fix 'hf iclass sim':
[proxmark3-svn] / armsrc / iso15693.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
14
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
21 //
22 // VCD (reader) -> VICC (tag)
23 // 1 out of 256:
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
26 // 1 out of 4:
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
29 //
30 // VICC (tag) -> VCD (reader)
31 // Modulation:
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
40
41
42 // Random Remarks:
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
44
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
52
53 #include "iso15693.h"
54
55 #include "proxmark3.h"
56 #include "util.h"
57 #include "apps.h"
58 #include "string.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
61 #include "cmd.h"
62 #include "BigBuf.h"
63 #include "fpgaloader.h"
64
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
66
67 static int DEBUG = 0;
68
69 ///////////////////////////////////////////////////////////////////////
70 // ISO 15693 Part 2 - Air Interface
71 // This section basically contains transmission and receiving of bits
72 ///////////////////////////////////////////////////////////////////////
73
74 // buffers
75 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
76 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
77 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
78
79 // ---------------------------
80 // Signal Processing
81 // ---------------------------
82
83 // prepare data using "1 out of 4" code for later transmission
84 // resulting data rate is 26.48 kbit/s (fc/512)
85 // cmd ... data
86 // n ... length of data
87 static void CodeIso15693AsReader(uint8_t *cmd, int n)
88 {
89 int i, j;
90
91 ToSendReset();
92
93 // Give it a bit of slack at the beginning
94 for(i = 0; i < 24; i++) {
95 ToSendStuffBit(1);
96 }
97
98 // SOF for 1of4
99 ToSendStuffBit(0);
100 ToSendStuffBit(1);
101 ToSendStuffBit(1);
102 ToSendStuffBit(1);
103 ToSendStuffBit(1);
104 ToSendStuffBit(0);
105 ToSendStuffBit(1);
106 ToSendStuffBit(1);
107 for(i = 0; i < n; i++) {
108 for(j = 0; j < 8; j += 2) {
109 int these = (cmd[i] >> j) & 3;
110 switch(these) {
111 case 0:
112 ToSendStuffBit(1);
113 ToSendStuffBit(0);
114 ToSendStuffBit(1);
115 ToSendStuffBit(1);
116 ToSendStuffBit(1);
117 ToSendStuffBit(1);
118 ToSendStuffBit(1);
119 ToSendStuffBit(1);
120 break;
121 case 1:
122 ToSendStuffBit(1);
123 ToSendStuffBit(1);
124 ToSendStuffBit(1);
125 ToSendStuffBit(0);
126 ToSendStuffBit(1);
127 ToSendStuffBit(1);
128 ToSendStuffBit(1);
129 ToSendStuffBit(1);
130 break;
131 case 2:
132 ToSendStuffBit(1);
133 ToSendStuffBit(1);
134 ToSendStuffBit(1);
135 ToSendStuffBit(1);
136 ToSendStuffBit(1);
137 ToSendStuffBit(0);
138 ToSendStuffBit(1);
139 ToSendStuffBit(1);
140 break;
141 case 3:
142 ToSendStuffBit(1);
143 ToSendStuffBit(1);
144 ToSendStuffBit(1);
145 ToSendStuffBit(1);
146 ToSendStuffBit(1);
147 ToSendStuffBit(1);
148 ToSendStuffBit(1);
149 ToSendStuffBit(0);
150 break;
151 }
152 }
153 }
154 // EOF
155 ToSendStuffBit(1);
156 ToSendStuffBit(1);
157 ToSendStuffBit(0);
158 ToSendStuffBit(1);
159
160 // Fill remainder of last byte with 1
161 for(i = 0; i < 4; i++) {
162 ToSendStuffBit(1);
163 }
164
165 ToSendMax++;
166 }
167
168 // encode data using "1 out of 256" scheme
169 // data rate is 1,66 kbit/s (fc/8192)
170 // is designed for more robust communication over longer distances
171 static void CodeIso15693AsReader256(uint8_t *cmd, int n)
172 {
173 int i, j;
174
175 ToSendReset();
176
177 // Give it a bit of slack at the beginning
178 for(i = 0; i < 24; i++) {
179 ToSendStuffBit(1);
180 }
181
182 // SOF for 1of256
183 ToSendStuffBit(0);
184 ToSendStuffBit(1);
185 ToSendStuffBit(1);
186 ToSendStuffBit(1);
187 ToSendStuffBit(1);
188 ToSendStuffBit(1);
189 ToSendStuffBit(1);
190 ToSendStuffBit(0);
191
192 for(i = 0; i < n; i++) {
193 for (j = 0; j<=255; j++) {
194 if (cmd[i]==j) {
195 ToSendStuffBit(1);
196 ToSendStuffBit(0);
197 } else {
198 ToSendStuffBit(1);
199 ToSendStuffBit(1);
200 }
201 }
202 }
203 // EOF
204 ToSendStuffBit(1);
205 ToSendStuffBit(1);
206 ToSendStuffBit(0);
207 ToSendStuffBit(1);
208
209 // Fill remainder of last byte with 1
210 for(i = 0; i < 4; i++) {
211 ToSendStuffBit(1);
212 }
213
214 ToSendMax++;
215 }
216
217
218 // static uint8_t encode4Bits(const uint8_t b) {
219 // uint8_t c = b & 0xF;
220 // // OTA, the least significant bits first
221 // // The columns are
222 // // 1 - Bit value to send
223 // // 2 - Reversed (big-endian)
224 // // 3 - Manchester Encoded
225 // // 4 - Hex values
226
227 // switch(c){
228 // // 1 2 3 4
229 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
230 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
231 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
232 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
233 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
234 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
235 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
236 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
237 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
238 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
239 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
240 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
241 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
242 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
243 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
244 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
245
246 // }
247 // }
248
249 void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
250 /*
251 * SOF comprises 3 parts;
252 * * An unmodulated time of 56.64 us
253 * * 24 pulses of 423.75 kHz (fc/32)
254 * * A logic 1, which starts with an unmodulated time of 18.88us
255 * followed by 8 pulses of 423.75kHz (fc/32)
256 *
257 * EOF comprises 3 parts:
258 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
259 * time of 18.88us.
260 * - 24 pulses of fc/32
261 * - An unmodulated time of 56.64 us
262 *
263 * A logic 0 starts with 8 pulses of fc/32
264 * followed by an unmodulated time of 256/fc (~18,88us).
265 *
266 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
267 * 8 pulses of fc/32 (also 18.88us)
268 *
269 * A bit here becomes 8 pulses of fc/32. Therefore:
270 * The SOF can be written as 00011101 = 0x1D
271 * The EOF can be written as 10111000 = 0xb8
272 * A logic 1 is 01
273 * A logic 0 is 10
274 *
275 * */
276
277 ToSendReset();
278
279 // SOF
280 ToSend[++ToSendMax] = 0x1D; // 00011101
281
282 // data
283 for(int i = 0; i < len; i++) {
284 for(int j = 0; j < 8; j++) {
285 if ((cmd[i] >> j) & 0x01) {
286 ToSendStuffBit(0);
287 ToSendStuffBit(1);
288 } else {
289 ToSendStuffBit(1);
290 ToSendStuffBit(0);
291 }
292 }
293 }
294
295 // EOF
296 ToSend[++ToSendMax] = 0xB8; // 10111000
297
298 ToSendMax++;
299 }
300
301
302 // Transmit the command (to the tag) that was placed in cmd[].
303 static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time)
304 {
305 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
306 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
307
308 while (GetCountSspClk() < start_time) ;
309
310 LED_B_ON();
311 for(int c = 0; c < len; c++) {
312 uint8_t data = cmd[c];
313 for (int i = 0; i < 8; i++) {
314 uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
315 while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
316 AT91C_BASE_SSC->SSC_THR = send_word;
317 while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
318 AT91C_BASE_SSC->SSC_THR = send_word;
319 data <<= 1;
320 }
321 WDT_HIT();
322 }
323 LED_B_OFF();
324 }
325
326
327 //-----------------------------------------------------------------------------
328 // Transmit the tag response (to the reader) that was placed in cmd[].
329 //-----------------------------------------------------------------------------
330 void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow) {
331 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
332 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
333
334 uint8_t shift_delay = start_time & 0x00000007;
335
336 while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
337
338 LED_C_ON();
339 uint8_t bits_to_shift = 0x00;
340 uint8_t bits_to_send = 0x00;
341 for(size_t c = 0; c < len; c++) {
342 for (int i = 7; i >= 0; i--) {
343 uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
344 for (int j = 0; j < (slow?4:1); ) {
345 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
346 bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
347 AT91C_BASE_SSC->SSC_THR = bits_to_send;
348 bits_to_shift = cmd_bits;
349 j++;
350 }
351 }
352 }
353 WDT_HIT();
354 }
355 // send the remaining bits, padded with 0:
356 bits_to_send = bits_to_shift << (8 - shift_delay);
357 for ( ; ; ) {
358 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
359 AT91C_BASE_SSC->SSC_THR = bits_to_send;
360 break;
361 }
362 }
363 LED_C_OFF();
364
365 }
366
367
368 //=============================================================================
369 // An ISO 15693 decoder for tag responses (one subcarrier only).
370 // Uses cross correlation to identify each bit and EOF.
371 // This function is called 8 times per bit (every 2 subcarrier cycles).
372 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
373 // i.e. function is called every 4,72us
374 // LED handling:
375 // LED C -> ON once we have received the SOF and are expecting the rest.
376 // LED C -> OFF once we have received EOF or are unsynced
377 //
378 // Returns: true if we received a EOF
379 // false if we are still waiting for some more
380 //=============================================================================
381
382 #define NOISE_THRESHOLD 160 // don't try to correlate noise
383
384 typedef struct DecodeTag {
385 enum {
386 STATE_TAG_SOF_LOW,
387 STATE_TAG_SOF_HIGH,
388 STATE_TAG_SOF_HIGH_END,
389 STATE_TAG_RECEIVING_DATA,
390 STATE_TAG_EOF
391 } state;
392 int bitCount;
393 int posCount;
394 enum {
395 LOGIC0,
396 LOGIC1,
397 SOF_PART1,
398 SOF_PART2
399 } lastBit;
400 uint16_t shiftReg;
401 uint16_t max_len;
402 uint8_t *output;
403 int len;
404 int sum1, sum2;
405 } DecodeTag_t;
406
407
408 static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag)
409 {
410 switch(DecodeTag->state) {
411 case STATE_TAG_SOF_LOW:
412 // waiting for 12 times low (11 times low is accepted as well)
413 if (amplitude < NOISE_THRESHOLD) {
414 DecodeTag->posCount++;
415 } else {
416 if (DecodeTag->posCount > 10) {
417 DecodeTag->posCount = 1;
418 DecodeTag->sum1 = 0;
419 DecodeTag->state = STATE_TAG_SOF_HIGH;
420 } else {
421 DecodeTag->posCount = 0;
422 }
423 }
424 break;
425
426 case STATE_TAG_SOF_HIGH:
427 // waiting for 10 times high. Take average over the last 8
428 if (amplitude > NOISE_THRESHOLD) {
429 DecodeTag->posCount++;
430 if (DecodeTag->posCount > 2) {
431 DecodeTag->sum1 += amplitude; // keep track of average high value
432 }
433 if (DecodeTag->posCount == 10) {
434 DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples)
435 DecodeTag->state = STATE_TAG_SOF_HIGH_END;
436 }
437 } else { // high phase was too short
438 DecodeTag->posCount = 1;
439 DecodeTag->state = STATE_TAG_SOF_LOW;
440 }
441 break;
442
443 case STATE_TAG_SOF_HIGH_END:
444 // waiting for a falling edge
445 if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge
446 DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
447 DecodeTag->shiftReg = 0;
448 DecodeTag->bitCount = 0;
449 DecodeTag->len = 0;
450 DecodeTag->sum1 = amplitude;
451 DecodeTag->sum2 = 0;
452 DecodeTag->posCount = 2;
453 DecodeTag->state = STATE_TAG_RECEIVING_DATA;
454 LED_C_ON();
455 } else {
456 DecodeTag->posCount++;
457 if (DecodeTag->posCount > 13) { // high phase too long
458 DecodeTag->posCount = 0;
459 DecodeTag->state = STATE_TAG_SOF_LOW;
460 LED_C_OFF();
461 }
462 }
463 break;
464
465 case STATE_TAG_RECEIVING_DATA:
466 if (DecodeTag->posCount == 1) {
467 DecodeTag->sum1 = 0;
468 DecodeTag->sum2 = 0;
469 }
470 if (DecodeTag->posCount <= 4) {
471 DecodeTag->sum1 += amplitude;
472 } else {
473 DecodeTag->sum2 += amplitude;
474 }
475 if (DecodeTag->posCount == 8) {
476 int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
477 int32_t corr_0 = -corr_1;
478 int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
479 if (corr_EOF > corr_0 && corr_EOF > corr_1) {
480 if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
481 DecodeTag->state = STATE_TAG_EOF;
482 } else {
483 DecodeTag->posCount = 0;
484 DecodeTag->state = STATE_TAG_SOF_LOW;
485 LED_C_OFF();
486 }
487 } else if (corr_1 > corr_0) {
488 // logic 1
489 if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
490 DecodeTag->lastBit = SOF_PART2; // SOF completed
491 } else {
492 DecodeTag->lastBit = LOGIC1;
493 DecodeTag->shiftReg >>= 1;
494 DecodeTag->shiftReg |= 0x80;
495 DecodeTag->bitCount++;
496 if (DecodeTag->bitCount == 8) {
497 DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
498 DecodeTag->len++;
499 if (DecodeTag->len > DecodeTag->max_len) {
500 // buffer overflow, give up
501 DecodeTag->posCount = 0;
502 DecodeTag->state = STATE_TAG_SOF_LOW;
503 LED_C_OFF();
504 }
505 DecodeTag->bitCount = 0;
506 DecodeTag->shiftReg = 0;
507 }
508 }
509 } else {
510 // logic 0
511 if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
512 DecodeTag->posCount = 0;
513 DecodeTag->state = STATE_TAG_SOF_LOW;
514 LED_C_OFF();
515 } else {
516 DecodeTag->lastBit = LOGIC0;
517 DecodeTag->shiftReg >>= 1;
518 DecodeTag->bitCount++;
519 if (DecodeTag->bitCount == 8) {
520 DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
521 DecodeTag->len++;
522 if (DecodeTag->len > DecodeTag->max_len) {
523 // buffer overflow, give up
524 DecodeTag->posCount = 0;
525 DecodeTag->state = STATE_TAG_SOF_LOW;
526 LED_C_OFF();
527 }
528 DecodeTag->bitCount = 0;
529 DecodeTag->shiftReg = 0;
530 }
531 }
532 }
533 DecodeTag->posCount = 0;
534 }
535 DecodeTag->posCount++;
536 break;
537
538 case STATE_TAG_EOF:
539 if (DecodeTag->posCount == 1) {
540 DecodeTag->sum1 = 0;
541 DecodeTag->sum2 = 0;
542 }
543 if (DecodeTag->posCount <= 4) {
544 DecodeTag->sum1 += amplitude;
545 } else {
546 DecodeTag->sum2 += amplitude;
547 }
548 if (DecodeTag->posCount == 8) {
549 int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
550 int32_t corr_0 = -corr_1;
551 int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
552 if (corr_EOF > corr_0 || corr_1 > corr_0) {
553 DecodeTag->posCount = 0;
554 DecodeTag->state = STATE_TAG_SOF_LOW;
555 LED_C_OFF();
556 } else {
557 LED_C_OFF();
558 return true;
559 }
560 }
561 DecodeTag->posCount++;
562 break;
563
564 }
565
566 return false;
567 }
568
569
570 static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len)
571 {
572 DecodeTag->posCount = 0;
573 DecodeTag->state = STATE_TAG_SOF_LOW;
574 DecodeTag->output = data;
575 DecodeTag->max_len = max_len;
576 }
577
578
579 static void DecodeTagReset(DecodeTag_t *DecodeTag)
580 {
581 DecodeTag->posCount = 0;
582 DecodeTag->state = STATE_TAG_SOF_LOW;
583 }
584
585
586 /*
587 * Receive and decode the tag response, also log to tracebuffer
588 */
589 static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout)
590 {
591 int samples = 0;
592 bool gotFrame = false;
593
594 uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
595
596 // the Decoder data structure
597 DecodeTag_t DecodeTag = { 0 };
598 DecodeTagInit(&DecodeTag, response, max_len);
599
600 // wait for last transfer to complete
601 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
602
603 // And put the FPGA in the appropriate mode
604 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
605
606 // Setup and start DMA.
607 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
608 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
609 uint16_t *upTo = dmaBuf;
610
611 for(;;) {
612 uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
613
614 if (behindBy == 0) continue;
615
616 uint16_t tagdata = *upTo++;
617
618 if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
619 upTo = dmaBuf; // start reading the circular buffer from the beginning
620 if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
621 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
622 break;
623 }
624 }
625 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
626 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
627 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
628 }
629
630 samples++;
631
632 if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
633 gotFrame = true;
634 break;
635 }
636
637 if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
638 DecodeTag.len = 0;
639 break;
640 }
641
642 }
643
644 FpgaDisableSscDma();
645 BigBuf_free();
646
647 if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
648 samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
649
650 if (DecodeTag.len > 0) {
651 LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
652 }
653
654 return DecodeTag.len;
655 }
656
657
658 //=============================================================================
659 // An ISO15693 decoder for reader commands.
660 //
661 // This function is called 4 times per bit (every 2 subcarrier cycles).
662 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
663 // LED handling:
664 // LED B -> ON once we have received the SOF and are expecting the rest.
665 // LED B -> OFF once we have received EOF or are in error state or unsynced
666 //
667 // Returns: true if we received a EOF
668 // false if we are still waiting for some more
669 //=============================================================================
670
671 typedef struct DecodeReader {
672 enum {
673 STATE_READER_UNSYNCD,
674 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
675 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
676 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
677 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
678 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
679 STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
680 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
681 } state;
682 enum {
683 CODING_1_OUT_OF_4,
684 CODING_1_OUT_OF_256
685 } Coding;
686 uint8_t shiftReg;
687 uint8_t bitCount;
688 int byteCount;
689 int byteCountMax;
690 int posCount;
691 int sum1, sum2;
692 uint8_t *output;
693 } DecodeReader_t;
694
695
696 static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len)
697 {
698 DecodeReader->output = data;
699 DecodeReader->byteCountMax = max_len;
700 DecodeReader->state = STATE_READER_UNSYNCD;
701 DecodeReader->byteCount = 0;
702 DecodeReader->bitCount = 0;
703 DecodeReader->posCount = 1;
704 DecodeReader->shiftReg = 0;
705 }
706
707
708 static void DecodeReaderReset(DecodeReader_t* DecodeReader)
709 {
710 DecodeReader->state = STATE_READER_UNSYNCD;
711 }
712
713
714 static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader)
715 {
716 switch (DecodeReader->state) {
717 case STATE_READER_UNSYNCD:
718 // wait for unmodulated carrier
719 if (bit) {
720 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
721 }
722 break;
723
724 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
725 if (!bit) {
726 // we went low, so this could be the beginning of a SOF
727 DecodeReader->posCount = 1;
728 DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
729 }
730 break;
731
732 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
733 DecodeReader->posCount++;
734 if (bit) { // detected rising edge
735 if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
736 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
737 } else { // SOF
738 DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
739 }
740 } else {
741 if (DecodeReader->posCount > 5) { // stayed low for too long
742 DecodeReaderReset(DecodeReader);
743 } else {
744 // do nothing, keep waiting
745 }
746 }
747 break;
748
749 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
750 DecodeReader->posCount++;
751 if (!bit) { // detected a falling edge
752 if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
753 DecodeReaderReset(DecodeReader);
754 } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
755 DecodeReader->Coding = CODING_1_OUT_OF_4;
756 DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
757 } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
758 DecodeReaderReset(DecodeReader);
759 } else { // SOF for 1 out of 256 coding
760 DecodeReader->Coding = CODING_1_OUT_OF_256;
761 DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
762 }
763 } else {
764 if (DecodeReader->posCount > 29) { // stayed high for too long
765 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
766 } else {
767 // do nothing, keep waiting
768 }
769 }
770 break;
771
772 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF:
773 DecodeReader->posCount++;
774 if (bit) { // detected rising edge
775 if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
776 if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
777 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
778 } else {
779 DecodeReader->posCount = 1;
780 DecodeReader->bitCount = 0;
781 DecodeReader->byteCount = 0;
782 DecodeReader->sum1 = 1;
783 DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
784 LED_B_ON();
785 }
786 } else { // CODING_1_OUT_OF_4
787 if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
788 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
789 } else {
790 DecodeReader->posCount = 1;
791 DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
792 }
793 }
794 } else {
795 if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
796 if (DecodeReader->posCount > 34) { // signal stayed low for too long
797 DecodeReaderReset(DecodeReader);
798 } else {
799 // do nothing, keep waiting
800 }
801 } else { // CODING_1_OUT_OF_4
802 if (DecodeReader->posCount > 26) { // signal stayed low for too long
803 DecodeReaderReset(DecodeReader);
804 } else {
805 // do nothing, keep waiting
806 }
807 }
808 }
809 break;
810
811 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
812 DecodeReader->posCount++;
813 if (bit) {
814 if (DecodeReader->posCount == 9) {
815 DecodeReader->posCount = 1;
816 DecodeReader->bitCount = 0;
817 DecodeReader->byteCount = 0;
818 DecodeReader->sum1 = 1;
819 DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
820 LED_B_ON();
821 } else {
822 // do nothing, keep waiting
823 }
824 } else { // unexpected falling edge
825 DecodeReaderReset(DecodeReader);
826 }
827 break;
828
829 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
830 DecodeReader->posCount++;
831 if (DecodeReader->posCount == 1) {
832 DecodeReader->sum1 = bit;
833 } else if (DecodeReader->posCount <= 4) {
834 DecodeReader->sum1 += bit;
835 } else if (DecodeReader->posCount == 5) {
836 DecodeReader->sum2 = bit;
837 } else {
838 DecodeReader->sum2 += bit;
839 }
840 if (DecodeReader->posCount == 8) {
841 DecodeReader->posCount = 0;
842 int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
843 int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
844 int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
845 if (corr01 > corr11 && corr01 > corr10) { // EOF
846 LED_B_OFF(); // Finished receiving
847 DecodeReaderReset(DecodeReader);
848 if (DecodeReader->byteCount != 0) {
849 return true;
850 }
851 }
852 if (corr10 > corr11) { // detected a 2bit position
853 DecodeReader->shiftReg >>= 2;
854 DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
855 }
856 if (DecodeReader->bitCount == 15) { // we have a full byte
857 DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
858 if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
859 // buffer overflow, give up
860 LED_B_OFF();
861 DecodeReaderReset(DecodeReader);
862 }
863 DecodeReader->bitCount = 0;
864 DecodeReader->shiftReg = 0;
865 } else {
866 DecodeReader->bitCount++;
867 }
868 }
869 break;
870
871 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
872 DecodeReader->posCount++;
873 if (DecodeReader->posCount == 1) {
874 DecodeReader->sum1 = bit;
875 } else if (DecodeReader->posCount <= 4) {
876 DecodeReader->sum1 += bit;
877 } else if (DecodeReader->posCount == 5) {
878 DecodeReader->sum2 = bit;
879 } else {
880 DecodeReader->sum2 += bit;
881 }
882 if (DecodeReader->posCount == 8) {
883 DecodeReader->posCount = 0;
884 int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
885 int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
886 int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
887 if (corr01 > corr11 && corr01 > corr10) { // EOF
888 LED_B_OFF(); // Finished receiving
889 DecodeReaderReset(DecodeReader);
890 if (DecodeReader->byteCount != 0) {
891 return true;
892 }
893 }
894 if (corr10 > corr11) { // detected the bit position
895 DecodeReader->shiftReg = DecodeReader->bitCount;
896 }
897 if (DecodeReader->bitCount == 255) { // we have a full byte
898 DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
899 if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
900 // buffer overflow, give up
901 LED_B_OFF();
902 DecodeReaderReset(DecodeReader);
903 }
904 }
905 DecodeReader->bitCount++;
906 }
907 break;
908
909 default:
910 LED_B_OFF();
911 DecodeReaderReset(DecodeReader);
912 break;
913 }
914
915 return false;
916 }
917
918
919 //-----------------------------------------------------------------------------
920 // Receive a command (from the reader to us, where we are the simulated tag),
921 // and store it in the given buffer, up to the given maximum length. Keeps
922 // spinning, waiting for a well-framed command, until either we get one
923 // (returns len) or someone presses the pushbutton on the board (returns -1).
924 //
925 // Assume that we're called with the SSC (to the FPGA) and ADC path set
926 // correctly.
927 //-----------------------------------------------------------------------------
928
929 int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) {
930 int samples = 0;
931 bool gotFrame = false;
932 uint8_t b;
933
934 uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
935
936 // the decoder data structure
937 DecodeReader_t DecodeReader = {0};
938 DecodeReaderInit(&DecodeReader, received, max_len);
939
940 // wait for last transfer to complete
941 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
942
943 LED_D_OFF();
944 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
945
946 // clear receive register and wait for next transfer
947 uint32_t temp = AT91C_BASE_SSC->SSC_RHR;
948 (void) temp;
949 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
950
951 uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
952
953 // Setup and start DMA.
954 FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
955 uint8_t *upTo = dmaBuf;
956
957 for (;;) {
958 uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
959
960 if (behindBy == 0) continue;
961
962 b = *upTo++;
963 if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
964 upTo = dmaBuf; // start reading the circular buffer from the beginning
965 if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
966 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
967 break;
968 }
969 }
970 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
971 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
972 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
973 }
974
975 for (int i = 7; i >= 0; i--) {
976 if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
977 *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
978 gotFrame = true;
979 break;
980 }
981 samples++;
982 }
983
984 if (gotFrame) {
985 break;
986 }
987
988 if (BUTTON_PRESS()) {
989 DecodeReader.byteCount = -1;
990 break;
991 }
992
993 WDT_HIT();
994 }
995
996 FpgaDisableSscDma();
997
998 if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
999 samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
1000
1001 if (DecodeReader.byteCount > 0) {
1002 uint32_t sof_time = *eof_time
1003 - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
1004 - 32 // time for SOF transfer
1005 - 16; // time for EOF transfer
1006 LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
1007 }
1008
1009 return DecodeReader.byteCount;
1010 }
1011
1012
1013 // Encode (into the ToSend buffers) an identify request, which is the first
1014 // thing that you must send to a tag to get a response.
1015 static void BuildIdentifyRequest(void)
1016 {
1017 uint8_t cmd[5];
1018
1019 uint16_t crc;
1020 // one sub-carrier, inventory, 1 slot, fast rate
1021 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1022 cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
1023 // inventory command code
1024 cmd[1] = 0x01;
1025 // no mask
1026 cmd[2] = 0x00;
1027 //Now the CRC
1028 crc = Iso15693Crc(cmd, 3);
1029 cmd[3] = crc & 0xff;
1030 cmd[4] = crc >> 8;
1031
1032 CodeIso15693AsReader(cmd, sizeof(cmd));
1033 }
1034
1035
1036 //-----------------------------------------------------------------------------
1037 // Start to read an ISO 15693 tag. We send an identify request, then wait
1038 // for the response. The response is not demodulated, just left in the buffer
1039 // so that it can be downloaded to a PC and processed there.
1040 //-----------------------------------------------------------------------------
1041 void AcquireRawAdcSamplesIso15693(void)
1042 {
1043 LEDsoff();
1044 LED_A_ON();
1045
1046 uint8_t *dest = BigBuf_get_addr();
1047
1048 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1049 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1050 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1051 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1052
1053 BuildIdentifyRequest();
1054
1055 // Give the tags time to energize
1056 LED_D_ON();
1057 SpinDelay(100);
1058
1059 // Now send the command
1060 TransmitTo15693Tag(ToSend, ToSendMax, 0);
1061
1062 // wait for last transfer to complete
1063 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
1064
1065 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
1066
1067 for(int c = 0; c < 4000; ) {
1068 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1069 uint16_t r = AT91C_BASE_SSC->SSC_RHR;
1070 dest[c++] = r >> 5;
1071 }
1072 }
1073
1074 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1075 LEDsoff();
1076 }
1077
1078
1079 void SnoopIso15693(void)
1080 {
1081 LED_A_ON();
1082 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1083 BigBuf_free();
1084
1085 clear_trace();
1086 set_tracing(true);
1087
1088 // The DMA buffer, used to stream samples from the FPGA
1089 uint16_t* dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
1090 uint16_t *upTo;
1091
1092 // Count of samples received so far, so that we can include timing
1093 // information in the trace buffer.
1094 int samples = 0;
1095
1096 DecodeTag_t DecodeTag = {0};
1097 uint8_t response[ISO15693_MAX_RESPONSE_LENGTH];
1098 DecodeTagInit(&DecodeTag, response, sizeof(response));
1099
1100 DecodeReader_t DecodeReader = {0};;
1101 uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
1102 DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd));
1103
1104 // Print some debug information about the buffer sizes
1105 if (DEBUG) {
1106 Dbprintf("Snooping buffers initialized:");
1107 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1108 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH);
1109 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH);
1110 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t));
1111 }
1112 Dbprintf("Snoop started. Press PM3 Button to stop.");
1113
1114 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
1115 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1116
1117 // Setup for the DMA.
1118 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1119 upTo = dmaBuf;
1120 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1121
1122 bool TagIsActive = false;
1123 bool ReaderIsActive = false;
1124 bool ExpectTagAnswer = false;
1125
1126 // And now we loop, receiving samples.
1127 for(;;) {
1128 uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
1129
1130 if (behindBy == 0) continue;
1131
1132 uint16_t snoopdata = *upTo++;
1133
1134 if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
1135 upTo = dmaBuf; // start reading the circular buffer from the beginning
1136 if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
1137 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples);
1138 break;
1139 }
1140 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
1141 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
1142 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
1143 WDT_HIT();
1144 if(BUTTON_PRESS()) {
1145 DbpString("Snoop stopped.");
1146 break;
1147 }
1148 }
1149 }
1150 samples++;
1151
1152 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
1153 if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
1154 FpgaDisableSscDma();
1155 ExpectTagAnswer = true;
1156 LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
1157 /* And ready to receive another command. */
1158 DecodeReaderReset(&DecodeReader);
1159 /* And also reset the demod code, which might have been */
1160 /* false-triggered by the commands from the reader. */
1161 DecodeTagReset(&DecodeTag);
1162 upTo = dmaBuf;
1163 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1164 }
1165 if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
1166 FpgaDisableSscDma();
1167 ExpectTagAnswer = true;
1168 LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
1169 /* And ready to receive another command. */
1170 DecodeReaderReset(&DecodeReader);
1171 /* And also reset the demod code, which might have been */
1172 /* false-triggered by the commands from the reader. */
1173 DecodeTagReset(&DecodeTag);
1174 upTo = dmaBuf;
1175 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1176 }
1177 ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF);
1178 }
1179
1180 if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1181 if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
1182 FpgaDisableSscDma();
1183 //Use samples as a time measurement
1184 LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false);
1185 // And ready to receive another response.
1186 DecodeTagReset(&DecodeTag);
1187 DecodeReaderReset(&DecodeReader);
1188 ExpectTagAnswer = false;
1189 upTo = dmaBuf;
1190 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1191 }
1192 TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
1193 }
1194
1195 }
1196
1197 FpgaDisableSscDma();
1198 BigBuf_free();
1199
1200 LEDsoff();
1201
1202 DbpString("Snoop statistics:");
1203 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer);
1204 Dbprintf(" DecodeTag State: %d", DecodeTag.state);
1205 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len);
1206 Dbprintf(" DecodeReader State: %d", DecodeReader.state);
1207 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount);
1208 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1209 }
1210
1211
1212 // Initialize the proxmark as iso15k reader
1213 static void Iso15693InitReader() {
1214 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1215 // Setup SSC
1216 // FpgaSetupSsc();
1217
1218 // Start from off (no field generated)
1219 LED_D_OFF();
1220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1221 SpinDelay(10);
1222
1223 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1224 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1225
1226 // Give the tags time to energize
1227 LED_D_ON();
1228 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1229 SpinDelay(250);
1230 }
1231
1232 ///////////////////////////////////////////////////////////////////////
1233 // ISO 15693 Part 3 - Air Interface
1234 // This section basically contains transmission and receiving of bits
1235 ///////////////////////////////////////////////////////////////////////
1236
1237
1238 // uid is in transmission order (which is reverse of display order)
1239 static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
1240 {
1241 uint8_t cmd[13];
1242
1243 uint16_t crc;
1244 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1245 // followed by the block data
1246 cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
1247 // READ BLOCK command code
1248 cmd[1] = ISO15693_READBLOCK;
1249 // UID may be optionally specified here
1250 // 64-bit UID
1251 cmd[2] = uid[0];
1252 cmd[3] = uid[1];
1253 cmd[4] = uid[2];
1254 cmd[5] = uid[3];
1255 cmd[6] = uid[4];
1256 cmd[7] = uid[5];
1257 cmd[8] = uid[6];
1258 cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
1259 // Block number to read
1260 cmd[10] = blockNumber;
1261 //Now the CRC
1262 crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
1263 cmd[11] = crc & 0xff;
1264 cmd[12] = crc >> 8;
1265
1266 CodeIso15693AsReader(cmd, sizeof(cmd));
1267 }
1268
1269
1270 // Now the VICC>VCD responses when we are simulating a tag
1271 static void BuildInventoryResponse(uint8_t *uid)
1272 {
1273 uint8_t cmd[12];
1274
1275 uint16_t crc;
1276
1277 cmd[0] = 0; // No error, no protocol format extension
1278 cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1279 // 64-bit UID
1280 cmd[2] = uid[7]; //0x32;
1281 cmd[3] = uid[6]; //0x4b;
1282 cmd[4] = uid[5]; //0x03;
1283 cmd[5] = uid[4]; //0x01;
1284 cmd[6] = uid[3]; //0x00;
1285 cmd[7] = uid[2]; //0x10;
1286 cmd[8] = uid[1]; //0x05;
1287 cmd[9] = uid[0]; //0xe0;
1288 //Now the CRC
1289 crc = Iso15693Crc(cmd, 10);
1290 cmd[10] = crc & 0xff;
1291 cmd[11] = crc >> 8;
1292
1293 CodeIso15693AsTag(cmd, sizeof(cmd));
1294 }
1295
1296 // Universal Method for sending to and recv bytes from a tag
1297 // init ... should we initialize the reader?
1298 // speed ... 0 low speed, 1 hi speed
1299 // *recv will contain the tag's answer
1300 // return: lenght of received data
1301 int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
1302
1303 LED_A_ON();
1304 LED_B_OFF();
1305 LED_C_OFF();
1306
1307 if (init) Iso15693InitReader();
1308
1309 int answerLen=0;
1310
1311 if (!speed) {
1312 // low speed (1 out of 256)
1313 CodeIso15693AsReader256(send, sendlen);
1314 } else {
1315 // high speed (1 out of 4)
1316 CodeIso15693AsReader(send, sendlen);
1317 }
1318
1319 TransmitTo15693Tag(ToSend, ToSendMax, start_time);
1320
1321 // Now wait for a response
1322 if (recv != NULL) {
1323 answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2);
1324 }
1325
1326 LED_A_OFF();
1327
1328 return answerLen;
1329 }
1330
1331
1332 // --------------------------------------------------------------------
1333 // Debug Functions
1334 // --------------------------------------------------------------------
1335
1336 // Decodes a message from a tag and displays its metadata and content
1337 #define DBD15STATLEN 48
1338 void DbdecodeIso15693Answer(int len, uint8_t *d) {
1339 char status[DBD15STATLEN+1]={0};
1340 uint16_t crc;
1341
1342 if (len > 3) {
1343 if (d[0] & ISO15693_RES_EXT)
1344 strncat(status,"ProtExt ", DBD15STATLEN);
1345 if (d[0] & ISO15693_RES_ERROR) {
1346 // error
1347 strncat(status,"Error ", DBD15STATLEN);
1348 switch (d[1]) {
1349 case 0x01:
1350 strncat(status,"01:notSupp", DBD15STATLEN);
1351 break;
1352 case 0x02:
1353 strncat(status,"02:notRecog", DBD15STATLEN);
1354 break;
1355 case 0x03:
1356 strncat(status,"03:optNotSupp", DBD15STATLEN);
1357 break;
1358 case 0x0f:
1359 strncat(status,"0f:noInfo", DBD15STATLEN);
1360 break;
1361 case 0x10:
1362 strncat(status,"10:doesn'tExist", DBD15STATLEN);
1363 break;
1364 case 0x11:
1365 strncat(status,"11:lockAgain", DBD15STATLEN);
1366 break;
1367 case 0x12:
1368 strncat(status,"12:locked", DBD15STATLEN);
1369 break;
1370 case 0x13:
1371 strncat(status,"13:progErr", DBD15STATLEN);
1372 break;
1373 case 0x14:
1374 strncat(status,"14:lockErr", DBD15STATLEN);
1375 break;
1376 default:
1377 strncat(status,"unknownErr", DBD15STATLEN);
1378 }
1379 strncat(status," ", DBD15STATLEN);
1380 } else {
1381 strncat(status,"NoErr ", DBD15STATLEN);
1382 }
1383
1384 crc=Iso15693Crc(d,len-2);
1385 if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
1386 strncat(status,"CrcOK",DBD15STATLEN);
1387 else
1388 strncat(status,"CrcFail!",DBD15STATLEN);
1389
1390 Dbprintf("%s",status);
1391 }
1392 }
1393
1394
1395
1396 ///////////////////////////////////////////////////////////////////////
1397 // Functions called via USB/Client
1398 ///////////////////////////////////////////////////////////////////////
1399
1400 void SetDebugIso15693(uint32_t debug) {
1401 DEBUG=debug;
1402 Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
1403 return;
1404 }
1405
1406
1407 //---------------------------------------------------------------------------------------
1408 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1409 // all demodulation performed in arm rather than host. - greg
1410 //---------------------------------------------------------------------------------------
1411 void ReaderIso15693(uint32_t parameter)
1412 {
1413 LEDsoff();
1414 LED_A_ON();
1415
1416 set_tracing(true);
1417
1418 int answerLen = 0;
1419 uint8_t TagUID[8] = {0x00};
1420
1421 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1422
1423 uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH];
1424
1425 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1426 // Setup SSC
1427 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1428
1429 // Start from off (no field generated)
1430 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1431 SpinDelay(200);
1432
1433 // Give the tags time to energize
1434 LED_D_ON();
1435 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1436 SpinDelay(200);
1437 StartCountSspClk();
1438
1439
1440 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1441 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1442
1443 // Now send the IDENTIFY command
1444 BuildIdentifyRequest();
1445 TransmitTo15693Tag(ToSend, ToSendMax, 0);
1446
1447 // Now wait for a response
1448 answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
1449 uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1450
1451 if (answerLen >=12) // we should do a better check than this
1452 {
1453 TagUID[0] = answer[2];
1454 TagUID[1] = answer[3];
1455 TagUID[2] = answer[4];
1456 TagUID[3] = answer[5];
1457 TagUID[4] = answer[6];
1458 TagUID[5] = answer[7];
1459 TagUID[6] = answer[8]; // IC Manufacturer code
1460 TagUID[7] = answer[9]; // always E0
1461
1462 }
1463
1464 Dbprintf("%d octets read from IDENTIFY request:", answerLen);
1465 DbdecodeIso15693Answer(answerLen, answer);
1466 Dbhexdump(answerLen, answer, false);
1467
1468 // UID is reverse
1469 if (answerLen >= 12)
1470 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1471 TagUID[7],TagUID[6],TagUID[5],TagUID[4],
1472 TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
1473
1474
1475 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1476 // DbdecodeIso15693Answer(answerLen2,answer2);
1477 // Dbhexdump(answerLen2,answer2,true);
1478
1479 // Dbprintf("%d octets read from XXX request:", answerLen3);
1480 // DbdecodeIso15693Answer(answerLen3,answer3);
1481 // Dbhexdump(answerLen3,answer3,true);
1482
1483 // read all pages
1484 if (answerLen >= 12 && DEBUG) {
1485 for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
1486 BuildReadBlockRequest(TagUID, i);
1487 TransmitTo15693Tag(ToSend, ToSendMax, start_time);
1488 int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2);
1489 start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1490 if (answerLen > 0) {
1491 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
1492 DbdecodeIso15693Answer(answerLen, answer);
1493 Dbhexdump(answerLen, answer, false);
1494 if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr
1495 }
1496 }
1497 }
1498
1499 // for the time being, switch field off to protect rdv4.0
1500 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1501 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1502 LED_D_OFF();
1503
1504 LED_A_OFF();
1505 }
1506
1507
1508 // Simulate an ISO15693 TAG.
1509 // For Inventory command: print command and send Inventory Response with given UID
1510 // TODO: interpret other reader commands and send appropriate response
1511 void SimTagIso15693(uint32_t parameter, uint8_t *uid)
1512 {
1513 LEDsoff();
1514 LED_A_ON();
1515
1516 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1517 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1518 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
1519 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
1520
1521 StartCountSspClk();
1522
1523 uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
1524
1525 // Build a suitable response to the reader INVENTORY command
1526 BuildInventoryResponse(uid);
1527
1528 // Listen to reader
1529 while (!BUTTON_PRESS()) {
1530 uint32_t eof_time = 0, start_time = 0;
1531 int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
1532
1533 if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
1534 bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
1535 start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
1536 TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
1537 }
1538
1539 Dbprintf("%d bytes read from reader:", cmd_len);
1540 Dbhexdump(cmd_len, cmd, false);
1541 }
1542
1543 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1544 LEDsoff();
1545 }
1546
1547
1548 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1549 // (some manufactures offer a way to read the AFI, though)
1550 void BruteforceIso15693Afi(uint32_t speed)
1551 {
1552 LEDsoff();
1553 LED_A_ON();
1554
1555 uint8_t data[6];
1556 uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
1557
1558 int datalen=0, recvlen=0;
1559
1560 Iso15693InitReader();
1561 StartCountSspClk();
1562
1563 // first without AFI
1564 // Tags should respond without AFI and with AFI=0 even when AFI is active
1565
1566 data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
1567 data[1] = ISO15693_INVENTORY;
1568 data[2] = 0; // mask length
1569 datalen = Iso15693AddCrc(data,3);
1570 recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
1571 uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1572 WDT_HIT();
1573 if (recvlen>=12) {
1574 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
1575 }
1576
1577 // now with AFI
1578
1579 data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1;
1580 data[1] = ISO15693_INVENTORY;
1581 data[2] = 0; // AFI
1582 data[3] = 0; // mask length
1583
1584 for (int i = 0; i < 256; i++) {
1585 data[2] = i & 0xFF;
1586 datalen = Iso15693AddCrc(data,4);
1587 recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
1588 start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
1589 WDT_HIT();
1590 if (recvlen >= 12) {
1591 Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
1592 }
1593 }
1594 Dbprintf("AFI Bruteforcing done.");
1595
1596 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1597 LEDsoff();
1598 }
1599
1600 // Allows to directly send commands to the tag via the client
1601 void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
1602
1603 int recvlen = 0;
1604 uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
1605
1606 LED_A_ON();
1607
1608 if (DEBUG) {
1609 Dbprintf("SEND:");
1610 Dbhexdump(datalen, data, false);
1611 }
1612
1613 recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0);
1614
1615 if (recv) {
1616 if (DEBUG) {
1617 Dbprintf("RECV:");
1618 Dbhexdump(recvlen, recvbuf, false);
1619 DbdecodeIso15693Answer(recvlen, recvbuf);
1620 }
1621
1622 cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
1623
1624 }
1625
1626 // for the time being, switch field off to protect rdv4.0
1627 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1628 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1629 LED_D_OFF();
1630
1631 LED_A_OFF();
1632 }
1633
1634 //-----------------------------------------------------------------------------
1635 // Work with "magic Chinese" card.
1636 //
1637 //-----------------------------------------------------------------------------
1638
1639 // Set the UID to the tag (based on Iceman work).
1640 void SetTag15693Uid(uint8_t *uid)
1641 {
1642 uint8_t cmd[4][9] = {0x00};
1643
1644 uint16_t crc;
1645
1646 int recvlen = 0;
1647 uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
1648
1649 LED_A_ON();
1650
1651 // Command 1 : 02213E00000000
1652 cmd[0][0] = 0x02;
1653 cmd[0][1] = 0x21;
1654 cmd[0][2] = 0x3e;
1655 cmd[0][3] = 0x00;
1656 cmd[0][4] = 0x00;
1657 cmd[0][5] = 0x00;
1658 cmd[0][6] = 0x00;
1659
1660 // Command 2 : 02213F69960000
1661 cmd[1][0] = 0x02;
1662 cmd[1][1] = 0x21;
1663 cmd[1][2] = 0x3f;
1664 cmd[1][3] = 0x69;
1665 cmd[1][4] = 0x96;
1666 cmd[1][5] = 0x00;
1667 cmd[1][6] = 0x00;
1668
1669 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1670 cmd[2][0] = 0x02;
1671 cmd[2][1] = 0x21;
1672 cmd[2][2] = 0x38;
1673 cmd[2][3] = uid[7];
1674 cmd[2][4] = uid[6];
1675 cmd[2][5] = uid[5];
1676 cmd[2][6] = uid[4];
1677
1678 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1679 cmd[3][0] = 0x02;
1680 cmd[3][1] = 0x21;
1681 cmd[3][2] = 0x39;
1682 cmd[3][3] = uid[3];
1683 cmd[3][4] = uid[2];
1684 cmd[3][5] = uid[1];
1685 cmd[3][6] = uid[0];
1686
1687 for (int i=0; i<4; i++) {
1688 // Add the CRC
1689 crc = Iso15693Crc(cmd[i], 7);
1690 cmd[i][7] = crc & 0xff;
1691 cmd[i][8] = crc >> 8;
1692
1693 if (DEBUG) {
1694 Dbprintf("SEND:");
1695 Dbhexdump(sizeof(cmd[i]), cmd[i], false);
1696 }
1697
1698 recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
1699
1700 if (DEBUG) {
1701 Dbprintf("RECV:");
1702 Dbhexdump(recvlen, recvbuf, false);
1703 DbdecodeIso15693Answer(recvlen, recvbuf);
1704 }
1705
1706 cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
1707 }
1708
1709 LED_D_OFF();
1710
1711 LED_A_OFF();
1712 }
1713
1714
1715
1716 // --------------------------------------------------------------------
1717 // -- Misc & deprecated functions
1718 // --------------------------------------------------------------------
1719
1720 /*
1721
1722 // do not use; has a fix UID
1723 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1724 {
1725 uint8_t cmd[12];
1726
1727 uint16_t crc;
1728 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1729 // followed by the block data
1730 // one sub-carrier, inventory, 1 slot, fast rate
1731 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1732 // System Information command code
1733 cmd[1] = 0x2B;
1734 // UID may be optionally specified here
1735 // 64-bit UID
1736 cmd[2] = 0x32;
1737 cmd[3]= 0x4b;
1738 cmd[4] = 0x03;
1739 cmd[5] = 0x01;
1740 cmd[6] = 0x00;
1741 cmd[7] = 0x10;
1742 cmd[8] = 0x05;
1743 cmd[9]= 0xe0; // always e0 (not exactly unique)
1744 //Now the CRC
1745 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1746 cmd[10] = crc & 0xff;
1747 cmd[11] = crc >> 8;
1748
1749 CodeIso15693AsReader(cmd, sizeof(cmd));
1750 }
1751
1752
1753 // do not use; has a fix UID
1754 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1755 {
1756 uint8_t cmd[14];
1757
1758 uint16_t crc;
1759 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1760 // followed by the block data
1761 // one sub-carrier, inventory, 1 slot, fast rate
1762 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1763 // READ Multi BLOCK command code
1764 cmd[1] = 0x23;
1765 // UID may be optionally specified here
1766 // 64-bit UID
1767 cmd[2] = 0x32;
1768 cmd[3]= 0x4b;
1769 cmd[4] = 0x03;
1770 cmd[5] = 0x01;
1771 cmd[6] = 0x00;
1772 cmd[7] = 0x10;
1773 cmd[8] = 0x05;
1774 cmd[9]= 0xe0; // always e0 (not exactly unique)
1775 // First Block number to read
1776 cmd[10] = 0x00;
1777 // Number of Blocks to read
1778 cmd[11] = 0x2f; // read quite a few
1779 //Now the CRC
1780 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1781 cmd[12] = crc & 0xff;
1782 cmd[13] = crc >> 8;
1783
1784 CodeIso15693AsReader(cmd, sizeof(cmd));
1785 }
1786
1787 // do not use; has a fix UID
1788 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1789 {
1790 uint8_t cmd[14];
1791
1792 uint16_t crc;
1793 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1794 // followed by the block data
1795 // one sub-carrier, inventory, 1 slot, fast rate
1796 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1797 // READ BLOCK command code
1798 cmd[1] = CmdCode;
1799 // UID may be optionally specified here
1800 // 64-bit UID
1801 cmd[2] = 0x32;
1802 cmd[3]= 0x4b;
1803 cmd[4] = 0x03;
1804 cmd[5] = 0x01;
1805 cmd[6] = 0x00;
1806 cmd[7] = 0x10;
1807 cmd[8] = 0x05;
1808 cmd[9]= 0xe0; // always e0 (not exactly unique)
1809 // Parameter
1810 cmd[10] = 0x00;
1811 cmd[11] = 0x0a;
1812
1813 // cmd[12] = 0x00;
1814 // cmd[13] = 0x00; //Now the CRC
1815 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1816 cmd[12] = crc & 0xff;
1817 cmd[13] = crc >> 8;
1818
1819 CodeIso15693AsReader(cmd, sizeof(cmd));
1820 }
1821
1822 // do not use; has a fix UID
1823 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1824 {
1825 uint8_t cmd[14];
1826
1827 uint16_t crc;
1828 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1829 // followed by the block data
1830 // one sub-carrier, inventory, 1 slot, fast rate
1831 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1832 // READ BLOCK command code
1833 cmd[1] = CmdCode;
1834 // UID may be optionally specified here
1835 // 64-bit UID
1836 cmd[2] = 0x32;
1837 cmd[3]= 0x4b;
1838 cmd[4] = 0x03;
1839 cmd[5] = 0x01;
1840 cmd[6] = 0x00;
1841 cmd[7] = 0x10;
1842 cmd[8] = 0x05;
1843 cmd[9]= 0xe0; // always e0 (not exactly unique)
1844 // Parameter
1845 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1846 cmd[11] = 0x00;
1847
1848 // cmd[12] = 0x00;
1849 // cmd[13] = 0x00; //Now the CRC
1850 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1851 cmd[12] = crc & 0xff;
1852 cmd[13] = crc >> 8;
1853
1854 CodeIso15693AsReader(cmd, sizeof(cmd));
1855 }
1856
1857
1858
1859
1860 */
1861
1862
Impressum, Datenschutz