was cancelled
1896 if(BUTTON_PRESS()) {
1897 break;
1898 }
1899
1900 if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
1901
1902 // Transmit MIFARE_CLASSIC_AUTH
1903 ReaderTransmit(mf_auth, sizeof(mf_auth));
1904
1905 // Receive the (16 bit) "random" nonce
1906 if (!ReaderReceive(receivedAnswer)) continue;
1907 memcpy(nt, receivedAnswer, 4);
1908
1909 // Transmit reader nonce and reader answer
1910 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par);
1911
1912 // Receive 4 bit answer
1913 if (ReaderReceive(receivedAnswer))
1914 {
1915 if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue;
1916
1917 isNULL = (nt_attacked[0] == 0) && (nt_attacked[1] == 0) && (nt_attacked[2] == 0) && (nt_attacked[3] == 0);
1918 if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue;
1919
1920 if (nt_diff == 0)
1921 {
1922 LED_A_ON();
1923 memcpy(nt_attacked, nt, 4);
1924 par_mask = 0xf8;
1925 par_low = par & 0x07;
1926 }
1927
1928 led_on = !led_on;
1929 if(led_on) LED_B_ON(); else LED_B_OFF();
1930 par_list[nt_diff] = par;
1931 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
1932
1933 // Test if the information is complete
1934 if (nt_diff == 0x07) {
1935 isOK = 1;
1936 break;
1937 }
1938
1939 nt_diff = (nt_diff + 1) & 0x07;
1940 mf_nr_ar[3] = nt_diff << 5;
1941 par = par_low;
1942 } else {
1943 if (nt_diff == 0)
1944 {
1945 par++;
1946 } else {
1947 par = (((par >> 3) + 1) << 3) | par_low;
1948 }
1949 }
1950 }
1951
1952 LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE);
1953 LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
1954 LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
1955
1956 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1957 memcpy(ack.d.asBytes + 0, uid, 4);
1958 memcpy(ack.d.asBytes + 4, nt, 4);
1959 memcpy(ack.d.asBytes + 8, par_list, 8);
1960 memcpy(ack.d.asBytes + 16, ks_list, 8);
1961
1962 LED_B_ON();
1963 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1964 LED_B_OFF();
1965
1966 // Thats it...
1967 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1968 LEDsoff();
1969 tracing = TRUE;
1970
1971 if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED");
1972 }
1973
1974
1975 //-----------------------------------------------------------------------------
1976 // MIFARE 1K simulate.
1977 //
1978 //-----------------------------------------------------------------------------
1979 void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1980 {
1981 int cardSTATE = MFEMUL_NOFIELD;
1982 int _7BUID = 0;
1983 int vHf = 0; // in mV
1984 int nextCycleTimeout = 0;
1985 int res;
1986 // uint32_t timer = 0;
1987 uint32_t selTimer = 0;
1988 uint32_t authTimer = 0;
1989 uint32_t par = 0;
1990 int len = 0;
1991 uint8_t cardWRBL = 0;
1992 uint8_t cardAUTHSC = 0;
1993 uint8_t cardAUTHKEY = 0xff; // no authentication
1994 uint32_t cardRn = 0;
1995 uint32_t cardRr = 0;
1996 uint32_t cuid = 0;
1997 uint32_t rn_enc = 0;
1998 uint32_t ans = 0;
1999 uint32_t cardINTREG = 0;
2000 uint8_t cardINTBLOCK = 0;
2001 struct Crypto1State mpcs = {0, 0};
2002 struct Crypto1State *pcs;
2003 pcs = &mpcs;
2004
2005 uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
2006 uint8_t *response = eml_get_bigbufptr_sendbuf();
2007
2008 static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2009
2010 static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2011 static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2012
2013 static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2014 static uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2015
2016 static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2017 // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
2018 static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2019
2020 // clear trace
2021 traceLen = 0;
2022 tracing = true;
2023
2024 // Authenticate response - nonce
2025 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2026
2027 // get UID from emul memory
2028 emlGetMemBt(receivedCmd, 7, 1);
2029 _7BUID = !(receivedCmd[0] == 0x00);
2030 if (!_7BUID) { // ---------- 4BUID
2031 rATQA[0] = 0x04;
2032
2033 emlGetMemBt(rUIDBCC1, 0, 4);
2034 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2035 } else { // ---------- 7BUID
2036 rATQA[0] = 0x44;
2037
2038 rUIDBCC1[0] = 0x88;
2039 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2040 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2041 emlGetMemBt(rUIDBCC2, 3, 4);
2042 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2043 }
2044
2045 // -------------------------------------- test area
2046
2047 // -------------------------------------- END test area
2048 // start mkseconds counter
2049 StartCountUS();
2050
2051 // We need to listen to the high-frequency, peak-detected path.
2052 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2053 FpgaSetupSsc();
2054
2055 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2056 SpinDelay(200);
2057
2058 if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID);
2059 // calibrate mkseconds counter
2060 GetDeltaCountUS();
2061 while (true) {
2062 WDT_HIT();
2063
2064 if(BUTTON_PRESS()) {
2065 break;
2066 }
2067
2068 // find reader field
2069 // Vref = 3300mV, and an 10:1 voltage divider on the input
2070 // can measure voltages up to 33000 mV
2071 if (cardSTATE == MFEMUL_NOFIELD) {
2072 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2073 if (vHf > MF_MINFIELDV) {
2074 cardSTATE_TO_IDLE();
2075 LED_A_ON();
2076 }
2077 }
2078
2079 if (cardSTATE != MFEMUL_NOFIELD) {
2080 res = EmGetCmd(receivedCmd, &len, 100); // (+ nextCycleTimeout)
2081 if (res == 2) {
2082 cardSTATE = MFEMUL_NOFIELD;
2083 LEDsoff();
2084 continue;
2085 }
2086 if(res) break;
2087 }
2088
2089 nextCycleTimeout = 0;
2090
2091 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2092
2093 if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication
2094 // REQ or WUP request in ANY state and WUP in HALTED state
2095 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2096 selTimer = GetTickCount();
2097 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2098 cardSTATE = MFEMUL_SELECT1;
2099
2100 // init crypto block
2101 LED_B_OFF();
2102 LED_C_OFF();
2103 crypto1_destroy(pcs);
2104 cardAUTHKEY = 0xff;
2105 }
2106 }
2107
2108 switch (cardSTATE) {
2109 case MFEMUL_NOFIELD:{
2110 break;
2111 }
2112 case MFEMUL_HALTED:{
2113 break;
2114 }
2115 case MFEMUL_IDLE:{
2116 break;
2117 }
2118 case MFEMUL_SELECT1:{
2119 // select all
2120 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2121 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2122 break;
2123 }
2124
2125 // select card
2126 if (len == 9 &&
2127 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2128 if (!_7BUID)
2129 EmSendCmd(rSAK, sizeof(rSAK));
2130 else
2131 EmSendCmd(rSAK1, sizeof(rSAK1));
2132
2133 cuid = bytes_to_num(rUIDBCC1, 4);
2134 if (!_7BUID) {
2135 cardSTATE = MFEMUL_WORK;
2136 LED_B_ON();
2137 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2138 break;
2139 } else {
2140 cardSTATE = MFEMUL_SELECT2;
2141 break;
2142 }
2143 }
2144
2145 break;
2146 }
2147 case MFEMUL_SELECT2:{
2148 if (!len) break;
2149
2150 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2151 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2152 break;
2153 }
2154
2155 // select 2 card
2156 if (len == 9 &&
2157 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2158 EmSendCmd(rSAK, sizeof(rSAK));
2159
2160 cuid = bytes_to_num(rUIDBCC2, 4);
2161 cardSTATE = MFEMUL_WORK;
2162 LED_B_ON();
2163 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2164 break;
2165 }
2166
2167 // i guess there is a command). go into the work state.
2168 if (len != 4) break;
2169 cardSTATE = MFEMUL_WORK;
2170 goto lbWORK;
2171 }
2172 case MFEMUL_AUTH1:{
2173 if (len == 8) {
2174 // --- crypto
2175 rn_enc = bytes_to_num(receivedCmd, 4);
2176 cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
2177 cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0);
2178 // test if auth OK
2179 if (cardRr != prng_successor(nonce, 64)){
2180 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64));
2181 cardSTATE_TO_IDLE();
2182 break;
2183 }
2184 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2185 num_to_bytes(ans, 4, rAUTH_AT);
2186 // --- crypto
2187 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2188 cardSTATE = MFEMUL_AUTH2;
2189 } else {
2190 cardSTATE_TO_IDLE();
2191 }
2192 if (cardSTATE != MFEMUL_AUTH2) break;
2193 }
2194 case MFEMUL_AUTH2:{
2195 LED_C_ON();
2196 cardSTATE = MFEMUL_WORK;
2197 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
2198 break;
2199 }
2200 case MFEMUL_WORK:{
2201 lbWORK: if (len == 0) break;
2202
2203 if (cardAUTHKEY == 0xff) {
2204 // first authentication
2205 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2206 authTimer = GetTickCount();
2207
2208 cardAUTHSC = receivedCmd[1] / 4; // received block num
2209 cardAUTHKEY = receivedCmd[0] - 0x60;
2210
2211 // --- crypto
2212 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2213 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2214 num_to_bytes(nonce, 4, rAUTH_AT);
2215 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2216 // --- crypto
2217
2218 // last working revision
2219 // EmSendCmd14443aRaw(resp1, resp1Len, 0);
2220 // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
2221
2222 cardSTATE = MFEMUL_AUTH1;
2223 nextCycleTimeout = 10;
2224 break;
2225 }
2226 } else {
2227 // decrypt seqence
2228 mf_crypto1_decrypt(pcs, receivedCmd, len);
2229
2230 // nested authentication
2231 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2232 authTimer = GetTickCount();
2233
2234 cardAUTHSC = receivedCmd[1] / 4; // received block num
2235 cardAUTHKEY = receivedCmd[0] - 0x60;
2236
2237 // --- crypto
2238 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2239 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2240 num_to_bytes(ans, 4, rAUTH_AT);
2241 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2242 // --- crypto
2243
2244 cardSTATE = MFEMUL_AUTH1;
2245 nextCycleTimeout = 10;
2246 break;
2247 }
2248 }
2249
2250 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2251 // BUT... ACK --> NACK
2252 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2253 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2254 break;
2255 }
2256
2257 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2258 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2259 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2260 break;
2261 }
2262
2263 // read block
2264 if (len == 4 && receivedCmd[0] == 0x30) {
2265 if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
2266 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2267 break;
2268 }
2269 emlGetMem(response, receivedCmd[1], 1);
2270 AppendCrc14443a(response, 16);
2271 mf_crypto1_encrypt(pcs, response, 18, &par);
2272 EmSendCmdPar(response, 18, par);
2273 break;
2274 }
2275
2276 // write block
2277 if (len == 4 && receivedCmd[0] == 0xA0) {
2278 if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
2279 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2280 break;
2281 }
2282 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2283 nextCycleTimeout = 50;
2284 cardSTATE = MFEMUL_WRITEBL2;
2285 cardWRBL = receivedCmd[1];
2286 break;
2287 }
2288
2289 // works with cardINTREG
2290
2291 // increment, decrement, restore
2292 if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) {
2293 if (receivedCmd[1] >= 16 * 4 ||
2294 receivedCmd[1] / 4 != cardAUTHSC ||
2295 emlCheckValBl(receivedCmd[1])) {
2296 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2297 break;
2298 }
2299 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2300 if (receivedCmd[0] == 0xC1)
2301 cardSTATE = MFEMUL_INTREG_INC;
2302 if (receivedCmd[0] == 0xC0)
2303 cardSTATE = MFEMUL_INTREG_DEC;
2304 if (receivedCmd[0] == 0xC2)
2305 cardSTATE = MFEMUL_INTREG_REST;
2306 cardWRBL = receivedCmd[1];
2307
2308 break;
2309 }
2310
2311
2312 // transfer
2313 if (len == 4 && receivedCmd[0] == 0xB0) {
2314 if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
2315 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2316 break;
2317 }
2318
2319 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2320 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2321 else
2322 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2323
2324 break;
2325 }
2326
2327 // halt
2328 if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) {
2329 LED_B_OFF();
2330 LED_C_OFF();
2331 cardSTATE = MFEMUL_HALTED;
2332 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2333 break;
2334 }
2335
2336 // command not allowed
2337 if (len == 4) {
2338 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2339 break;
2340 }
2341
2342 // case break
2343 break;
2344 }
2345 case MFEMUL_WRITEBL2:{
2346 if (len == 18){
2347 mf_crypto1_decrypt(pcs, receivedCmd, len);
2348 emlSetMem(receivedCmd, cardWRBL, 1);
2349 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2350 cardSTATE = MFEMUL_WORK;
2351 break;
2352 } else {
2353 cardSTATE_TO_IDLE();
2354 break;
2355 }
2356 break;
2357 }
2358
2359 case MFEMUL_INTREG_INC:{
2360 mf_crypto1_decrypt(pcs, receivedCmd, len);
2361 memcpy(&ans, receivedCmd, 4);
2362 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2363 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2364 cardSTATE_TO_IDLE();
2365 break;
2366 }
2367 cardINTREG = cardINTREG + ans;
2368 cardSTATE = MFEMUL_WORK;
2369 break;
2370 }
2371 case MFEMUL_INTREG_DEC:{
2372 mf_crypto1_decrypt(pcs, receivedCmd, len);
2373 memcpy(&ans, receivedCmd, 4);
2374 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2375 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2376 cardSTATE_TO_IDLE();
2377 break;
2378 }
2379 cardINTREG = cardINTREG - ans;
2380 cardSTATE = MFEMUL_WORK;
2381 break;
2382 }
2383 case MFEMUL_INTREG_REST:{
2384 mf_crypto1_decrypt(pcs, receivedCmd, len);
2385 memcpy(&ans, receivedCmd, 4);
2386 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2387 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2388 cardSTATE_TO_IDLE();
2389 break;
2390 }
2391 cardSTATE = MFEMUL_WORK;
2392 break;
2393 }
2394
2395 }
2396
2397 }
2398
2399 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2400 LEDsoff();
2401
2402 // add trace trailer
2403 memset(rAUTH_NT, 0x44, 4);
2404 LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
2405
2406 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
2407 }
Impressum, Datenschutz