]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Some documentation
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19 typedef struct {
20 uint8_t * buffer;
21 uint32_t numbits;
22 uint8_t position;
23 } BitstreamOut;
24 /**
25 * @brief Pushes bit onto the stream
26 * @param stream
27 * @param bit
28 */
29 void pushBit( BitstreamOut* stream, bool bit)
30 {
31 int bytepos = stream->position >> 3; // divide by 8
32 int bitpos = stream->position & 7;
33 *(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
34 stream->position++;
35 stream->numbits++;
36 }
37 /**
38 * @brief Does LF sample acquisition, this method implements decimation and quantization in order to
39 * be able to provide longer sample traces.
40 * @param decimation - how much should the signal be decimated. A decimation of 1 means every sample, 2 means
41 * every other sample, etc.
42 * @param bits_per_sample - bits per sample. Max 8, min 1 bit per sample.
43 * @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set
44 * to -1 to ignore threshold.
45 * @param averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample
46 * value that will be used is the average value of the three samples.
47 * @return the number of bits occupied by the samples.
48 */
49 uint8_t DoAcquisition(int decimation, int bits_per_sample, int trigger_threshold, bool averaging)
50 {
51 //A decimation of 2 means we keep every 2nd sample
52 //A decimation of 3 means we keep 1 in 3 samples.
53 //A quantization of 1 means one bit is discarded from the sample (division by 2).
54 uint8_t *dest = (uint8_t *)BigBuf;
55 int bufsize = BIGBUF_SIZE;
56 memset(dest, 0, bufsize);
57 if(bits_per_sample < 1) bits_per_sample = 1;
58 if(bits_per_sample > 8) bits_per_sample = 8;
59
60 // Use a bit stream to handle the output
61 BitstreamOut data = { dest , 0, 0};
62 int sample_counter = 0;
63 uint8_t sample = 0;
64 //If we want to do averaging
65 uint32_t sample_sum =0 ;
66 uint32_t sample_total_numbers =0 ;
67 uint32_t sample_total_saved =0 ;
68
69 for(;;) {
70 WDT_HIT();
71 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
72 AT91C_BASE_SSC->SSC_THR = 0x43;
73 LED_D_ON();
74 }
75 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
76 sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
77 if (trigger_threshold != -1 && sample < trigger_threshold)
78 continue;
79 sample_total_numbers++;
80
81 LED_D_OFF();
82 trigger_threshold = -1;
83 sample_counter++;
84 sample_sum += sample;
85 //Check decimation
86 if(sample_counter < decimation) continue;
87 //Averaging
88 if(averaging) sample = sample_sum / decimation;
89
90 sample_counter = 0;
91 sample_sum =0;
92 sample_total_saved ++;
93 pushBit(&data, sample & 0x80);
94 if(bits_per_sample > 1) pushBit(&data, sample & 0x40);
95 if(bits_per_sample > 2) pushBit(&data, sample & 0x20);
96 if(bits_per_sample > 3) pushBit(&data, sample & 0x10);
97 if(bits_per_sample > 4) pushBit(&data, sample & 0x08);
98 if(bits_per_sample > 5) pushBit(&data, sample & 0x04);
99 if(bits_per_sample > 6) pushBit(&data, sample & 0x02);
100 if(bits_per_sample > 7) pushBit(&data, sample & 0x01);
101
102 if((data.numbits >> 3) +1 >= bufsize) break;
103 }
104 }
105 Dbprintf("Done, saved %l out of %l seen samples.",sample_total_saved, sample_total_numbers);
106
107 return data.numbits;
108 }
109
110
111 /**
112 * Does the sample acquisition. If threshold is specified, the actual sampling
113 * is not commenced until the threshold has been reached.
114 * @param trigger_threshold - the threshold
115 * @param silent - is true, now outputs are made. If false, dbprints the status
116 */
117 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
118 {
119 uint8_t *dest = (uint8_t *)BigBuf;
120 int n = sizeof(BigBuf);
121 int i;
122
123 memset(dest, 0, n);
124 i = 0;
125 for(;;) {
126 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
127 AT91C_BASE_SSC->SSC_THR = 0x43;
128 LED_D_ON();
129 }
130 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
131 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
132 LED_D_OFF();
133 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
134 continue;
135 else
136 trigger_threshold = -1;
137 if (++i >= n) break;
138 }
139 }
140 if(!silent)
141 {
142 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
143 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
144
145 }
146 }
147 /**
148 * Perform sample aquisition.
149 */
150 void DoAcquisition125k(int trigger_threshold)
151 {
152 DoAcquisition125k_internal(trigger_threshold, false);
153 }
154
155 /**
156 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
157 * if not already loaded, sets divisor and starts up the antenna.
158 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
159 * 0 or 95 ==> 125 KHz
160 *
161 **/
162 void LFSetupFPGAForADC(int divisor, bool lf_field)
163 {
164 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
165 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
166 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
167 else if (divisor == 0)
168 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
169 else
170 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
171
172 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
173
174 // Connect the A/D to the peak-detected low-frequency path.
175 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
176 // Give it a bit of time for the resonant antenna to settle.
177 SpinDelay(50);
178 // Now set up the SSC to get the ADC samples that are now streaming at us.
179 FpgaSetupSsc();
180 }
181 /**
182 * Initializes the FPGA, and acquires the samples.
183 **/
184 void AcquireRawAdcSamples125k(int divisor)
185 {
186 LFSetupFPGAForADC(divisor, true);
187 // Now call the acquisition routine
188 DoAcquisition125k_internal(-1,false);
189 }
190 /**
191 * Initializes the FPGA for snoop-mode, and acquires the samples.
192 **/
193
194 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
195 {
196 LFSetupFPGAForADC(divisor, false);
197 DoAcquisition125k(trigger_threshold);
198 }
199
200 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
201 {
202
203 /* Make sure the tag is reset */
204 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
206 SpinDelay(2500);
207
208
209 int divisor_used = 95; // 125 KHz
210 // see if 'h' was specified
211
212 if (command[strlen((char *) command) - 1] == 'h')
213 divisor_used = 88; // 134.8 KHz
214
215
216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
218 // Give it a bit of time for the resonant antenna to settle.
219 SpinDelay(50);
220
221 // And a little more time for the tag to fully power up
222 SpinDelay(2000);
223
224 // Now set up the SSC to get the ADC samples that are now streaming at us.
225 FpgaSetupSsc();
226
227 // now modulate the reader field
228 while(*command != '\0' && *command != ' ') {
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
230 LED_D_OFF();
231 SpinDelayUs(delay_off);
232 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
233
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
235 LED_D_ON();
236 if(*(command++) == '0')
237 SpinDelayUs(period_0);
238 else
239 SpinDelayUs(period_1);
240 }
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
242 LED_D_OFF();
243 SpinDelayUs(delay_off);
244 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
245
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
247
248 // now do the read
249 DoAcquisition125k(-1);
250 }
251
252 /* blank r/w tag data stream
253 ...0000000000000000 01111111
254 1010101010101010101010101010101010101010101010101010101010101010
255 0011010010100001
256 01111111
257 101010101010101[0]000...
258
259 [5555fe852c5555555555555555fe0000]
260 */
261 void ReadTItag(void)
262 {
263 // some hardcoded initial params
264 // when we read a TI tag we sample the zerocross line at 2Mhz
265 // TI tags modulate a 1 as 16 cycles of 123.2Khz
266 // TI tags modulate a 0 as 16 cycles of 134.2Khz
267 #define FSAMPLE 2000000
268 #define FREQLO 123200
269 #define FREQHI 134200
270
271 signed char *dest = (signed char *)BigBuf;
272 int n = sizeof(BigBuf);
273 // 128 bit shift register [shift3:shift2:shift1:shift0]
274 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
275
276 int i, cycles=0, samples=0;
277 // how many sample points fit in 16 cycles of each frequency
278 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
279 // when to tell if we're close enough to one freq or another
280 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
281
282 // TI tags charge at 134.2Khz
283 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
284 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
285
286 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
287 // connects to SSP_DIN and the SSP_DOUT logic level controls
288 // whether we're modulating the antenna (high)
289 // or listening to the antenna (low)
290 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
291
292 // get TI tag data into the buffer
293 AcquireTiType();
294
295 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
296
297 for (i=0; i<n-1; i++) {
298 // count cycles by looking for lo to hi zero crossings
299 if ( (dest[i]<0) && (dest[i+1]>0) ) {
300 cycles++;
301 // after 16 cycles, measure the frequency
302 if (cycles>15) {
303 cycles=0;
304 samples=i-samples; // number of samples in these 16 cycles
305
306 // TI bits are coming to us lsb first so shift them
307 // right through our 128 bit right shift register
308 shift0 = (shift0>>1) | (shift1 << 31);
309 shift1 = (shift1>>1) | (shift2 << 31);
310 shift2 = (shift2>>1) | (shift3 << 31);
311 shift3 >>= 1;
312
313 // check if the cycles fall close to the number
314 // expected for either the low or high frequency
315 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
316 // low frequency represents a 1
317 shift3 |= (1<<31);
318 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
319 // high frequency represents a 0
320 } else {
321 // probably detected a gay waveform or noise
322 // use this as gaydar or discard shift register and start again
323 shift3 = shift2 = shift1 = shift0 = 0;
324 }
325 samples = i;
326
327 // for each bit we receive, test if we've detected a valid tag
328
329 // if we see 17 zeroes followed by 6 ones, we might have a tag
330 // remember the bits are backwards
331 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
332 // if start and end bytes match, we have a tag so break out of the loop
333 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
334 cycles = 0xF0B; //use this as a flag (ugly but whatever)
335 break;
336 }
337 }
338 }
339 }
340 }
341
342 // if flag is set we have a tag
343 if (cycles!=0xF0B) {
344 DbpString("Info: No valid tag detected.");
345 } else {
346 // put 64 bit data into shift1 and shift0
347 shift0 = (shift0>>24) | (shift1 << 8);
348 shift1 = (shift1>>24) | (shift2 << 8);
349
350 // align 16 bit crc into lower half of shift2
351 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
352
353 // if r/w tag, check ident match
354 if (shift3 & (1<<15) ) {
355 DbpString("Info: TI tag is rewriteable");
356 // only 15 bits compare, last bit of ident is not valid
357 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
358 DbpString("Error: Ident mismatch!");
359 } else {
360 DbpString("Info: TI tag ident is valid");
361 }
362 } else {
363 DbpString("Info: TI tag is readonly");
364 }
365
366 // WARNING the order of the bytes in which we calc crc below needs checking
367 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
368 // bytes in reverse or something
369 // calculate CRC
370 uint32_t crc=0;
371
372 crc = update_crc16(crc, (shift0)&0xff);
373 crc = update_crc16(crc, (shift0>>8)&0xff);
374 crc = update_crc16(crc, (shift0>>16)&0xff);
375 crc = update_crc16(crc, (shift0>>24)&0xff);
376 crc = update_crc16(crc, (shift1)&0xff);
377 crc = update_crc16(crc, (shift1>>8)&0xff);
378 crc = update_crc16(crc, (shift1>>16)&0xff);
379 crc = update_crc16(crc, (shift1>>24)&0xff);
380
381 Dbprintf("Info: Tag data: %x%08x, crc=%x",
382 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
383 if (crc != (shift2&0xffff)) {
384 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
385 } else {
386 DbpString("Info: CRC is good");
387 }
388 }
389 }
390
391 void WriteTIbyte(uint8_t b)
392 {
393 int i = 0;
394
395 // modulate 8 bits out to the antenna
396 for (i=0; i<8; i++)
397 {
398 if (b&(1<<i)) {
399 // stop modulating antenna
400 LOW(GPIO_SSC_DOUT);
401 SpinDelayUs(1000);
402 // modulate antenna
403 HIGH(GPIO_SSC_DOUT);
404 SpinDelayUs(1000);
405 } else {
406 // stop modulating antenna
407 LOW(GPIO_SSC_DOUT);
408 SpinDelayUs(300);
409 // modulate antenna
410 HIGH(GPIO_SSC_DOUT);
411 SpinDelayUs(1700);
412 }
413 }
414 }
415
416 void AcquireTiType(void)
417 {
418 int i, j, n;
419 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
420 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
421 #define TIBUFLEN 1250
422
423 // clear buffer
424 memset(BigBuf,0,sizeof(BigBuf));
425
426 // Set up the synchronous serial port
427 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
428 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
429
430 // steal this pin from the SSP and use it to control the modulation
431 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
432 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
433
434 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
435 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
436
437 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
438 // 48/2 = 24 MHz clock must be divided by 12
439 AT91C_BASE_SSC->SSC_CMR = 12;
440
441 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
442 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
443 AT91C_BASE_SSC->SSC_TCMR = 0;
444 AT91C_BASE_SSC->SSC_TFMR = 0;
445
446 LED_D_ON();
447
448 // modulate antenna
449 HIGH(GPIO_SSC_DOUT);
450
451 // Charge TI tag for 50ms.
452 SpinDelay(50);
453
454 // stop modulating antenna and listen
455 LOW(GPIO_SSC_DOUT);
456
457 LED_D_OFF();
458
459 i = 0;
460 for(;;) {
461 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
462 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
463 i++; if(i >= TIBUFLEN) break;
464 }
465 WDT_HIT();
466 }
467
468 // return stolen pin to SSP
469 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
470 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
471
472 char *dest = (char *)BigBuf;
473 n = TIBUFLEN*32;
474 // unpack buffer
475 for (i=TIBUFLEN-1; i>=0; i--) {
476 for (j=0; j<32; j++) {
477 if(BigBuf[i] & (1 << j)) {
478 dest[--n] = 1;
479 } else {
480 dest[--n] = -1;
481 }
482 }
483 }
484 }
485
486 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
487 // if crc provided, it will be written with the data verbatim (even if bogus)
488 // if not provided a valid crc will be computed from the data and written.
489 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
490 {
491 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
492 if(crc == 0) {
493 crc = update_crc16(crc, (idlo)&0xff);
494 crc = update_crc16(crc, (idlo>>8)&0xff);
495 crc = update_crc16(crc, (idlo>>16)&0xff);
496 crc = update_crc16(crc, (idlo>>24)&0xff);
497 crc = update_crc16(crc, (idhi)&0xff);
498 crc = update_crc16(crc, (idhi>>8)&0xff);
499 crc = update_crc16(crc, (idhi>>16)&0xff);
500 crc = update_crc16(crc, (idhi>>24)&0xff);
501 }
502 Dbprintf("Writing to tag: %x%08x, crc=%x",
503 (unsigned int) idhi, (unsigned int) idlo, crc);
504
505 // TI tags charge at 134.2Khz
506 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
507 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
508 // connects to SSP_DIN and the SSP_DOUT logic level controls
509 // whether we're modulating the antenna (high)
510 // or listening to the antenna (low)
511 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
512 LED_A_ON();
513
514 // steal this pin from the SSP and use it to control the modulation
515 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
516 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
517
518 // writing algorithm:
519 // a high bit consists of a field off for 1ms and field on for 1ms
520 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
521 // initiate a charge time of 50ms (field on) then immediately start writing bits
522 // start by writing 0xBB (keyword) and 0xEB (password)
523 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
524 // finally end with 0x0300 (write frame)
525 // all data is sent lsb firts
526 // finish with 15ms programming time
527
528 // modulate antenna
529 HIGH(GPIO_SSC_DOUT);
530 SpinDelay(50); // charge time
531
532 WriteTIbyte(0xbb); // keyword
533 WriteTIbyte(0xeb); // password
534 WriteTIbyte( (idlo )&0xff );
535 WriteTIbyte( (idlo>>8 )&0xff );
536 WriteTIbyte( (idlo>>16)&0xff );
537 WriteTIbyte( (idlo>>24)&0xff );
538 WriteTIbyte( (idhi )&0xff );
539 WriteTIbyte( (idhi>>8 )&0xff );
540 WriteTIbyte( (idhi>>16)&0xff );
541 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
542 WriteTIbyte( (crc )&0xff ); // crc lo
543 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
544 WriteTIbyte(0x00); // write frame lo
545 WriteTIbyte(0x03); // write frame hi
546 HIGH(GPIO_SSC_DOUT);
547 SpinDelay(50); // programming time
548
549 LED_A_OFF();
550
551 // get TI tag data into the buffer
552 AcquireTiType();
553
554 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
555 DbpString("Now use tiread to check");
556 }
557
558 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
559 {
560 int i;
561 uint8_t *tab = (uint8_t *)BigBuf;
562
563 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
564 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
565
566 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
567
568 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
569 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
570
571 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
572 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
573
574 i = 0;
575 for(;;) {
576 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
577 if(BUTTON_PRESS()) {
578 DbpString("Stopped");
579 return;
580 }
581 WDT_HIT();
582 }
583
584 if (ledcontrol)
585 LED_D_ON();
586
587 if(tab[i])
588 OPEN_COIL();
589 else
590 SHORT_COIL();
591
592 if (ledcontrol)
593 LED_D_OFF();
594
595 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
596 if(BUTTON_PRESS()) {
597 DbpString("Stopped");
598 return;
599 }
600 WDT_HIT();
601 }
602
603 i++;
604 if(i == period) {
605 i = 0;
606 if (gap) {
607 SHORT_COIL();
608 SpinDelayUs(gap);
609 }
610 }
611 }
612 }
613
614 #define DEBUG_FRAME_CONTENTS 1
615 void SimulateTagLowFrequencyBidir(int divisor, int t0)
616 {
617 }
618
619 // compose fc/8 fc/10 waveform
620 static void fc(int c, int *n) {
621 uint8_t *dest = (uint8_t *)BigBuf;
622 int idx;
623
624 // for when we want an fc8 pattern every 4 logical bits
625 if(c==0) {
626 dest[((*n)++)]=1;
627 dest[((*n)++)]=1;
628 dest[((*n)++)]=0;
629 dest[((*n)++)]=0;
630 dest[((*n)++)]=0;
631 dest[((*n)++)]=0;
632 dest[((*n)++)]=0;
633 dest[((*n)++)]=0;
634 }
635 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
636 if(c==8) {
637 for (idx=0; idx<6; idx++) {
638 dest[((*n)++)]=1;
639 dest[((*n)++)]=1;
640 dest[((*n)++)]=0;
641 dest[((*n)++)]=0;
642 dest[((*n)++)]=0;
643 dest[((*n)++)]=0;
644 dest[((*n)++)]=0;
645 dest[((*n)++)]=0;
646 }
647 }
648
649 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
650 if(c==10) {
651 for (idx=0; idx<5; idx++) {
652 dest[((*n)++)]=1;
653 dest[((*n)++)]=1;
654 dest[((*n)++)]=1;
655 dest[((*n)++)]=0;
656 dest[((*n)++)]=0;
657 dest[((*n)++)]=0;
658 dest[((*n)++)]=0;
659 dest[((*n)++)]=0;
660 dest[((*n)++)]=0;
661 dest[((*n)++)]=0;
662 }
663 }
664 }
665
666 // prepare a waveform pattern in the buffer based on the ID given then
667 // simulate a HID tag until the button is pressed
668 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
669 {
670 int n=0, i=0;
671 /*
672 HID tag bitstream format
673 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
674 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
675 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
676 A fc8 is inserted before every 4 bits
677 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
678 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
679 */
680
681 if (hi>0xFFF) {
682 DbpString("Tags can only have 44 bits.");
683 return;
684 }
685 fc(0,&n);
686 // special start of frame marker containing invalid bit sequences
687 fc(8, &n); fc(8, &n); // invalid
688 fc(8, &n); fc(10, &n); // logical 0
689 fc(10, &n); fc(10, &n); // invalid
690 fc(8, &n); fc(10, &n); // logical 0
691
692 WDT_HIT();
693 // manchester encode bits 43 to 32
694 for (i=11; i>=0; i--) {
695 if ((i%4)==3) fc(0,&n);
696 if ((hi>>i)&1) {
697 fc(10, &n); fc(8, &n); // low-high transition
698 } else {
699 fc(8, &n); fc(10, &n); // high-low transition
700 }
701 }
702
703 WDT_HIT();
704 // manchester encode bits 31 to 0
705 for (i=31; i>=0; i--) {
706 if ((i%4)==3) fc(0,&n);
707 if ((lo>>i)&1) {
708 fc(10, &n); fc(8, &n); // low-high transition
709 } else {
710 fc(8, &n); fc(10, &n); // high-low transition
711 }
712 }
713
714 if (ledcontrol)
715 LED_A_ON();
716 SimulateTagLowFrequency(n, 0, ledcontrol);
717
718 if (ledcontrol)
719 LED_A_OFF();
720 }
721
722 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
723 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
724 {
725 uint8_t *dest = (uint8_t *)BigBuf;
726
727 size_t size=0; //, found=0;
728 uint32_t hi2=0, hi=0, lo=0;
729
730 // Configure to go in 125Khz listen mode
731 LFSetupFPGAForADC(95, true);
732
733 while(!BUTTON_PRESS()) {
734
735 WDT_HIT();
736 if (ledcontrol) LED_A_ON();
737
738 DoAcquisition125k_internal(-1,true);
739 // FSK demodulator
740 size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
741
742 WDT_HIT();
743
744 if (size>0 && lo>0){
745 // final loop, go over previously decoded manchester data and decode into usable tag ID
746 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
747 if (hi2 != 0){ //extra large HID tags
748 Dbprintf("TAG ID: %x%08x%08x (%d)",
749 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
750 }else { //standard HID tags <38 bits
751 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
752 uint8_t bitlen = 0;
753 uint32_t fc = 0;
754 uint32_t cardnum = 0;
755 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
756 uint32_t lo2=0;
757 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
758 uint8_t idx3 = 1;
759 while(lo2 > 1){ //find last bit set to 1 (format len bit)
760 lo2=lo2 >> 1;
761 idx3++;
762 }
763 bitlen = idx3+19;
764 fc =0;
765 cardnum=0;
766 if(bitlen == 26){
767 cardnum = (lo>>1)&0xFFFF;
768 fc = (lo>>17)&0xFF;
769 }
770 if(bitlen == 37){
771 cardnum = (lo>>1)&0x7FFFF;
772 fc = ((hi&0xF)<<12)|(lo>>20);
773 }
774 if(bitlen == 34){
775 cardnum = (lo>>1)&0xFFFF;
776 fc= ((hi&1)<<15)|(lo>>17);
777 }
778 if(bitlen == 35){
779 cardnum = (lo>>1)&0xFFFFF;
780 fc = ((hi&1)<<11)|(lo>>21);
781 }
782 }
783 else { //if bit 38 is not set then 37 bit format is used
784 bitlen= 37;
785 fc =0;
786 cardnum=0;
787 if(bitlen==37){
788 cardnum = (lo>>1)&0x7FFFF;
789 fc = ((hi&0xF)<<12)|(lo>>20);
790 }
791 }
792 //Dbprintf("TAG ID: %x%08x (%d)",
793 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
794 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
795 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
796 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
797 }
798 if (findone){
799 if (ledcontrol) LED_A_OFF();
800 return;
801 }
802 // reset
803 hi2 = hi = lo = 0;
804 }
805 WDT_HIT();
806 }
807 DbpString("Stopped");
808 if (ledcontrol) LED_A_OFF();
809 }
810
811 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
812 {
813 uint8_t *dest = (uint8_t *)BigBuf;
814
815 size_t size=0;
816 int clk=0, invert=0, errCnt=0;
817 uint64_t lo=0;
818 // Configure to go in 125Khz listen mode
819 LFSetupFPGAForADC(95, true);
820
821 while(!BUTTON_PRESS()) {
822
823 WDT_HIT();
824 if (ledcontrol) LED_A_ON();
825
826 DoAcquisition125k_internal(-1,true);
827 size = sizeof(BigBuf);
828 //Dbprintf("DEBUG: Buffer got");
829 //askdemod and manchester decode
830 errCnt = askmandemod(dest, &size, &clk, &invert);
831 //Dbprintf("DEBUG: ASK Got");
832 WDT_HIT();
833
834 if (errCnt>=0){
835 lo = Em410xDecode(dest,size);
836 //Dbprintf("DEBUG: EM GOT");
837 if (lo>0){
838 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
839 (uint32_t)(lo>>32),
840 (uint32_t)lo,
841 (uint32_t)(lo&0xFFFF),
842 (uint32_t)((lo>>16LL) & 0xFF),
843 (uint32_t)(lo & 0xFFFFFF));
844 }
845 if (findone){
846 if (ledcontrol) LED_A_OFF();
847 return;
848 }
849 } else{
850 //Dbprintf("DEBUG: No Tag");
851 }
852 WDT_HIT();
853 lo = 0;
854 clk=0;
855 invert=0;
856 errCnt=0;
857 size=0;
858 }
859 DbpString("Stopped");
860 if (ledcontrol) LED_A_OFF();
861 }
862
863 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
864 {
865 uint8_t *dest = (uint8_t *)BigBuf;
866 int idx=0;
867 uint32_t code=0, code2=0;
868 uint8_t version=0;
869 uint8_t facilitycode=0;
870 uint16_t number=0;
871 // Configure to go in 125Khz listen mode
872 LFSetupFPGAForADC(95, true);
873
874 while(!BUTTON_PRESS()) {
875 WDT_HIT();
876 if (ledcontrol) LED_A_ON();
877 DoAcquisition125k_internal(-1,true);
878 //fskdemod and get start index
879 WDT_HIT();
880 idx = IOdemodFSK(dest,sizeof(BigBuf));
881 if (idx>0){
882 //valid tag found
883
884 //Index map
885 //0 10 20 30 40 50 60
886 //| | | | | | |
887 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
888 //-----------------------------------------------------------------------------
889 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
890 //
891 //XSF(version)facility:codeone+codetwo
892 //Handle the data
893 if(findone){ //only print binary if we are doing one
894 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
895 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
896 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
897 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
898 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
899 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
900 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
901 }
902 code = bytebits_to_byte(dest+idx,32);
903 code2 = bytebits_to_byte(dest+idx+32,32);
904 version = bytebits_to_byte(dest+idx+27,8); //14,4
905 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
906 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
907
908 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
909 // if we're only looking for one tag
910 if (findone){
911 if (ledcontrol) LED_A_OFF();
912 //LED_A_OFF();
913 return;
914 }
915 code=code2=0;
916 version=facilitycode=0;
917 number=0;
918 idx=0;
919 }
920 WDT_HIT();
921 }
922 DbpString("Stopped");
923 if (ledcontrol) LED_A_OFF();
924 }
925
926 /*------------------------------
927 * T5555/T5557/T5567 routines
928 *------------------------------
929 */
930
931 /* T55x7 configuration register definitions */
932 #define T55x7_POR_DELAY 0x00000001
933 #define T55x7_ST_TERMINATOR 0x00000008
934 #define T55x7_PWD 0x00000010
935 #define T55x7_MAXBLOCK_SHIFT 5
936 #define T55x7_AOR 0x00000200
937 #define T55x7_PSKCF_RF_2 0
938 #define T55x7_PSKCF_RF_4 0x00000400
939 #define T55x7_PSKCF_RF_8 0x00000800
940 #define T55x7_MODULATION_DIRECT 0
941 #define T55x7_MODULATION_PSK1 0x00001000
942 #define T55x7_MODULATION_PSK2 0x00002000
943 #define T55x7_MODULATION_PSK3 0x00003000
944 #define T55x7_MODULATION_FSK1 0x00004000
945 #define T55x7_MODULATION_FSK2 0x00005000
946 #define T55x7_MODULATION_FSK1a 0x00006000
947 #define T55x7_MODULATION_FSK2a 0x00007000
948 #define T55x7_MODULATION_MANCHESTER 0x00008000
949 #define T55x7_MODULATION_BIPHASE 0x00010000
950 #define T55x7_BITRATE_RF_8 0
951 #define T55x7_BITRATE_RF_16 0x00040000
952 #define T55x7_BITRATE_RF_32 0x00080000
953 #define T55x7_BITRATE_RF_40 0x000C0000
954 #define T55x7_BITRATE_RF_50 0x00100000
955 #define T55x7_BITRATE_RF_64 0x00140000
956 #define T55x7_BITRATE_RF_100 0x00180000
957 #define T55x7_BITRATE_RF_128 0x001C0000
958
959 /* T5555 (Q5) configuration register definitions */
960 #define T5555_ST_TERMINATOR 0x00000001
961 #define T5555_MAXBLOCK_SHIFT 0x00000001
962 #define T5555_MODULATION_MANCHESTER 0
963 #define T5555_MODULATION_PSK1 0x00000010
964 #define T5555_MODULATION_PSK2 0x00000020
965 #define T5555_MODULATION_PSK3 0x00000030
966 #define T5555_MODULATION_FSK1 0x00000040
967 #define T5555_MODULATION_FSK2 0x00000050
968 #define T5555_MODULATION_BIPHASE 0x00000060
969 #define T5555_MODULATION_DIRECT 0x00000070
970 #define T5555_INVERT_OUTPUT 0x00000080
971 #define T5555_PSK_RF_2 0
972 #define T5555_PSK_RF_4 0x00000100
973 #define T5555_PSK_RF_8 0x00000200
974 #define T5555_USE_PWD 0x00000400
975 #define T5555_USE_AOR 0x00000800
976 #define T5555_BITRATE_SHIFT 12
977 #define T5555_FAST_WRITE 0x00004000
978 #define T5555_PAGE_SELECT 0x00008000
979
980 /*
981 * Relevant times in microsecond
982 * To compensate antenna falling times shorten the write times
983 * and enlarge the gap ones.
984 */
985 #define START_GAP 250
986 #define WRITE_GAP 160
987 #define WRITE_0 144 // 192
988 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
989
990 // Write one bit to card
991 void T55xxWriteBit(int bit)
992 {
993 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
994 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
995 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
996 if (bit == 0)
997 SpinDelayUs(WRITE_0);
998 else
999 SpinDelayUs(WRITE_1);
1000 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1001 SpinDelayUs(WRITE_GAP);
1002 }
1003
1004 // Write one card block in page 0, no lock
1005 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1006 {
1007 //unsigned int i; //enio adjustment 12/10/14
1008 uint32_t i;
1009
1010 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1011 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1012 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1013
1014 // Give it a bit of time for the resonant antenna to settle.
1015 // And for the tag to fully power up
1016 SpinDelay(150);
1017
1018 // Now start writting
1019 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1020 SpinDelayUs(START_GAP);
1021
1022 // Opcode
1023 T55xxWriteBit(1);
1024 T55xxWriteBit(0); //Page 0
1025 if (PwdMode == 1){
1026 // Pwd
1027 for (i = 0x80000000; i != 0; i >>= 1)
1028 T55xxWriteBit(Pwd & i);
1029 }
1030 // Lock bit
1031 T55xxWriteBit(0);
1032
1033 // Data
1034 for (i = 0x80000000; i != 0; i >>= 1)
1035 T55xxWriteBit(Data & i);
1036
1037 // Block
1038 for (i = 0x04; i != 0; i >>= 1)
1039 T55xxWriteBit(Block & i);
1040
1041 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1042 // so wait a little more)
1043 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1044 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1045 SpinDelay(20);
1046 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1047 }
1048
1049 // Read one card block in page 0
1050 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1051 {
1052 uint8_t *dest = (uint8_t *)BigBuf;
1053 //int m=0, i=0; //enio adjustment 12/10/14
1054 uint32_t m=0, i=0;
1055 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1056 m = sizeof(BigBuf);
1057 // Clear destination buffer before sending the command
1058 memset(dest, 128, m);
1059 // Connect the A/D to the peak-detected low-frequency path.
1060 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1061 // Now set up the SSC to get the ADC samples that are now streaming at us.
1062 FpgaSetupSsc();
1063
1064 LED_D_ON();
1065 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1066 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1067
1068 // Give it a bit of time for the resonant antenna to settle.
1069 // And for the tag to fully power up
1070 SpinDelay(150);
1071
1072 // Now start writting
1073 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1074 SpinDelayUs(START_GAP);
1075
1076 // Opcode
1077 T55xxWriteBit(1);
1078 T55xxWriteBit(0); //Page 0
1079 if (PwdMode == 1){
1080 // Pwd
1081 for (i = 0x80000000; i != 0; i >>= 1)
1082 T55xxWriteBit(Pwd & i);
1083 }
1084 // Lock bit
1085 T55xxWriteBit(0);
1086 // Block
1087 for (i = 0x04; i != 0; i >>= 1)
1088 T55xxWriteBit(Block & i);
1089
1090 // Turn field on to read the response
1091 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1092 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1093
1094 // Now do the acquisition
1095 i = 0;
1096 for(;;) {
1097 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1098 AT91C_BASE_SSC->SSC_THR = 0x43;
1099 }
1100 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1101 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1102 // we don't care about actual value, only if it's more or less than a
1103 // threshold essentially we capture zero crossings for later analysis
1104 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1105 i++;
1106 if (i >= m) break;
1107 }
1108 }
1109
1110 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1111 LED_D_OFF();
1112 DbpString("DONE!");
1113 }
1114
1115 // Read card traceability data (page 1)
1116 void T55xxReadTrace(void){
1117 uint8_t *dest = (uint8_t *)BigBuf;
1118 int m=0, i=0;
1119
1120 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1121 m = sizeof(BigBuf);
1122 // Clear destination buffer before sending the command
1123 memset(dest, 128, m);
1124 // Connect the A/D to the peak-detected low-frequency path.
1125 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1126 // Now set up the SSC to get the ADC samples that are now streaming at us.
1127 FpgaSetupSsc();
1128
1129 LED_D_ON();
1130 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1131 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1132
1133 // Give it a bit of time for the resonant antenna to settle.
1134 // And for the tag to fully power up
1135 SpinDelay(150);
1136
1137 // Now start writting
1138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1139 SpinDelayUs(START_GAP);
1140
1141 // Opcode
1142 T55xxWriteBit(1);
1143 T55xxWriteBit(1); //Page 1
1144
1145 // Turn field on to read the response
1146 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1147 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1148
1149 // Now do the acquisition
1150 i = 0;
1151 for(;;) {
1152 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1153 AT91C_BASE_SSC->SSC_THR = 0x43;
1154 }
1155 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1156 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1157 i++;
1158 if (i >= m) break;
1159 }
1160 }
1161
1162 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1163 LED_D_OFF();
1164 DbpString("DONE!");
1165 }
1166
1167 /*-------------- Cloning routines -----------*/
1168 // Copy HID id to card and setup block 0 config
1169 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1170 {
1171 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1172 int last_block = 0;
1173
1174 if (longFMT){
1175 // Ensure no more than 84 bits supplied
1176 if (hi2>0xFFFFF) {
1177 DbpString("Tags can only have 84 bits.");
1178 return;
1179 }
1180 // Build the 6 data blocks for supplied 84bit ID
1181 last_block = 6;
1182 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1183 for (int i=0;i<4;i++) {
1184 if (hi2 & (1<<(19-i)))
1185 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1186 else
1187 data1 |= (1<<((3-i)*2)); // 0 -> 01
1188 }
1189
1190 data2 = 0;
1191 for (int i=0;i<16;i++) {
1192 if (hi2 & (1<<(15-i)))
1193 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1194 else
1195 data2 |= (1<<((15-i)*2)); // 0 -> 01
1196 }
1197
1198 data3 = 0;
1199 for (int i=0;i<16;i++) {
1200 if (hi & (1<<(31-i)))
1201 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1202 else
1203 data3 |= (1<<((15-i)*2)); // 0 -> 01
1204 }
1205
1206 data4 = 0;
1207 for (int i=0;i<16;i++) {
1208 if (hi & (1<<(15-i)))
1209 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1210 else
1211 data4 |= (1<<((15-i)*2)); // 0 -> 01
1212 }
1213
1214 data5 = 0;
1215 for (int i=0;i<16;i++) {
1216 if (lo & (1<<(31-i)))
1217 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1218 else
1219 data5 |= (1<<((15-i)*2)); // 0 -> 01
1220 }
1221
1222 data6 = 0;
1223 for (int i=0;i<16;i++) {
1224 if (lo & (1<<(15-i)))
1225 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1226 else
1227 data6 |= (1<<((15-i)*2)); // 0 -> 01
1228 }
1229 }
1230 else {
1231 // Ensure no more than 44 bits supplied
1232 if (hi>0xFFF) {
1233 DbpString("Tags can only have 44 bits.");
1234 return;
1235 }
1236
1237 // Build the 3 data blocks for supplied 44bit ID
1238 last_block = 3;
1239
1240 data1 = 0x1D000000; // load preamble
1241
1242 for (int i=0;i<12;i++) {
1243 if (hi & (1<<(11-i)))
1244 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1245 else
1246 data1 |= (1<<((11-i)*2)); // 0 -> 01
1247 }
1248
1249 data2 = 0;
1250 for (int i=0;i<16;i++) {
1251 if (lo & (1<<(31-i)))
1252 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1253 else
1254 data2 |= (1<<((15-i)*2)); // 0 -> 01
1255 }
1256
1257 data3 = 0;
1258 for (int i=0;i<16;i++) {
1259 if (lo & (1<<(15-i)))
1260 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1261 else
1262 data3 |= (1<<((15-i)*2)); // 0 -> 01
1263 }
1264 }
1265
1266 LED_D_ON();
1267 // Program the data blocks for supplied ID
1268 // and the block 0 for HID format
1269 T55xxWriteBlock(data1,1,0,0);
1270 T55xxWriteBlock(data2,2,0,0);
1271 T55xxWriteBlock(data3,3,0,0);
1272
1273 if (longFMT) { // if long format there are 6 blocks
1274 T55xxWriteBlock(data4,4,0,0);
1275 T55xxWriteBlock(data5,5,0,0);
1276 T55xxWriteBlock(data6,6,0,0);
1277 }
1278
1279 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1280 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1281 T55x7_MODULATION_FSK2a |
1282 last_block << T55x7_MAXBLOCK_SHIFT,
1283 0,0,0);
1284
1285 LED_D_OFF();
1286
1287 DbpString("DONE!");
1288 }
1289
1290 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1291 {
1292 int data1=0, data2=0; //up to six blocks for long format
1293
1294 data1 = hi; // load preamble
1295 data2 = lo;
1296
1297 LED_D_ON();
1298 // Program the data blocks for supplied ID
1299 // and the block 0 for HID format
1300 T55xxWriteBlock(data1,1,0,0);
1301 T55xxWriteBlock(data2,2,0,0);
1302
1303 //Config Block
1304 T55xxWriteBlock(0x00147040,0,0,0);
1305 LED_D_OFF();
1306
1307 DbpString("DONE!");
1308 }
1309
1310 // Define 9bit header for EM410x tags
1311 #define EM410X_HEADER 0x1FF
1312 #define EM410X_ID_LENGTH 40
1313
1314 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1315 {
1316 int i, id_bit;
1317 uint64_t id = EM410X_HEADER;
1318 uint64_t rev_id = 0; // reversed ID
1319 int c_parity[4]; // column parity
1320 int r_parity = 0; // row parity
1321 uint32_t clock = 0;
1322
1323 // Reverse ID bits given as parameter (for simpler operations)
1324 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1325 if (i < 32) {
1326 rev_id = (rev_id << 1) | (id_lo & 1);
1327 id_lo >>= 1;
1328 } else {
1329 rev_id = (rev_id << 1) | (id_hi & 1);
1330 id_hi >>= 1;
1331 }
1332 }
1333
1334 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1335 id_bit = rev_id & 1;
1336
1337 if (i % 4 == 0) {
1338 // Don't write row parity bit at start of parsing
1339 if (i)
1340 id = (id << 1) | r_parity;
1341 // Start counting parity for new row
1342 r_parity = id_bit;
1343 } else {
1344 // Count row parity
1345 r_parity ^= id_bit;
1346 }
1347
1348 // First elements in column?
1349 if (i < 4)
1350 // Fill out first elements
1351 c_parity[i] = id_bit;
1352 else
1353 // Count column parity
1354 c_parity[i % 4] ^= id_bit;
1355
1356 // Insert ID bit
1357 id = (id << 1) | id_bit;
1358 rev_id >>= 1;
1359 }
1360
1361 // Insert parity bit of last row
1362 id = (id << 1) | r_parity;
1363
1364 // Fill out column parity at the end of tag
1365 for (i = 0; i < 4; ++i)
1366 id = (id << 1) | c_parity[i];
1367
1368 // Add stop bit
1369 id <<= 1;
1370
1371 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1372 LED_D_ON();
1373
1374 // Write EM410x ID
1375 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1376 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1377
1378 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1379 if (card) {
1380 // Clock rate is stored in bits 8-15 of the card value
1381 clock = (card & 0xFF00) >> 8;
1382 Dbprintf("Clock rate: %d", clock);
1383 switch (clock)
1384 {
1385 case 32:
1386 clock = T55x7_BITRATE_RF_32;
1387 break;
1388 case 16:
1389 clock = T55x7_BITRATE_RF_16;
1390 break;
1391 case 0:
1392 // A value of 0 is assumed to be 64 for backwards-compatibility
1393 // Fall through...
1394 case 64:
1395 clock = T55x7_BITRATE_RF_64;
1396 break;
1397 default:
1398 Dbprintf("Invalid clock rate: %d", clock);
1399 return;
1400 }
1401
1402 // Writing configuration for T55x7 tag
1403 T55xxWriteBlock(clock |
1404 T55x7_MODULATION_MANCHESTER |
1405 2 << T55x7_MAXBLOCK_SHIFT,
1406 0, 0, 0);
1407 }
1408 else
1409 // Writing configuration for T5555(Q5) tag
1410 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1411 T5555_MODULATION_MANCHESTER |
1412 2 << T5555_MAXBLOCK_SHIFT,
1413 0, 0, 0);
1414
1415 LED_D_OFF();
1416 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1417 (uint32_t)(id >> 32), (uint32_t)id);
1418 }
1419
1420 // Clone Indala 64-bit tag by UID to T55x7
1421 void CopyIndala64toT55x7(int hi, int lo)
1422 {
1423
1424 //Program the 2 data blocks for supplied 64bit UID
1425 // and the block 0 for Indala64 format
1426 T55xxWriteBlock(hi,1,0,0);
1427 T55xxWriteBlock(lo,2,0,0);
1428 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1429 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1430 T55x7_MODULATION_PSK1 |
1431 2 << T55x7_MAXBLOCK_SHIFT,
1432 0, 0, 0);
1433 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1434 // T5567WriteBlock(0x603E1042,0);
1435
1436 DbpString("DONE!");
1437
1438 }
1439
1440 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1441 {
1442
1443 //Program the 7 data blocks for supplied 224bit UID
1444 // and the block 0 for Indala224 format
1445 T55xxWriteBlock(uid1,1,0,0);
1446 T55xxWriteBlock(uid2,2,0,0);
1447 T55xxWriteBlock(uid3,3,0,0);
1448 T55xxWriteBlock(uid4,4,0,0);
1449 T55xxWriteBlock(uid5,5,0,0);
1450 T55xxWriteBlock(uid6,6,0,0);
1451 T55xxWriteBlock(uid7,7,0,0);
1452 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1453 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1454 T55x7_MODULATION_PSK1 |
1455 7 << T55x7_MAXBLOCK_SHIFT,
1456 0,0,0);
1457 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1458 // T5567WriteBlock(0x603E10E2,0);
1459
1460 DbpString("DONE!");
1461
1462 }
1463
1464
1465 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1466 #define max(x,y) ( x<y ? y:x)
1467
1468 int DemodPCF7931(uint8_t **outBlocks) {
1469 uint8_t BitStream[256];
1470 uint8_t Blocks[8][16];
1471 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1472 int GraphTraceLen = sizeof(BigBuf);
1473 int i, j, lastval, bitidx, half_switch;
1474 int clock = 64;
1475 int tolerance = clock / 8;
1476 int pmc, block_done;
1477 int lc, warnings = 0;
1478 int num_blocks = 0;
1479 int lmin=128, lmax=128;
1480 uint8_t dir;
1481
1482 AcquireRawAdcSamples125k(0);
1483
1484 lmin = 64;
1485 lmax = 192;
1486
1487 i = 2;
1488
1489 /* Find first local max/min */
1490 if(GraphBuffer[1] > GraphBuffer[0]) {
1491 while(i < GraphTraceLen) {
1492 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1493 break;
1494 i++;
1495 }
1496 dir = 0;
1497 }
1498 else {
1499 while(i < GraphTraceLen) {
1500 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1501 break;
1502 i++;
1503 }
1504 dir = 1;
1505 }
1506
1507 lastval = i++;
1508 half_switch = 0;
1509 pmc = 0;
1510 block_done = 0;
1511
1512 for (bitidx = 0; i < GraphTraceLen; i++)
1513 {
1514 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1515 {
1516 lc = i - lastval;
1517 lastval = i;
1518
1519 // Switch depending on lc length:
1520 // Tolerance is 1/8 of clock rate (arbitrary)
1521 if (abs(lc-clock/4) < tolerance) {
1522 // 16T0
1523 if((i - pmc) == lc) { /* 16T0 was previous one */
1524 /* It's a PMC ! */
1525 i += (128+127+16+32+33+16)-1;
1526 lastval = i;
1527 pmc = 0;
1528 block_done = 1;
1529 }
1530 else {
1531 pmc = i;
1532 }
1533 } else if (abs(lc-clock/2) < tolerance) {
1534 // 32TO
1535 if((i - pmc) == lc) { /* 16T0 was previous one */
1536 /* It's a PMC ! */
1537 i += (128+127+16+32+33)-1;
1538 lastval = i;
1539 pmc = 0;
1540 block_done = 1;
1541 }
1542 else if(half_switch == 1) {
1543 BitStream[bitidx++] = 0;
1544 half_switch = 0;
1545 }
1546 else
1547 half_switch++;
1548 } else if (abs(lc-clock) < tolerance) {
1549 // 64TO
1550 BitStream[bitidx++] = 1;
1551 } else {
1552 // Error
1553 warnings++;
1554 if (warnings > 10)
1555 {
1556 Dbprintf("Error: too many detection errors, aborting.");
1557 return 0;
1558 }
1559 }
1560
1561 if(block_done == 1) {
1562 if(bitidx == 128) {
1563 for(j=0; j<16; j++) {
1564 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1565 64*BitStream[j*8+6]+
1566 32*BitStream[j*8+5]+
1567 16*BitStream[j*8+4]+
1568 8*BitStream[j*8+3]+
1569 4*BitStream[j*8+2]+
1570 2*BitStream[j*8+1]+
1571 BitStream[j*8];
1572 }
1573 num_blocks++;
1574 }
1575 bitidx = 0;
1576 block_done = 0;
1577 half_switch = 0;
1578 }
1579 if(i < GraphTraceLen)
1580 {
1581 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1582 else dir = 1;
1583 }
1584 }
1585 if(bitidx==255)
1586 bitidx=0;
1587 warnings = 0;
1588 if(num_blocks == 4) break;
1589 }
1590 memcpy(outBlocks, Blocks, 16*num_blocks);
1591 return num_blocks;
1592 }
1593
1594 int IsBlock0PCF7931(uint8_t *Block) {
1595 // Assume RFU means 0 :)
1596 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1597 return 1;
1598 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1599 return 1;
1600 return 0;
1601 }
1602
1603 int IsBlock1PCF7931(uint8_t *Block) {
1604 // Assume RFU means 0 :)
1605 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1606 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1607 return 1;
1608
1609 return 0;
1610 }
1611
1612 #define ALLOC 16
1613
1614 void ReadPCF7931() {
1615 uint8_t Blocks[8][17];
1616 uint8_t tmpBlocks[4][16];
1617 int i, j, ind, ind2, n;
1618 int num_blocks = 0;
1619 int max_blocks = 8;
1620 int ident = 0;
1621 int error = 0;
1622 int tries = 0;
1623
1624 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1625
1626 do {
1627 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1628 n = DemodPCF7931((uint8_t**)tmpBlocks);
1629 if(!n)
1630 error++;
1631 if(error==10 && num_blocks == 0) {
1632 Dbprintf("Error, no tag or bad tag");
1633 return;
1634 }
1635 else if (tries==20 || error==10) {
1636 Dbprintf("Error reading the tag");
1637 Dbprintf("Here is the partial content");
1638 goto end;
1639 }
1640
1641 for(i=0; i<n; i++)
1642 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1643 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1644 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1645 if(!ident) {
1646 for(i=0; i<n; i++) {
1647 if(IsBlock0PCF7931(tmpBlocks[i])) {
1648 // Found block 0 ?
1649 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1650 // Found block 1!
1651 // \o/
1652 ident = 1;
1653 memcpy(Blocks[0], tmpBlocks[i], 16);
1654 Blocks[0][ALLOC] = 1;
1655 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1656 Blocks[1][ALLOC] = 1;
1657 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1658 // Debug print
1659 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1660 num_blocks = 2;
1661 // Handle following blocks
1662 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1663 if(j==n) j=0;
1664 if(j==i) break;
1665 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1666 Blocks[ind2][ALLOC] = 1;
1667 }
1668 break;
1669 }
1670 }
1671 }
1672 }
1673 else {
1674 for(i=0; i<n; i++) { // Look for identical block in known blocks
1675 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1676 for(j=0; j<max_blocks; j++) {
1677 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1678 // Found an identical block
1679 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1680 if(ind2 < 0)
1681 ind2 = max_blocks;
1682 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1683 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1684 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1685 Blocks[ind2][ALLOC] = 1;
1686 num_blocks++;
1687 if(num_blocks == max_blocks) goto end;
1688 }
1689 }
1690 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1691 if(ind2 > max_blocks)
1692 ind2 = 0;
1693 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1694 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1695 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1696 Blocks[ind2][ALLOC] = 1;
1697 num_blocks++;
1698 if(num_blocks == max_blocks) goto end;
1699 }
1700 }
1701 }
1702 }
1703 }
1704 }
1705 }
1706 tries++;
1707 if (BUTTON_PRESS()) return;
1708 } while (num_blocks != max_blocks);
1709 end:
1710 Dbprintf("-----------------------------------------");
1711 Dbprintf("Memory content:");
1712 Dbprintf("-----------------------------------------");
1713 for(i=0; i<max_blocks; i++) {
1714 if(Blocks[i][ALLOC]==1)
1715 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1716 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1717 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1718 else
1719 Dbprintf("<missing block %d>", i);
1720 }
1721 Dbprintf("-----------------------------------------");
1722
1723 return ;
1724 }
1725
1726
1727 //-----------------------------------
1728 // EM4469 / EM4305 routines
1729 //-----------------------------------
1730 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1731 #define FWD_CMD_WRITE 0xA
1732 #define FWD_CMD_READ 0x9
1733 #define FWD_CMD_DISABLE 0x5
1734
1735
1736 uint8_t forwardLink_data[64]; //array of forwarded bits
1737 uint8_t * forward_ptr; //ptr for forward message preparation
1738 uint8_t fwd_bit_sz; //forwardlink bit counter
1739 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1740
1741 //====================================================================
1742 // prepares command bits
1743 // see EM4469 spec
1744 //====================================================================
1745 //--------------------------------------------------------------------
1746 uint8_t Prepare_Cmd( uint8_t cmd ) {
1747 //--------------------------------------------------------------------
1748
1749 *forward_ptr++ = 0; //start bit
1750 *forward_ptr++ = 0; //second pause for 4050 code
1751
1752 *forward_ptr++ = cmd;
1753 cmd >>= 1;
1754 *forward_ptr++ = cmd;
1755 cmd >>= 1;
1756 *forward_ptr++ = cmd;
1757 cmd >>= 1;
1758 *forward_ptr++ = cmd;
1759
1760 return 6; //return number of emited bits
1761 }
1762
1763 //====================================================================
1764 // prepares address bits
1765 // see EM4469 spec
1766 //====================================================================
1767
1768 //--------------------------------------------------------------------
1769 uint8_t Prepare_Addr( uint8_t addr ) {
1770 //--------------------------------------------------------------------
1771
1772 register uint8_t line_parity;
1773
1774 uint8_t i;
1775 line_parity = 0;
1776 for(i=0;i<6;i++) {
1777 *forward_ptr++ = addr;
1778 line_parity ^= addr;
1779 addr >>= 1;
1780 }
1781
1782 *forward_ptr++ = (line_parity & 1);
1783
1784 return 7; //return number of emited bits
1785 }
1786
1787 //====================================================================
1788 // prepares data bits intreleaved with parity bits
1789 // see EM4469 spec
1790 //====================================================================
1791
1792 //--------------------------------------------------------------------
1793 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1794 //--------------------------------------------------------------------
1795
1796 register uint8_t line_parity;
1797 register uint8_t column_parity;
1798 register uint8_t i, j;
1799 register uint16_t data;
1800
1801 data = data_low;
1802 column_parity = 0;
1803
1804 for(i=0; i<4; i++) {
1805 line_parity = 0;
1806 for(j=0; j<8; j++) {
1807 line_parity ^= data;
1808 column_parity ^= (data & 1) << j;
1809 *forward_ptr++ = data;
1810 data >>= 1;
1811 }
1812 *forward_ptr++ = line_parity;
1813 if(i == 1)
1814 data = data_hi;
1815 }
1816
1817 for(j=0; j<8; j++) {
1818 *forward_ptr++ = column_parity;
1819 column_parity >>= 1;
1820 }
1821 *forward_ptr = 0;
1822
1823 return 45; //return number of emited bits
1824 }
1825
1826 //====================================================================
1827 // Forward Link send function
1828 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1829 // fwd_bit_count set with number of bits to be sent
1830 //====================================================================
1831 void SendForward(uint8_t fwd_bit_count) {
1832
1833 fwd_write_ptr = forwardLink_data;
1834 fwd_bit_sz = fwd_bit_count;
1835
1836 LED_D_ON();
1837
1838 //Field on
1839 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1840 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1841 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1842
1843 // Give it a bit of time for the resonant antenna to settle.
1844 // And for the tag to fully power up
1845 SpinDelay(150);
1846
1847 // force 1st mod pulse (start gap must be longer for 4305)
1848 fwd_bit_sz--; //prepare next bit modulation
1849 fwd_write_ptr++;
1850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1851 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1852 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1853 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1854 SpinDelayUs(16*8); //16 cycles on (8us each)
1855
1856 // now start writting
1857 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1858 if(((*fwd_write_ptr++) & 1) == 1)
1859 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1860 else {
1861 //These timings work for 4469/4269/4305 (with the 55*8 above)
1862 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1863 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1864 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1865 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1866 SpinDelayUs(9*8); //16 cycles on (8us each)
1867 }
1868 }
1869 }
1870
1871 void EM4xLogin(uint32_t Password) {
1872
1873 uint8_t fwd_bit_count;
1874
1875 forward_ptr = forwardLink_data;
1876 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1877 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1878
1879 SendForward(fwd_bit_count);
1880
1881 //Wait for command to complete
1882 SpinDelay(20);
1883
1884 }
1885
1886 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1887
1888 uint8_t fwd_bit_count;
1889 uint8_t *dest = (uint8_t *)BigBuf;
1890 int m=0, i=0;
1891
1892 //If password mode do login
1893 if (PwdMode == 1) EM4xLogin(Pwd);
1894
1895 forward_ptr = forwardLink_data;
1896 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1897 fwd_bit_count += Prepare_Addr( Address );
1898
1899 m = sizeof(BigBuf);
1900 // Clear destination buffer before sending the command
1901 memset(dest, 128, m);
1902 // Connect the A/D to the peak-detected low-frequency path.
1903 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1904 // Now set up the SSC to get the ADC samples that are now streaming at us.
1905 FpgaSetupSsc();
1906
1907 SendForward(fwd_bit_count);
1908
1909 // Now do the acquisition
1910 i = 0;
1911 for(;;) {
1912 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1913 AT91C_BASE_SSC->SSC_THR = 0x43;
1914 }
1915 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1916 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1917 i++;
1918 if (i >= m) break;
1919 }
1920 }
1921 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1922 LED_D_OFF();
1923 }
1924
1925 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1926
1927 uint8_t fwd_bit_count;
1928
1929 //If password mode do login
1930 if (PwdMode == 1) EM4xLogin(Pwd);
1931
1932 forward_ptr = forwardLink_data;
1933 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1934 fwd_bit_count += Prepare_Addr( Address );
1935 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1936
1937 SendForward(fwd_bit_count);
1938
1939 //Wait for write to complete
1940 SpinDelay(20);
1941 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1942 LED_D_OFF();
1943 }
Impressum, Datenschutz