1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum
= 0;
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay
;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime
;
104 static uint32_t LastTimeProxToAirStart
;
105 static uint32_t LastProxToAirDuration
;
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
124 const uint8_t OddByteParity
[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144 void iso14a_set_trigger(bool enable
) {
149 void iso14a_set_timeout(uint32_t timeout
) {
150 iso14a_timeout
= timeout
;
151 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
155 void iso14a_set_ATS_timeout(uint8_t *ats
) {
161 if (ats
[0] > 1) { // there is a format byte T0
162 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
168 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
171 iso14a_set_timeout(fwt
/(8*16));
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
180 //-----------------------------------------------------------------------------
181 byte_t
oddparity (const byte_t bt
)
183 return OddByteParity
[bt
];
186 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
188 uint16_t paritybit_cnt
= 0;
189 uint16_t paritybyte_cnt
= 0;
190 uint8_t parityBits
= 0;
192 for (uint16_t i
= 0; i
< iLen
; i
++) {
193 // Generate the parity bits
194 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
195 if (paritybit_cnt
== 7) {
196 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
197 parityBits
= 0; // and advance to next Parity Byte
205 // save remaining parity bits
206 par
[paritybyte_cnt
] = parityBits
;
210 void AppendCrc14443a(uint8_t* data
, int len
)
212 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
215 void AppendCrc14443b(uint8_t* data
, int len
)
217 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT
[] = {
246 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
247 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
254 Uart
.state
= STATE_UNSYNCD
;
256 Uart
.len
= 0; // number of decoded data bytes
257 Uart
.parityLen
= 0; // number of decoded parity bytes
258 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
259 Uart
.parityBits
= 0; // holds 8 parity bits
268 void UartInit(uint8_t *data
, uint8_t *parity
)
271 Uart
.parity
= parity
;
272 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
280 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
282 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
284 Uart
.syncBit
= 9999; // not set
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
298 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
299 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
300 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
301 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
302 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
303 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
304 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
305 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
307 if (Uart
.syncBit
!= 9999) { // found a sync bit
308 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
309 Uart
.startTime
-= Uart
.syncBit
;
310 Uart
.endTime
= Uart
.startTime
;
311 Uart
.state
= STATE_START_OF_COMMUNICATION
;
316 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
317 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
324 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
325 Uart
.state
= STATE_MILLER_Z
;
326 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
327 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
328 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
329 Uart
.parityBits
<<= 1; // make room for the parity bit
330 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
333 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
334 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
341 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
343 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
344 Uart
.state
= STATE_MILLER_X
;
345 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
346 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
347 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
348 Uart
.parityBits
<<= 1; // make room for the new parity bit
349 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
352 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
353 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
359 Uart
.state
= STATE_UNSYNCD
;
360 Uart
.bitCount
--; // last "0" was part of EOC sequence
361 Uart
.shiftReg
<<= 1; // drop it
362 if(Uart
.bitCount
> 0) { // if we decoded some bits
363 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
364 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
365 Uart
.parityBits
<<= 1; // add a (void) parity bit
366 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
367 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
369 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
370 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
371 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
374 return TRUE
; // we are finished with decoding the raw data sequence
376 UartReset(); // Nothing received - start over
379 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
381 } else { // a logic "0"
383 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
384 Uart
.state
= STATE_MILLER_Y
;
385 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
386 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
387 Uart
.parityBits
<<= 1; // make room for the parity bit
388 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
391 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
392 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
402 return FALSE
; // not finished yet, need more data
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT
[] = {
427 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
428 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
437 Demod
.state
= DEMOD_UNSYNCD
;
438 Demod
.len
= 0; // number of decoded data bytes
440 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
441 Demod
.parityBits
= 0; //
442 Demod
.collisionPos
= 0; // Position of collision bit
443 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
450 Demod
.syncBit
= 0xFFFF;
454 void DemodInit(uint8_t *data
, uint8_t *parity
)
457 Demod
.parity
= parity
;
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
465 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
467 if (Demod
.state
== DEMOD_UNSYNCD
) {
469 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
470 if (Demod
.twoBits
== 0x0000) {
476 Demod
.syncBit
= 0xFFFF; // not set
477 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
478 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
479 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
480 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
481 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
482 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
483 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
484 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
485 if (Demod
.syncBit
!= 0xFFFF) {
486 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
487 Demod
.startTime
-= Demod
.syncBit
;
488 Demod
.bitCount
= offset
; // number of decoded data bits
489 Demod
.state
= DEMOD_MANCHESTER_DATA
;
495 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
497 if (!Demod
.collisionPos
) {
498 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
500 } // modulation in first half only - Sequence D = 1
502 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
504 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
505 Demod
.parityBits
<<= 1; // make room for the parity bit
506 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
509 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
510 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
511 Demod
.parityBits
= 0;
514 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
518 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
519 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
520 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
521 Demod
.parityBits
<<= 1; // make room for the new parity bit
522 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
525 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
526 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
527 Demod
.parityBits
= 0;
530 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod
.bitCount
> 0) { // there are some remaining data bits
533 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
534 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
535 Demod
.parityBits
<<= 1; // add a (void) parity bit
536 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
537 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
539 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
540 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
541 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
544 return TRUE
; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
551 return FALSE
; // not finished yet, need more data
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
563 //-----------------------------------------------------------------------------
564 void RAMFUNC
SniffIso14443a(uint8_t param
) {
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
575 bool triggered
= !(param
& 0x03);
577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
581 // The command (reader -> tag) that we're receiving.
582 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
583 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
585 // The response (tag -> reader) that we're receiving.
586 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
587 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
589 // The DMA buffer, used to stream samples from the FPGA
590 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
596 uint8_t *data
= dmaBuf
;
597 uint8_t previous_data
= 0;
600 bool TagIsActive
= FALSE
;
601 bool ReaderIsActive
= FALSE
;
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse
, receivedResponsePar
);
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd
, receivedCmdPar
);
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
614 // And now we loop, receiving samples.
615 for(uint32_t rsamples
= 0; TRUE
; ) {
618 DbpString("cancelled by button");
625 int register readBufDataP
= data
- dmaBuf
;
626 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
627 if (readBufDataP
<= dmaBufDataP
){
628 dataLen
= dmaBufDataP
- readBufDataP
;
630 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
632 // test for length of buffer
633 if(dataLen
> maxDataLen
) {
634 maxDataLen
= dataLen
;
635 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
636 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
640 if(dataLen
< 1) continue;
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
644 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
645 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
650 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
651 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
656 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
658 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
660 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
663 // check - if there is a short 7bit request from reader
664 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
667 if (!LogTrace(receivedCmd
,
669 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
670 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
674 /* And ready to receive another command. */
676 //UartInit(receivedCmd, receivedCmdPar);
677 /* And also reset the demod code, which might have been */
678 /* false-triggered by the commands from the reader. */
682 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
685 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
686 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
687 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
690 if (!LogTrace(receivedResponse
,
692 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
693 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
697 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
699 // And ready to receive another response.
701 // And reset the Miller decoder including itS (now outdated) input buffer
702 UartInit(receivedCmd
, receivedCmdPar
);
706 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
710 previous_data
= *data
;
713 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
718 DbpString("COMMAND FINISHED");
721 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
722 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
726 //-----------------------------------------------------------------------------
727 // Prepare tag messages
728 //-----------------------------------------------------------------------------
729 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
733 // Correction bit, might be removed when not needed
738 ToSendStuffBit(1); // 1
744 ToSend
[++ToSendMax
] = SEC_D
;
745 LastProxToAirDuration
= 8 * ToSendMax
- 4;
747 for(uint16_t i
= 0; i
< len
; i
++) {
751 for(uint16_t j
= 0; j
< 8; j
++) {
753 ToSend
[++ToSendMax
] = SEC_D
;
755 ToSend
[++ToSendMax
] = SEC_E
;
760 // Get the parity bit
761 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
762 ToSend
[++ToSendMax
] = SEC_D
;
763 LastProxToAirDuration
= 8 * ToSendMax
- 4;
765 ToSend
[++ToSendMax
] = SEC_E
;
766 LastProxToAirDuration
= 8 * ToSendMax
;
771 ToSend
[++ToSendMax
] = SEC_F
;
773 // Convert from last byte pos to length
777 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
779 uint8_t par
[MAX_PARITY_SIZE
];
781 GetParity(cmd
, len
, par
);
782 CodeIso14443aAsTagPar(cmd
, len
, par
);
786 static void Code4bitAnswerAsTag(uint8_t cmd
)
792 // Correction bit, might be removed when not needed
797 ToSendStuffBit(1); // 1
803 ToSend
[++ToSendMax
] = SEC_D
;
806 for(i
= 0; i
< 4; i
++) {
808 ToSend
[++ToSendMax
] = SEC_D
;
809 LastProxToAirDuration
= 8 * ToSendMax
- 4;
811 ToSend
[++ToSendMax
] = SEC_E
;
812 LastProxToAirDuration
= 8 * ToSendMax
;
818 ToSend
[++ToSendMax
] = SEC_F
;
820 // Convert from last byte pos to length
824 //-----------------------------------------------------------------------------
825 // Wait for commands from reader
826 // Stop when button is pressed
827 // Or return TRUE when command is captured
828 //-----------------------------------------------------------------------------
829 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
831 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
832 // only, since we are receiving, not transmitting).
833 // Signal field is off with the appropriate LED
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
837 // Now run a `software UART' on the stream of incoming samples.
838 UartInit(received
, parity
);
841 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
846 if(BUTTON_PRESS()) return FALSE
;
848 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
849 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
850 if(MillerDecoding(b
, 0)) {
858 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
859 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
860 int EmSend4bit(uint8_t resp
);
861 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
862 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
863 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
864 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
865 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
866 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
868 static uint8_t* free_buffer_pointer
;
875 uint32_t ProxToAirDuration
;
876 } tag_response_info_t
;
878 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
879 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
880 // This will need the following byte array for a modulation sequence
881 // 144 data bits (18 * 8)
884 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
885 // 1 just for the case
887 // 166 bytes, since every bit that needs to be send costs us a byte
891 // Prepare the tag modulation bits from the message
892 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
894 // Make sure we do not exceed the free buffer space
895 if (ToSendMax
> max_buffer_size
) {
896 Dbprintf("Out of memory, when modulating bits for tag answer:");
897 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
901 // Copy the byte array, used for this modulation to the buffer position
902 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
904 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
905 response_info
->modulation_n
= ToSendMax
;
906 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
912 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
913 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
914 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
915 // -> need 273 bytes buffer
916 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
918 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
919 // Retrieve and store the current buffer index
920 response_info
->modulation
= free_buffer_pointer
;
922 // Determine the maximum size we can use from our buffer
923 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
925 // Forward the prepare tag modulation function to the inner function
926 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
927 // Update the free buffer offset
928 free_buffer_pointer
+= ToSendMax
;
935 //-----------------------------------------------------------------------------
936 // Main loop of simulated tag: receive commands from reader, decide what
937 // response to send, and send it.
938 //-----------------------------------------------------------------------------
939 void SimulateIso14443aTag(int tagType
, int flags
, int uid_2nd
, byte_t
* data
)
942 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
943 // This can be used in a reader-only attack.
944 // (it can also be retrieved via 'hf 14a list', but hey...
945 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
946 uint8_t ar_nr_collected
= 0;
950 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
951 uint8_t response1
[2];
954 case 1: { // MIFARE Classic
955 // Says: I am Mifare 1k - original line
960 case 2: { // MIFARE Ultralight
961 // Says: I am a stupid memory tag, no crypto
966 case 3: { // MIFARE DESFire
967 // Says: I am a DESFire tag, ph33r me
972 case 4: { // ISO/IEC 14443-4
973 // Says: I am a javacard (JCOP)
978 case 5: { // MIFARE TNP3XXX
984 case 6: { // MIFARE Mini
985 // Says: I am a Mifare Mini, 320b
991 Dbprintf("Error: unkown tagtype (%d)",tagType
);
996 // The second response contains the (mandatory) first 24 bits of the UID
997 uint8_t response2
[5] = {0x00};
999 // Check if the uid uses the (optional) part
1000 uint8_t response2a
[5] = {0x00};
1002 if (flags
& FLAG_7B_UID_IN_DATA
) {
1003 response2
[0] = 0x88;
1004 response2
[1] = data
[0];
1005 response2
[2] = data
[1];
1006 response2
[3] = data
[2];
1008 response2a
[0] = data
[3];
1009 response2a
[1] = data
[4];
1010 response2a
[2] = data
[5];
1011 response2a
[3] = data
[6]; //??
1012 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1014 // Configure the ATQA and SAK accordingly
1015 response1
[0] |= 0x40;
1018 memcpy(response2
, data
, 4);
1019 //num_to_bytes(uid_1st,4,response2);
1020 // Configure the ATQA and SAK accordingly
1021 response1
[0] &= 0xBF;
1025 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1026 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1028 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1029 uint8_t response3
[3] = {0x00};
1031 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1033 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1034 uint8_t response3a
[3] = {0x00};
1035 response3a
[0] = sak
& 0xFB;
1036 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1038 uint8_t response5
[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
1039 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1040 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1041 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1042 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1043 // TC(1) = 0x02: CID supported, NAD not supported
1044 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1046 #define TAG_RESPONSE_COUNT 7
1047 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1048 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1049 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1050 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1051 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1052 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1053 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1054 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1057 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1058 // Such a response is less time critical, so we can prepare them on the fly
1059 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1060 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1061 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1062 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1063 tag_response_info_t dynamic_response_info
= {
1064 .response
= dynamic_response_buffer
,
1066 .modulation
= dynamic_modulation_buffer
,
1070 BigBuf_free_keep_EM();
1072 // allocate buffers:
1073 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1074 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1075 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1081 // Prepare the responses of the anticollision phase
1082 // there will be not enough time to do this at the moment the reader sends it REQA
1083 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1084 prepare_allocated_tag_modulation(&responses
[i
]);
1089 // To control where we are in the protocol
1093 // Just to allow some checks
1098 // We need to listen to the high-frequency, peak-detected path.
1099 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1102 tag_response_info_t
* p_response
;
1106 // Clean receive command buffer
1108 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1109 DbpString("Button press");
1115 // Okay, look at the command now.
1117 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1118 p_response
= &responses
[0]; order
= 1;
1119 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1120 p_response
= &responses
[0]; order
= 6;
1121 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1122 p_response
= &responses
[1]; order
= 2;
1123 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1124 p_response
= &responses
[2]; order
= 20;
1125 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1126 p_response
= &responses
[3]; order
= 3;
1127 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1128 p_response
= &responses
[4]; order
= 30;
1129 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1130 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1131 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1132 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1134 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1137 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1140 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1141 p_response
= &responses
[5]; order
= 7;
1142 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1143 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1144 EmSend4bit(CARD_NACK_NA
);
1147 p_response
= &responses
[6]; order
= 70;
1149 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1151 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1153 uint32_t nonce
= bytes_to_num(response5
,4);
1154 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1155 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1156 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1158 if(flags
& FLAG_NR_AR_ATTACK
)
1160 if(ar_nr_collected
< 2){
1161 // Avoid duplicates... probably not necessary, nr should vary.
1162 //if(ar_nr_responses[3] != nr){
1163 ar_nr_responses
[ar_nr_collected
*5] = 0;
1164 ar_nr_responses
[ar_nr_collected
*5+1] = 0;
1165 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
1166 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
1167 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
1172 if(ar_nr_collected
> 1 ) {
1174 if (MF_DBGLEVEL
>= 2) {
1175 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1176 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1177 ar_nr_responses
[0], // UID1
1178 ar_nr_responses
[1], // UID2
1179 ar_nr_responses
[2], // NT
1180 ar_nr_responses
[3], // AR1
1181 ar_nr_responses
[4], // NR1
1182 ar_nr_responses
[8], // AR2
1183 ar_nr_responses
[9] // NR2
1186 uint8_t len
= ar_nr_collected
*5*4;
1187 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,len
,0,&ar_nr_responses
,len
);
1188 ar_nr_collected
= 0;
1189 memset(ar_nr_responses
, 0x00, len
);
1193 // Check for ISO 14443A-4 compliant commands, look at left nibble
1194 switch (receivedCmd
[0]) {
1197 case 0x0A: { // IBlock (command)
1198 dynamic_response_info
.response
[0] = receivedCmd
[0];
1199 dynamic_response_info
.response
[1] = 0x00;
1200 dynamic_response_info
.response
[2] = 0x90;
1201 dynamic_response_info
.response
[3] = 0x00;
1202 dynamic_response_info
.response_n
= 4;
1206 case 0x1B: { // Chaining command
1207 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1208 dynamic_response_info
.response_n
= 2;
1213 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1214 dynamic_response_info
.response_n
= 2;
1218 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1219 dynamic_response_info
.response_n
= 2;
1223 case 0xC2: { // Readers sends deselect command
1224 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1225 dynamic_response_info
.response_n
= 2;
1229 // Never seen this command before
1231 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1233 Dbprintf("Received unknown command (len=%d):",len
);
1234 Dbhexdump(len
,receivedCmd
,false);
1236 dynamic_response_info
.response_n
= 0;
1240 if (dynamic_response_info
.response_n
> 0) {
1241 // Copy the CID from the reader query
1242 dynamic_response_info
.response
[1] = receivedCmd
[1];
1244 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1245 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1246 dynamic_response_info
.response_n
+= 2;
1248 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1249 Dbprintf("Error preparing tag response");
1251 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1255 p_response
= &dynamic_response_info
;
1259 // Count number of wakeups received after a halt
1260 if(order
== 6 && lastorder
== 5) { happened
++; }
1262 // Count number of other messages after a halt
1263 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1265 if(cmdsRecvd
> 999) {
1266 DbpString("1000 commands later...");
1271 if (p_response
!= NULL
) {
1272 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1273 // do the tracing for the previous reader request and this tag answer:
1274 uint8_t par
[MAX_PARITY_SIZE
];
1275 GetParity(p_response
->response
, p_response
->response_n
, par
);
1277 EmLogTrace(Uart
.output
,
1279 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1280 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1282 p_response
->response
,
1283 p_response
->response_n
,
1284 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1285 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1290 Dbprintf("Trace Full. Simulation stopped.");
1295 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1297 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1299 BigBuf_free_keep_EM();
1303 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1304 // of bits specified in the delay parameter.
1305 void PrepareDelayedTransfer(uint16_t delay
)
1307 uint8_t bitmask
= 0;
1308 uint8_t bits_to_shift
= 0;
1309 uint8_t bits_shifted
= 0;
1313 for (uint16_t i
= 0; i
< delay
; i
++) {
1314 bitmask
|= (0x01 << i
);
1316 ToSend
[ToSendMax
++] = 0x00;
1317 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1318 bits_to_shift
= ToSend
[i
] & bitmask
;
1319 ToSend
[i
] = ToSend
[i
] >> delay
;
1320 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1321 bits_shifted
= bits_to_shift
;
1327 //-------------------------------------------------------------------------------------
1328 // Transmit the command (to the tag) that was placed in ToSend[].
1329 // Parameter timing:
1330 // if NULL: transfer at next possible time, taking into account
1331 // request guard time and frame delay time
1332 // if == 0: transfer immediately and return time of transfer
1333 // if != 0: delay transfer until time specified
1334 //-------------------------------------------------------------------------------------
1335 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1338 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1340 uint32_t ThisTransferTime
= 0;
1343 if(*timing
== 0) { // Measure time
1344 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1346 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1348 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1349 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1350 LastTimeProxToAirStart
= *timing
;
1352 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1353 while(GetCountSspClk() < ThisTransferTime
);
1354 LastTimeProxToAirStart
= ThisTransferTime
;
1358 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1362 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1363 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1371 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1375 //-----------------------------------------------------------------------------
1376 // Prepare reader command (in bits, support short frames) to send to FPGA
1377 //-----------------------------------------------------------------------------
1378 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1386 // Start of Communication (Seq. Z)
1387 ToSend
[++ToSendMax
] = SEC_Z
;
1388 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1391 size_t bytecount
= nbytes(bits
);
1392 // Generate send structure for the data bits
1393 for (i
= 0; i
< bytecount
; i
++) {
1394 // Get the current byte to send
1396 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1398 for (j
= 0; j
< bitsleft
; j
++) {
1401 ToSend
[++ToSendMax
] = SEC_X
;
1402 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1407 ToSend
[++ToSendMax
] = SEC_Z
;
1408 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1411 ToSend
[++ToSendMax
] = SEC_Y
;
1418 // Only transmit parity bit if we transmitted a complete byte
1419 if (j
== 8 && parity
!= NULL
) {
1420 // Get the parity bit
1421 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1423 ToSend
[++ToSendMax
] = SEC_X
;
1424 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1429 ToSend
[++ToSendMax
] = SEC_Z
;
1430 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1433 ToSend
[++ToSendMax
] = SEC_Y
;
1440 // End of Communication: Logic 0 followed by Sequence Y
1443 ToSend
[++ToSendMax
] = SEC_Z
;
1444 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1447 ToSend
[++ToSendMax
] = SEC_Y
;
1450 ToSend
[++ToSendMax
] = SEC_Y
;
1452 // Convert to length of command:
1456 //-----------------------------------------------------------------------------
1457 // Prepare reader command to send to FPGA
1458 //-----------------------------------------------------------------------------
1459 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1461 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1465 //-----------------------------------------------------------------------------
1466 // Wait for commands from reader
1467 // Stop when button is pressed (return 1) or field was gone (return 2)
1468 // Or return 0 when command is captured
1469 //-----------------------------------------------------------------------------
1470 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1474 uint32_t timer
= 0, vtime
= 0;
1478 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1479 // only, since we are receiving, not transmitting).
1480 // Signal field is off with the appropriate LED
1482 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1484 // Set ADC to read field strength
1485 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1486 AT91C_BASE_ADC
->ADC_MR
=
1487 ADC_MODE_PRESCALE(63) |
1488 ADC_MODE_STARTUP_TIME(1) |
1489 ADC_MODE_SAMPLE_HOLD_TIME(15);
1490 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1492 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1494 // Now run a 'software UART' on the stream of incoming samples.
1495 UartInit(received
, parity
);
1498 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1503 if (BUTTON_PRESS()) return 1;
1505 // test if the field exists
1506 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1508 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1509 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1510 if (analogCnt
>= 32) {
1511 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1512 vtime
= GetTickCount();
1513 if (!timer
) timer
= vtime
;
1514 // 50ms no field --> card to idle state
1515 if (vtime
- timer
> 50) return 2;
1517 if (timer
) timer
= 0;
1523 // receive and test the miller decoding
1524 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1525 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1526 if(MillerDecoding(b
, 0)) {
1536 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1540 uint32_t ThisTransferTime
;
1542 // Modulate Manchester
1543 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1545 // include correction bit if necessary
1546 if (Uart
.parityBits
& 0x01) {
1547 correctionNeeded
= TRUE
;
1549 if(correctionNeeded
) {
1550 // 1236, so correction bit needed
1556 // clear receiving shift register and holding register
1557 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1558 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1559 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1560 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1562 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1563 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1564 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1565 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1568 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1571 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1574 for(; i
< respLen
; ) {
1575 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1576 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1577 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1580 if(BUTTON_PRESS()) {
1585 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1586 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1587 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1588 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1589 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1590 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1595 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1600 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1601 Code4bitAnswerAsTag(resp
);
1602 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1603 // do the tracing for the previous reader request and this tag answer:
1605 GetParity(&resp
, 1, par
);
1606 EmLogTrace(Uart
.output
,
1608 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1609 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1613 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1614 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1619 int EmSend4bit(uint8_t resp
){
1620 return EmSend4bitEx(resp
, false);
1623 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1624 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1625 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1626 // do the tracing for the previous reader request and this tag answer:
1627 EmLogTrace(Uart
.output
,
1629 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1630 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1634 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1635 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1640 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1641 uint8_t par
[MAX_PARITY_SIZE
];
1642 GetParity(resp
, respLen
, par
);
1643 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1646 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1647 uint8_t par
[MAX_PARITY_SIZE
];
1648 GetParity(resp
, respLen
, par
);
1649 return EmSendCmdExPar(resp
, respLen
, false, par
);
1652 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1653 return EmSendCmdExPar(resp
, respLen
, false, par
);
1656 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1657 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1660 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1661 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1662 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1663 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1664 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1665 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1666 reader_EndTime
= tag_StartTime
- exact_fdt
;
1667 reader_StartTime
= reader_EndTime
- reader_modlen
;
1668 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1670 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1676 //-----------------------------------------------------------------------------
1677 // Wait a certain time for tag response
1678 // If a response is captured return TRUE
1679 // If it takes too long return FALSE
1680 //-----------------------------------------------------------------------------
1681 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1685 // Set FPGA mode to "reader listen mode", no modulation (listen
1686 // only, since we are receiving, not transmitting).
1687 // Signal field is on with the appropriate LED
1689 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1691 // Now get the answer from the card
1692 DemodInit(receivedResponse
, receivedResponsePar
);
1695 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1700 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1701 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1702 if(ManchesterDecoding(b
, offset
, 0)) {
1703 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1705 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1713 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1715 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1717 // Send command to tag
1718 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1722 // Log reader command in trace buffer
1724 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1729 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1731 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1735 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1737 // Generate parity and redirect
1738 uint8_t par
[MAX_PARITY_SIZE
];
1739 GetParity(frame
, len
/8, par
);
1740 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1744 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1746 // Generate parity and redirect
1747 uint8_t par
[MAX_PARITY_SIZE
];
1748 GetParity(frame
, len
, par
);
1749 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1752 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1754 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1756 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1761 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1763 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1765 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1770 /* performs iso14443a anticollision procedure
1771 * fills the uid pointer unless NULL
1772 * fills resp_data unless NULL */
1773 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1774 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1775 uint8_t sel_all
[] = { 0x93,0x20 };
1776 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1777 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1778 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1779 uint8_t resp_par
[MAX_PARITY_SIZE
];
1781 size_t uid_resp_len
;
1783 uint8_t sak
= 0x04; // cascade uid
1784 int cascade_level
= 0;
1787 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1788 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1791 if(!ReaderReceive(resp
, resp_par
)) return 0;
1794 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1795 p_hi14a_card
->uidlen
= 0;
1796 memset(p_hi14a_card
->uid
,0,10);
1801 memset(uid_ptr
,0,10);
1804 // check for proprietary anticollision:
1805 if ((resp
[0] & 0x1F) == 0) {
1809 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1810 // which case we need to make a cascade 2 request and select - this is a long UID
1811 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1812 for(; sak
& 0x04; cascade_level
++) {
1813 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1814 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1817 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1818 if (!ReaderReceive(resp
, resp_par
)) return 0;
1820 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1821 memset(uid_resp
, 0, 4);
1822 uint16_t uid_resp_bits
= 0;
1823 uint16_t collision_answer_offset
= 0;
1824 // anti-collision-loop:
1825 while (Demod
.collisionPos
) {
1826 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1827 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1828 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1829 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1831 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1833 // construct anticollosion command:
1834 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1835 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1836 sel_uid
[2+i
] = uid_resp
[i
];
1838 collision_answer_offset
= uid_resp_bits
%8;
1839 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1840 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1842 // finally, add the last bits and BCC of the UID
1843 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1844 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1845 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1848 } else { // no collision, use the response to SELECT_ALL as current uid
1849 memcpy(uid_resp
, resp
, 4);
1853 // calculate crypto UID. Always use last 4 Bytes.
1855 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1858 // Construct SELECT UID command
1859 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1860 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1861 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1862 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1863 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1866 if (!ReaderReceive(resp
, resp_par
)) return 0;
1869 // Test if more parts of the uid are coming
1870 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1871 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1872 // http://www.nxp.com/documents/application_note/AN10927.pdf
1873 uid_resp
[0] = uid_resp
[1];
1874 uid_resp
[1] = uid_resp
[2];
1875 uid_resp
[2] = uid_resp
[3];
1881 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1885 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1886 p_hi14a_card
->uidlen
+= uid_resp_len
;
1891 p_hi14a_card
->sak
= sak
;
1892 p_hi14a_card
->ats_len
= 0;
1895 // non iso14443a compliant tag
1896 if( (sak
& 0x20) == 0) return 2;
1898 // Request for answer to select
1899 AppendCrc14443a(rats
, 2);
1900 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1902 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1906 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1907 p_hi14a_card
->ats_len
= len
;
1910 // reset the PCB block number
1911 iso14_pcb_blocknum
= 0;
1913 // set default timeout based on ATS
1914 iso14a_set_ATS_timeout(resp
);
1919 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1920 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1921 // Set up the synchronous serial port
1923 // connect Demodulated Signal to ADC:
1924 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1926 // Signal field is on with the appropriate LED
1927 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1928 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1933 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1940 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1941 iso14a_set_timeout(10*106); // 10ms default
1944 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1945 uint8_t parity
[MAX_PARITY_SIZE
];
1946 uint8_t real_cmd
[cmd_len
+4];
1947 real_cmd
[0] = 0x0a; //I-Block
1948 // put block number into the PCB
1949 real_cmd
[0] |= iso14_pcb_blocknum
;
1950 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1951 memcpy(real_cmd
+2, cmd
, cmd_len
);
1952 AppendCrc14443a(real_cmd
,cmd_len
+2);
1954 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1955 size_t len
= ReaderReceive(data
, parity
);
1956 uint8_t *data_bytes
= (uint8_t *) data
;
1958 return 0; //DATA LINK ERROR
1959 // if we received an I- or R(ACK)-Block with a block number equal to the
1960 // current block number, toggle the current block number
1961 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1962 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1963 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1964 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1966 iso14_pcb_blocknum
^= 1;
1972 //-----------------------------------------------------------------------------
1973 // Read an ISO 14443a tag. Send out commands and store answers.
1975 //-----------------------------------------------------------------------------
1976 void ReaderIso14443a(UsbCommand
*c
)
1978 iso14a_command_t param
= c
->arg
[0];
1979 uint8_t *cmd
= c
->d
.asBytes
;
1980 size_t len
= c
->arg
[1] & 0xffff;
1981 size_t lenbits
= c
->arg
[1] >> 16;
1982 uint32_t timeout
= c
->arg
[2];
1984 byte_t buf
[USB_CMD_DATA_SIZE
];
1985 uint8_t par
[MAX_PARITY_SIZE
];
1987 if(param
& ISO14A_CONNECT
) {
1993 if(param
& ISO14A_REQUEST_TRIGGER
) {
1994 iso14a_set_trigger(TRUE
);
1997 if(param
& ISO14A_CONNECT
) {
1998 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1999 if(!(param
& ISO14A_NO_SELECT
)) {
2000 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
2001 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
2002 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
2006 if(param
& ISO14A_SET_TIMEOUT
) {
2007 iso14a_set_timeout(timeout
);
2010 if(param
& ISO14A_APDU
) {
2011 arg0
= iso14_apdu(cmd
, len
, buf
);
2012 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2015 if(param
& ISO14A_RAW
) {
2016 if(param
& ISO14A_APPEND_CRC
) {
2017 if(param
& ISO14A_TOPAZMODE
) {
2018 AppendCrc14443b(cmd
,len
);
2020 AppendCrc14443a(cmd
,len
);
2023 if (lenbits
) lenbits
+= 16;
2025 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
2026 if(param
& ISO14A_TOPAZMODE
) {
2027 int bits_to_send
= lenbits
;
2029 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
2031 while (bits_to_send
> 0) {
2032 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2036 GetParity(cmd
, lenbits
/8, par
);
2037 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2039 } else { // want to send complete bytes only
2040 if(param
& ISO14A_TOPAZMODE
) {
2042 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2044 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2047 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2050 arg0
= ReaderReceive(buf
, par
);
2051 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2054 if(param
& ISO14A_REQUEST_TRIGGER
) {
2055 iso14a_set_trigger(FALSE
);
2058 if(param
& ISO14A_NO_DISCONNECT
) {
2062 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2067 // Determine the distance between two nonces.
2068 // Assume that the difference is small, but we don't know which is first.
2069 // Therefore try in alternating directions.
2070 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2072 if (nt1
== nt2
) return 0;
2075 uint32_t nttmp1
= nt1
;
2076 uint32_t nttmp2
= nt2
;
2078 for (i
= 1; i
< 32768; i
++) {
2079 nttmp1
= prng_successor(nttmp1
, 1);
2080 if (nttmp1
== nt2
) return i
;
2081 nttmp2
= prng_successor(nttmp2
, 1);
2082 if (nttmp2
== nt1
) return -i
;
2085 return(-99999); // either nt1 or nt2 are invalid nonces
2089 //-----------------------------------------------------------------------------
2090 // Recover several bits of the cypher stream. This implements (first stages of)
2091 // the algorithm described in "The Dark Side of Security by Obscurity and
2092 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2093 // (article by Nicolas T. Courtois, 2009)
2094 //-----------------------------------------------------------------------------
2095 void ReaderMifare(bool first_try
) {
2096 // free eventually allocated BigBuf memory. We want all for tracing.
2103 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2104 uint8_t mf_nr_ar
[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
2105 static uint8_t mf_nr_ar3
= 0;
2107 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
] = { 0x00 };
2108 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
] = { 0x00 };
2111 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2112 static byte_t par_low
= 0;
2114 uint8_t uid
[10] = {0x00};
2115 //uint32_t cuid = 0x00;
2118 uint32_t previous_nt
= 0;
2119 static uint32_t nt_attacked
= 0;
2120 byte_t par_list
[8] = {0x00};
2121 byte_t ks_list
[8] = {0x00};
2123 static uint32_t sync_time
= 0;
2124 static uint32_t sync_cycles
= 0;
2125 int catch_up_cycles
= 0;
2126 int last_catch_up
= 0;
2127 uint16_t consecutive_resyncs
= 0;
2130 int numWrongDistance
= 0;
2134 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2135 sync_time
= GetCountSspClk() & 0xfffffff8;
2136 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2142 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2144 mf_nr_ar
[3] = mf_nr_ar3
;
2153 for(uint16_t i
= 0; TRUE
; i
++) {
2157 // Test if the action was cancelled
2158 if(BUTTON_PRESS()) break;
2160 if (numWrongDistance
> 1000) {
2165 //if(!iso14443a_select_card(uid, NULL, &cuid)) {
2166 if(!iso14443a_select_card(uid
, NULL
, NULL
)) {
2167 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2171 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2172 catch_up_cycles
= 0;
2174 // if we missed the sync time already, advance to the next nonce repeat
2175 while(GetCountSspClk() > sync_time
) {
2176 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2179 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2180 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2182 // Receive the (4 Byte) "random" nonce
2183 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2184 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2189 nt
= bytes_to_num(receivedAnswer
, 4);
2191 // Transmit reader nonce with fake par
2192 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2194 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2195 int nt_distance
= dist_nt(previous_nt
, nt
);
2196 if (nt_distance
== 0) {
2201 // invalid nonce received, try again
2202 if (nt_distance
== -99999) {
2204 if (MF_DBGLEVEL
>= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
2208 sync_cycles
= (sync_cycles
- nt_distance
);
2209 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2214 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2215 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2216 if (catch_up_cycles
>= 99999) { // invalid nonce received. Don't resync on that one.
2217 catch_up_cycles
= 0;
2220 if (catch_up_cycles
== last_catch_up
) {
2221 consecutive_resyncs
++;
2224 last_catch_up
= catch_up_cycles
;
2225 consecutive_resyncs
= 0;
2227 if (consecutive_resyncs
< 3) {
2228 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2231 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2232 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2237 consecutive_resyncs
= 0;
2239 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2240 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2242 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2246 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2250 if(led_on
) LED_B_ON(); else LED_B_OFF();
2252 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2253 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2255 // Test if the information is complete
2256 if (nt_diff
== 0x07) {
2261 nt_diff
= (nt_diff
+ 1) & 0x07;
2262 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2265 if (nt_diff
== 0 && first_try
)
2269 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2274 mf_nr_ar
[3] &= 0x1F;
2276 byte_t buf
[28] = {0x00};
2278 memcpy(buf
+ 0, uid
, 4);
2279 num_to_bytes(nt
, 4, buf
+ 4);
2280 memcpy(buf
+ 8, par_list
, 8);
2281 memcpy(buf
+ 16, ks_list
, 8);
2282 memcpy(buf
+ 24, mf_nr_ar
, 4);
2284 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2287 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2293 *MIFARE 1K simulate.
2296 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2297 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2298 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2299 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2300 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2302 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2304 int cardSTATE
= MFEMUL_NOFIELD
;
2306 int vHf
= 0; // in mV
2308 uint32_t selTimer
= 0;
2309 uint32_t authTimer
= 0;
2311 uint8_t cardWRBL
= 0;
2312 uint8_t cardAUTHSC
= 0;
2313 uint8_t cardAUTHKEY
= 0xff; // no authentication
2314 // uint32_t cardRr = 0;
2316 //uint32_t rn_enc = 0;
2318 uint32_t cardINTREG
= 0;
2319 uint8_t cardINTBLOCK
= 0;
2320 struct Crypto1State mpcs
= {0, 0};
2321 struct Crypto1State
*pcs
;
2323 uint32_t numReads
= 0;//Counts numer of times reader read a block
2324 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2325 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2326 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2327 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2329 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2330 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2331 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2332 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2333 uint8_t rSAK
[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2334 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2336 uint8_t rAUTH_NT
[] = {0x01, 0x01, 0x01, 0x01};
2337 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2339 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2340 // This can be used in a reader-only attack.
2341 // (it can also be retrieved via 'hf 14a list', but hey...
2342 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
2343 uint8_t ar_nr_collected
= 0;
2345 // free eventually allocated BigBuf memory but keep Emulator Memory
2346 BigBuf_free_keep_EM();
2352 // Authenticate response - nonce
2353 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2355 //-- Determine the UID
2356 // Can be set from emulator memory, incoming data
2357 // and can be 7 or 4 bytes long
2358 if (flags
& FLAG_4B_UID_IN_DATA
)
2360 // 4B uid comes from data-portion of packet
2361 memcpy(rUIDBCC1
,datain
,4);
2362 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2364 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2365 // 7B uid comes from data-portion of packet
2366 memcpy(&rUIDBCC1
[1],datain
,3);
2367 memcpy(rUIDBCC2
, datain
+3, 4);
2370 // get UID from emul memory
2371 emlGetMemBt(receivedCmd
, 7, 1);
2372 _7BUID
= !(receivedCmd
[0] == 0x00);
2373 if (!_7BUID
) { // ---------- 4BUID
2374 emlGetMemBt(rUIDBCC1
, 0, 4);
2375 } else { // ---------- 7BUID
2376 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2377 emlGetMemBt(rUIDBCC2
, 3, 4);
2382 ar_nr_responses
[0*5] = bytes_to_num(rUIDBCC1
+1, 3);
2384 ar_nr_responses
[0*5+1] = bytes_to_num(rUIDBCC2
, 4);
2387 * Regardless of what method was used to set the UID, set fifth byte and modify
2388 * the ATQA for 4 or 7-byte UID
2390 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2394 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2395 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2398 // We need to listen to the high-frequency, peak-detected path.
2399 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2402 if (MF_DBGLEVEL
>= 1) {
2404 Dbprintf("4B UID: %02x%02x%02x%02x",
2405 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2407 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2408 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2409 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2413 bool finished
= FALSE
;
2414 while (!BUTTON_PRESS() && !finished
) {
2417 // find reader field
2418 if (cardSTATE
== MFEMUL_NOFIELD
) {
2419 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2420 if (vHf
> MF_MINFIELDV
) {
2421 cardSTATE_TO_IDLE();
2425 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2428 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2429 if (res
== 2) { //Field is off!
2430 cardSTATE
= MFEMUL_NOFIELD
;
2433 } else if (res
== 1) {
2434 break; //return value 1 means button press
2437 // REQ or WUP request in ANY state and WUP in HALTED state
2438 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2439 selTimer
= GetTickCount();
2440 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2441 cardSTATE
= MFEMUL_SELECT1
;
2443 // init crypto block
2446 crypto1_destroy(pcs
);
2451 switch (cardSTATE
) {
2452 case MFEMUL_NOFIELD
:
2455 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2458 case MFEMUL_SELECT1
:{
2460 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2461 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2462 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2466 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2468 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2472 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2473 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2474 cuid
= bytes_to_num(rUIDBCC1
, 4);
2476 cardSTATE
= MFEMUL_WORK
;
2478 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2481 cardSTATE
= MFEMUL_SELECT2
;
2489 cardSTATE_TO_IDLE();
2490 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2494 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2495 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2498 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2499 if(ar_nr_collected
< 2){
2500 if(ar_nr_responses
[2] != ar
)
2501 {// Avoid duplicates... probably not necessary, ar should vary.
2502 //ar_nr_responses[ar_nr_collected*5] = 0;
2503 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2504 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
2505 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
2506 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
2509 // Interactive mode flag, means we need to send ACK
2510 if(flags
& FLAG_INTERACTIVE
&& ar_nr_collected
== 2)
2517 //crypto1_word(pcs, ar , 1);
2518 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2521 //if (cardRr != prng_successor(nonce, 64)){
2523 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2524 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2525 // cardRr, prng_successor(nonce, 64));
2526 // Shouldn't we respond anything here?
2527 // Right now, we don't nack or anything, which causes the
2528 // reader to do a WUPA after a while. /Martin
2529 // -- which is the correct response. /piwi
2530 //cardSTATE_TO_IDLE();
2531 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2535 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2537 num_to_bytes(ans
, 4, rAUTH_AT
);
2539 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2541 cardSTATE
= MFEMUL_WORK
;
2542 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2543 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2544 GetTickCount() - authTimer
);
2547 case MFEMUL_SELECT2
:{
2549 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2552 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2553 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2559 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2560 EmSendCmd(rSAK
, sizeof(rSAK
));
2561 cuid
= bytes_to_num(rUIDBCC2
, 4);
2562 cardSTATE
= MFEMUL_WORK
;
2564 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2568 // i guess there is a command). go into the work state.
2570 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2573 cardSTATE
= MFEMUL_WORK
;
2575 //intentional fall-through to the next case-stmt
2580 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2584 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2586 if(encrypted_data
) {
2588 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2591 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2592 authTimer
= GetTickCount();
2593 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2594 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2595 crypto1_destroy(pcs
);//Added by martin
2596 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2598 if (!encrypted_data
) { // first authentication
2599 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2601 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2602 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2603 } else { // nested authentication
2604 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2605 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2606 num_to_bytes(ans
, 4, rAUTH_AT
);
2609 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2610 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2611 cardSTATE
= MFEMUL_AUTH1
;
2615 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2616 // BUT... ACK --> NACK
2617 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2618 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2622 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2623 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2624 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2629 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2633 if(receivedCmd
[0] == 0x30 // read block
2634 || receivedCmd
[0] == 0xA0 // write block
2635 || receivedCmd
[0] == 0xC0 // inc
2636 || receivedCmd
[0] == 0xC1 // dec
2637 || receivedCmd
[0] == 0xC2 // restore
2638 || receivedCmd
[0] == 0xB0) { // transfer
2639 if (receivedCmd
[1] >= 16 * 4) {
2640 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2641 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2645 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2646 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2647 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2652 if (receivedCmd
[0] == 0x30) {
2653 if (MF_DBGLEVEL
>= 4) {
2654 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2656 emlGetMem(response
, receivedCmd
[1], 1);
2657 AppendCrc14443a(response
, 16);
2658 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2659 EmSendCmdPar(response
, 18, response_par
);
2661 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2662 Dbprintf("%d reads done, exiting", numReads
);
2668 if (receivedCmd
[0] == 0xA0) {
2669 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2670 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2671 cardSTATE
= MFEMUL_WRITEBL2
;
2672 cardWRBL
= receivedCmd
[1];
2675 // increment, decrement, restore
2676 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2677 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2678 if (emlCheckValBl(receivedCmd
[1])) {
2679 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2680 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2683 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2684 if (receivedCmd
[0] == 0xC1)
2685 cardSTATE
= MFEMUL_INTREG_INC
;
2686 if (receivedCmd
[0] == 0xC0)
2687 cardSTATE
= MFEMUL_INTREG_DEC
;
2688 if (receivedCmd
[0] == 0xC2)
2689 cardSTATE
= MFEMUL_INTREG_REST
;
2690 cardWRBL
= receivedCmd
[1];
2694 if (receivedCmd
[0] == 0xB0) {
2695 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2696 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2697 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2699 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2703 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2706 cardSTATE
= MFEMUL_HALTED
;
2707 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2708 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2712 if (receivedCmd
[0] == 0xe0) {//RATS
2713 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2716 // command not allowed
2717 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2718 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2721 case MFEMUL_WRITEBL2
:{
2723 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2724 emlSetMem(receivedCmd
, cardWRBL
, 1);
2725 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2726 cardSTATE
= MFEMUL_WORK
;
2728 cardSTATE_TO_IDLE();
2729 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2734 case MFEMUL_INTREG_INC
:{
2735 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2736 memcpy(&ans
, receivedCmd
, 4);
2737 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2738 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2739 cardSTATE_TO_IDLE();
2742 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2743 cardINTREG
= cardINTREG
+ ans
;
2744 cardSTATE
= MFEMUL_WORK
;
2747 case MFEMUL_INTREG_DEC
:{
2748 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2749 memcpy(&ans
, receivedCmd
, 4);
2750 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2751 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2752 cardSTATE_TO_IDLE();
2755 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2756 cardINTREG
= cardINTREG
- ans
;
2757 cardSTATE
= MFEMUL_WORK
;
2760 case MFEMUL_INTREG_REST
:{
2761 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2762 memcpy(&ans
, receivedCmd
, 4);
2763 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2764 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2765 cardSTATE_TO_IDLE();
2768 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2769 cardSTATE
= MFEMUL_WORK
;
2775 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2778 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2780 //May just aswell send the collected ar_nr in the response aswell
2781 uint8_t len
= ar_nr_collected
*5*4;
2782 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, len
, 0, &ar_nr_responses
, len
);
2785 if(flags
& FLAG_NR_AR_ATTACK
&& MF_DBGLEVEL
>= 1 )
2787 if(ar_nr_collected
> 1 ) {
2788 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2789 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2790 ar_nr_responses
[0], // UID1
2791 ar_nr_responses
[1], // UID2
2792 ar_nr_responses
[2], // NT
2793 ar_nr_responses
[3], // AR1
2794 ar_nr_responses
[4], // NR1
2795 ar_nr_responses
[8], // AR2
2796 ar_nr_responses
[9] // NR2
2799 Dbprintf("Failed to obtain two AR/NR pairs!");
2800 if(ar_nr_collected
> 0 ) {
2801 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2802 ar_nr_responses
[0], // UID1
2803 ar_nr_responses
[1], // UID2
2804 ar_nr_responses
[2], // NT
2805 ar_nr_responses
[3], // AR1
2806 ar_nr_responses
[4] // NR1
2811 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2815 //-----------------------------------------------------------------------------
2818 //-----------------------------------------------------------------------------
2819 void RAMFUNC
SniffMifare(uint8_t param
) {
2821 // bit 0 - trigger from first card answer
2822 // bit 1 - trigger from first reader 7-bit request
2824 // free eventually allocated BigBuf memory
2827 // C(red) A(yellow) B(green)
2829 // init trace buffer
2833 // The command (reader -> tag) that we're receiving.
2834 // The length of a received command will in most cases be no more than 18 bytes.
2835 // So 32 should be enough!
2836 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2837 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2838 // The response (tag -> reader) that we're receiving.
2839 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2840 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2842 // allocate the DMA buffer, used to stream samples from the FPGA
2843 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2844 uint8_t *data
= dmaBuf
;
2845 uint8_t previous_data
= 0;
2848 bool ReaderIsActive
= FALSE
;
2849 bool TagIsActive
= FALSE
;
2851 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2853 // Set up the demodulator for tag -> reader responses.
2854 DemodInit(receivedResponse
, receivedResponsePar
);
2856 // Set up the demodulator for the reader -> tag commands
2857 UartInit(receivedCmd
, receivedCmdPar
);
2859 // Setup for the DMA.
2860 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2867 // And now we loop, receiving samples.
2868 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2870 if(BUTTON_PRESS()) {
2871 DbpString("cancelled by button");
2878 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2879 // check if a transaction is completed (timeout after 2000ms).
2880 // if yes, stop the DMA transfer and send what we have so far to the client
2881 if (MfSniffSend(2000)) {
2882 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2886 ReaderIsActive
= FALSE
;
2887 TagIsActive
= FALSE
;
2888 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2892 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2893 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2894 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2895 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2897 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2899 // test for length of buffer
2900 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2901 maxDataLen
= dataLen
;
2902 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2903 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2907 if(dataLen
< 1) continue;
2909 // primary buffer was stopped ( <-- we lost data!
2910 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2911 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2912 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2913 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2915 // secondary buffer sets as primary, secondary buffer was stopped
2916 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2917 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2918 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2923 if (sniffCounter
& 0x01) {
2925 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2926 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2927 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2929 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2931 /* And ready to receive another command. */
2932 //UartInit(receivedCmd, receivedCmdPar);
2935 /* And also reset the demod code */
2938 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2941 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2942 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2943 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2946 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2948 // And ready to receive another response.
2951 // And reset the Miller decoder including its (now outdated) input buffer
2952 UartInit(receivedCmd
, receivedCmdPar
);
2954 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2958 previous_data
= *data
;
2961 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2967 DbpString("COMMAND FINISHED");
2969 FpgaDisableSscDma();
2972 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);