]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
CHG: moved a xor function into util.c
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22 #include "BigBuf.h"
23 static uint32_t iso14a_timeout;
24 int rsamples = 0;
25 uint8_t trigger = 0;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum = 0;
28
29 //
30 // ISO14443 timing:
31 //
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
37
38 //
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40 //
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
49
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
68
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
83
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
91
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
100
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime;
104 static uint32_t LastTimeProxToAirStart;
105 static uint32_t LastProxToAirDuration;
106
107
108
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
117 #define SEC_D 0xf0
118 #define SEC_E 0x0f
119 #define SEC_F 0x00
120 #define SEC_X 0x0c
121 #define SEC_Y 0x00
122 #define SEC_Z 0xc0
123
124 const uint8_t OddByteParity[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141 };
142
143
144 void iso14a_set_trigger(bool enable) {
145 trigger = enable;
146 }
147
148
149 void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
152 }
153
154
155 void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174 }
175
176
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
179 //
180 //-----------------------------------------------------------------------------
181 byte_t oddparity (const byte_t bt)
182 {
183 return OddByteParity[bt];
184 }
185
186 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
187 {
188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
203 }
204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
208 }
209
210 void AppendCrc14443a(uint8_t* data, int len)
211 {
212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
213 }
214
215 void AppendCrc14443b(uint8_t* data, int len)
216 {
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218 }
219
220
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
224 // Basics:
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
237 static tUart Uart;
238
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT[] = {
246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
248 };
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
251
252 void UartReset()
253 {
254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
257 Uart.parityLen = 0; // number of decoded parity bytes
258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
259 Uart.parityBits = 0; // holds 8 parity bits
260 Uart.startTime = 0;
261 Uart.endTime = 0;
262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
266 }
267
268 void UartInit(uint8_t *data, uint8_t *parity)
269 {
270 Uart.output = data;
271 Uart.parity = parity;
272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
273 UartReset();
274 }
275
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278 {
279
280 Uart.fourBits = (Uart.fourBits << 8) | bit;
281
282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
283
284 Uart.syncBit = 9999; // not set
285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
294 //
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
310 Uart.endTime = Uart.startTime;
311 Uart.state = STATE_START_OF_COMMUNICATION;
312 }
313
314 } else {
315
316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
318 UartReset();
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
337 }
338 }
339 }
340 } else {
341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
356 }
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
359 Uart.state = STATE_UNSYNCD;
360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
372 }
373 if (Uart.len) {
374 return TRUE; // we are finished with decoding the raw data sequence
375 } else {
376 UartReset(); // Nothing received - start over
377 }
378 }
379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
395 }
396 }
397 }
398 }
399
400 }
401
402 return FALSE; // not finished yet, need more data
403 }
404
405
406
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
410 // Basics:
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
422 static tDemod Demod;
423
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT[] = {
427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
429 };
430
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
433
434
435 void DemodReset()
436 {
437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
439 Demod.parityLen = 0;
440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
452 }
453
454 void DemodInit(uint8_t *data, uint8_t *parity)
455 {
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459 }
460
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
463 {
464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
466
467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
485 if (Demod.syncBit != 0xFFFF) {
486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
489 Demod.state = DEMOD_MANCHESTER_DATA;
490 }
491 }
492
493 } else {
494
495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
505 Demod.parityBits <<= 1; // make room for the parity bit
506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
513 }
514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
517 Demod.bitCount++;
518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
521 Demod.parityBits <<= 1; // make room for the new parity bit
522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
529 }
530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
542 }
543 if (Demod.len) {
544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
547 }
548 }
549 }
550 }
551 return FALSE; // not finished yet, need more data
552 }
553
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
558
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
562 // near the reader.
563 //-----------------------------------------------------------------------------
564 void RAMFUNC SniffIso14443a(uint8_t param) {
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
568
569 LEDsoff();
570
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
575 bool triggered = !(param & 0x03);
576
577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
579 BigBuf_free();
580
581 // The command (reader -> tag) that we're receiving.
582 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
583 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
584
585 // The response (tag -> reader) that we're receiving.
586 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
587 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
588
589 // The DMA buffer, used to stream samples from the FPGA
590 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
591
592 // init trace buffer
593 clear_trace();
594 set_tracing(TRUE);
595
596 uint8_t *data = dmaBuf;
597 uint8_t previous_data = 0;
598 int maxDataLen = 0;
599 int dataLen = 0;
600 bool TagIsActive = FALSE;
601 bool ReaderIsActive = FALSE;
602
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
604
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse, receivedResponsePar);
607
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd, receivedCmdPar);
610
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
613
614 // And now we loop, receiving samples.
615 for(uint32_t rsamples = 0; TRUE; ) {
616
617 if(BUTTON_PRESS()) {
618 DbpString("cancelled by button");
619 break;
620 }
621
622 LED_A_ON();
623 WDT_HIT();
624
625 int register readBufDataP = data - dmaBuf;
626 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
627 if (readBufDataP <= dmaBufDataP){
628 dataLen = dmaBufDataP - readBufDataP;
629 } else {
630 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
631 }
632 // test for length of buffer
633 if(dataLen > maxDataLen) {
634 maxDataLen = dataLen;
635 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
636 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
637 break;
638 }
639 }
640 if(dataLen < 1) continue;
641
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
644 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
645 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
647 }
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
650 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
651 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
652 }
653
654 LED_A_OFF();
655
656 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
657
658 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
660 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
661 LED_C_ON();
662
663 // check - if there is a short 7bit request from reader
664 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
665
666 if(triggered) {
667 if (!LogTrace(receivedCmd,
668 Uart.len,
669 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
671 Uart.parity,
672 TRUE)) break;
673 }
674 /* And ready to receive another command. */
675 UartReset();
676 /* And also reset the demod code, which might have been */
677 /* false-triggered by the commands from the reader. */
678 DemodReset();
679 LED_B_OFF();
680 }
681 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
682 }
683
684 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
685 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
686 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
687 LED_B_ON();
688
689 if (!LogTrace(receivedResponse,
690 Demod.len,
691 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
692 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
693 Demod.parity,
694 FALSE)) break;
695
696 if ((!triggered) && (param & 0x01)) triggered = TRUE;
697
698 // And ready to receive another response.
699 DemodReset();
700 // And reset the Miller decoder including itS (now outdated) input buffer
701 UartInit(receivedCmd, receivedCmdPar);
702
703 LED_C_OFF();
704 }
705 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
706 }
707 }
708
709 previous_data = *data;
710 rsamples++;
711 data++;
712 if(data == dmaBuf + DMA_BUFFER_SIZE) {
713 data = dmaBuf;
714 }
715 } // main cycle
716
717 DbpString("COMMAND FINISHED");
718
719 FpgaDisableSscDma();
720 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
721 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
722 LEDsoff();
723 }
724
725 //-----------------------------------------------------------------------------
726 // Prepare tag messages
727 //-----------------------------------------------------------------------------
728 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
729 {
730 ToSendReset();
731
732 // Correction bit, might be removed when not needed
733 ToSendStuffBit(0);
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(1); // 1
738 ToSendStuffBit(0);
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741
742 // Send startbit
743 ToSend[++ToSendMax] = SEC_D;
744 LastProxToAirDuration = 8 * ToSendMax - 4;
745
746 for(uint16_t i = 0; i < len; i++) {
747 uint8_t b = cmd[i];
748
749 // Data bits
750 for(uint16_t j = 0; j < 8; j++) {
751 if(b & 1) {
752 ToSend[++ToSendMax] = SEC_D;
753 } else {
754 ToSend[++ToSendMax] = SEC_E;
755 }
756 b >>= 1;
757 }
758
759 // Get the parity bit
760 if (parity[i>>3] & (0x80>>(i&0x0007))) {
761 ToSend[++ToSendMax] = SEC_D;
762 LastProxToAirDuration = 8 * ToSendMax - 4;
763 } else {
764 ToSend[++ToSendMax] = SEC_E;
765 LastProxToAirDuration = 8 * ToSendMax;
766 }
767 }
768
769 // Send stopbit
770 ToSend[++ToSendMax] = SEC_F;
771
772 // Convert from last byte pos to length
773 ToSendMax++;
774 }
775
776 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
777 {
778 uint8_t par[MAX_PARITY_SIZE];
779
780 GetParity(cmd, len, par);
781 CodeIso14443aAsTagPar(cmd, len, par);
782 }
783
784
785 static void Code4bitAnswerAsTag(uint8_t cmd)
786 {
787 int i;
788
789 ToSendReset();
790
791 // Correction bit, might be removed when not needed
792 ToSendStuffBit(0);
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(1); // 1
797 ToSendStuffBit(0);
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800
801 // Send startbit
802 ToSend[++ToSendMax] = SEC_D;
803
804 uint8_t b = cmd;
805 for(i = 0; i < 4; i++) {
806 if(b & 1) {
807 ToSend[++ToSendMax] = SEC_D;
808 LastProxToAirDuration = 8 * ToSendMax - 4;
809 } else {
810 ToSend[++ToSendMax] = SEC_E;
811 LastProxToAirDuration = 8 * ToSendMax;
812 }
813 b >>= 1;
814 }
815
816 // Send stopbit
817 ToSend[++ToSendMax] = SEC_F;
818
819 // Convert from last byte pos to length
820 ToSendMax++;
821 }
822
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return TRUE when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
829 {
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
833 LED_D_OFF();
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
835
836 // Now run a `software UART' on the stream of incoming samples.
837 UartInit(received, parity);
838
839 // clear RXRDY:
840 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
841
842 for(;;) {
843 WDT_HIT();
844
845 if(BUTTON_PRESS()) return FALSE;
846
847 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
848 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
849 if(MillerDecoding(b, 0)) {
850 *len = Uart.len;
851 return TRUE;
852 }
853 }
854 }
855 }
856
857 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
858 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
859 int EmSend4bit(uint8_t resp);
860 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
861 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
862 int EmSendCmd(uint8_t *resp, uint16_t respLen);
863 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
864 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
865 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
866
867 static uint8_t* free_buffer_pointer;
868
869 typedef struct {
870 uint8_t* response;
871 size_t response_n;
872 uint8_t* modulation;
873 size_t modulation_n;
874 uint32_t ProxToAirDuration;
875 } tag_response_info_t;
876
877 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
878 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
879 // This will need the following byte array for a modulation sequence
880 // 144 data bits (18 * 8)
881 // 18 parity bits
882 // 2 Start and stop
883 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
884 // 1 just for the case
885 // ----------- +
886 // 166 bytes, since every bit that needs to be send costs us a byte
887 //
888
889
890 // Prepare the tag modulation bits from the message
891 CodeIso14443aAsTag(response_info->response,response_info->response_n);
892
893 // Make sure we do not exceed the free buffer space
894 if (ToSendMax > max_buffer_size) {
895 Dbprintf("Out of memory, when modulating bits for tag answer:");
896 Dbhexdump(response_info->response_n,response_info->response,false);
897 return false;
898 }
899
900 // Copy the byte array, used for this modulation to the buffer position
901 memcpy(response_info->modulation,ToSend,ToSendMax);
902
903 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
904 response_info->modulation_n = ToSendMax;
905 response_info->ProxToAirDuration = LastProxToAirDuration;
906
907 return true;
908 }
909
910
911 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
912 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
913 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
914 // -> need 273 bytes buffer
915 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
916
917 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
918 // Retrieve and store the current buffer index
919 response_info->modulation = free_buffer_pointer;
920
921 // Determine the maximum size we can use from our buffer
922 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
923
924 // Forward the prepare tag modulation function to the inner function
925 if (prepare_tag_modulation(response_info, max_buffer_size)) {
926 // Update the free buffer offset
927 free_buffer_pointer += ToSendMax;
928 return true;
929 } else {
930 return false;
931 }
932 }
933
934 //-----------------------------------------------------------------------------
935 // Main loop of simulated tag: receive commands from reader, decide what
936 // response to send, and send it.
937 //-----------------------------------------------------------------------------
938 void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
939 {
940
941 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
942 // This can be used in a reader-only attack.
943 // (it can also be retrieved via 'hf 14a list', but hey...
944 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
945 uint8_t ar_nr_collected = 0;
946
947 uint8_t sak;
948
949 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
950 uint8_t response1[2];
951
952 switch (tagType) {
953 case 1: { // MIFARE Classic
954 // Says: I am Mifare 1k - original line
955 response1[0] = 0x04;
956 response1[1] = 0x00;
957 sak = 0x08;
958 } break;
959 case 2: { // MIFARE Ultralight
960 // Says: I am a stupid memory tag, no crypto
961 response1[0] = 0x04;
962 response1[1] = 0x00;
963 sak = 0x00;
964 } break;
965 case 3: { // MIFARE DESFire
966 // Says: I am a DESFire tag, ph33r me
967 response1[0] = 0x04;
968 response1[1] = 0x03;
969 sak = 0x20;
970 } break;
971 case 4: { // ISO/IEC 14443-4
972 // Says: I am a javacard (JCOP)
973 response1[0] = 0x04;
974 response1[1] = 0x00;
975 sak = 0x28;
976 } break;
977 case 5: { // MIFARE TNP3XXX
978 // Says: I am a toy
979 response1[0] = 0x01;
980 response1[1] = 0x0f;
981 sak = 0x01;
982 } break;
983 case 6: { // MIFARE Mini
984 // Says: I am a Mifare Mini, 320b
985 response1[0] = 0x44;
986 response1[1] = 0x00;
987 sak = 0x09;
988 } break;
989 default: {
990 Dbprintf("Error: unkown tagtype (%d)",tagType);
991 return;
992 } break;
993 }
994
995 // The second response contains the (mandatory) first 24 bits of the UID
996 uint8_t response2[5] = {0x00};
997
998 // Check if the uid uses the (optional) part
999 uint8_t response2a[5] = {0x00};
1000
1001 if (flags & FLAG_7B_UID_IN_DATA) {
1002 response2[0] = 0x88;
1003 response2[1] = data[0];
1004 response2[2] = data[1];
1005 response2[3] = data[2];
1006
1007 response2a[0] = data[3];
1008 response2a[1] = data[4];
1009 response2a[2] = data[5];
1010 response2a[3] = data[6]; //??
1011 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1012
1013 // Configure the ATQA and SAK accordingly
1014 response1[0] |= 0x40;
1015 sak |= 0x04;
1016 } else {
1017 memcpy(response2, data, 4);
1018 //num_to_bytes(uid_1st,4,response2);
1019 // Configure the ATQA and SAK accordingly
1020 response1[0] &= 0xBF;
1021 sak &= 0xFB;
1022 }
1023
1024 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1025 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1026
1027 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1028 uint8_t response3[3] = {0x00};
1029 response3[0] = sak;
1030 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1031
1032 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1033 uint8_t response3a[3] = {0x00};
1034 response3a[0] = sak & 0xFB;
1035 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1036
1037 uint8_t response5[] = { 0x01, 0x02, 0x03, 0x04 }; // Very random tag nonce
1038 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1039 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1040 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1041 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1042 // TC(1) = 0x02: CID supported, NAD not supported
1043 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1044
1045 #define TAG_RESPONSE_COUNT 7
1046 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1047 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1048 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1049 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1050 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1051 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1052 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1053 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1054 };
1055
1056 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1057 // Such a response is less time critical, so we can prepare them on the fly
1058 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1059 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1060 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1061 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1062 tag_response_info_t dynamic_response_info = {
1063 .response = dynamic_response_buffer,
1064 .response_n = 0,
1065 .modulation = dynamic_modulation_buffer,
1066 .modulation_n = 0
1067 };
1068
1069 BigBuf_free_keep_EM();
1070
1071 // allocate buffers:
1072 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1073 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1074 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1075
1076 // clear trace
1077 clear_trace();
1078 set_tracing(TRUE);
1079
1080 // Prepare the responses of the anticollision phase
1081 // there will be not enough time to do this at the moment the reader sends it REQA
1082 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1083 prepare_allocated_tag_modulation(&responses[i]);
1084 }
1085
1086 int len = 0;
1087
1088 // To control where we are in the protocol
1089 int order = 0;
1090 int lastorder;
1091
1092 // Just to allow some checks
1093 int happened = 0;
1094 int happened2 = 0;
1095 int cmdsRecvd = 0;
1096
1097 // We need to listen to the high-frequency, peak-detected path.
1098 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1099
1100 cmdsRecvd = 0;
1101 tag_response_info_t* p_response;
1102
1103 LED_A_ON();
1104 for(;;) {
1105 // Clean receive command buffer
1106
1107 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1108 DbpString("Button press");
1109 break;
1110 }
1111
1112 p_response = NULL;
1113
1114 // Okay, look at the command now.
1115 lastorder = order;
1116 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1117 p_response = &responses[0]; order = 1;
1118 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1119 p_response = &responses[0]; order = 6;
1120 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1121 p_response = &responses[1]; order = 2;
1122 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1123 p_response = &responses[2]; order = 20;
1124 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1125 p_response = &responses[3]; order = 3;
1126 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1127 p_response = &responses[4]; order = 30;
1128 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1129 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1130 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1131 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1132 p_response = NULL;
1133 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1134
1135 if (tracing) {
1136 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1137 }
1138 p_response = NULL;
1139 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1140 p_response = &responses[5]; order = 7;
1141 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1142 if (tagType == 1 || tagType == 2) { // RATS not supported
1143 EmSend4bit(CARD_NACK_NA);
1144 p_response = NULL;
1145 } else {
1146 p_response = &responses[6]; order = 70;
1147 }
1148 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1149 if (tracing) {
1150 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1151 }
1152 uint32_t nonce = bytes_to_num(response5,4);
1153 uint32_t nr = bytes_to_num(receivedCmd,4);
1154 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1155 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1156
1157 if(flags & FLAG_NR_AR_ATTACK )
1158 {
1159 if(ar_nr_collected < 2){
1160 // Avoid duplicates... probably not necessary, nr should vary.
1161 //if(ar_nr_responses[3] != nr){
1162 ar_nr_responses[ar_nr_collected*5] = 0;
1163 ar_nr_responses[ar_nr_collected*5+1] = 0;
1164 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1165 ar_nr_responses[ar_nr_collected*5+3] = nr;
1166 ar_nr_responses[ar_nr_collected*5+4] = ar;
1167 ar_nr_collected++;
1168 //}
1169 }
1170
1171 if(ar_nr_collected > 1 ) {
1172
1173 if (MF_DBGLEVEL >= 2) {
1174 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1175 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1176 ar_nr_responses[0], // UID1
1177 ar_nr_responses[1], // UID2
1178 ar_nr_responses[2], // NT
1179 ar_nr_responses[3], // AR1
1180 ar_nr_responses[4], // NR1
1181 ar_nr_responses[8], // AR2
1182 ar_nr_responses[9] // NR2
1183 );
1184 }
1185 uint8_t len = ar_nr_collected*5*4;
1186 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1187 ar_nr_collected = 0;
1188 memset(ar_nr_responses, 0x00, len);
1189 }
1190 }
1191 } else {
1192 // Check for ISO 14443A-4 compliant commands, look at left nibble
1193 switch (receivedCmd[0]) {
1194
1195 case 0x0B:
1196 case 0x0A: { // IBlock (command)
1197 dynamic_response_info.response[0] = receivedCmd[0];
1198 dynamic_response_info.response[1] = 0x00;
1199 dynamic_response_info.response[2] = 0x90;
1200 dynamic_response_info.response[3] = 0x00;
1201 dynamic_response_info.response_n = 4;
1202 } break;
1203
1204 case 0x1A:
1205 case 0x1B: { // Chaining command
1206 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1207 dynamic_response_info.response_n = 2;
1208 } break;
1209
1210 case 0xaa:
1211 case 0xbb: {
1212 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1213 dynamic_response_info.response_n = 2;
1214 } break;
1215
1216 case 0xBA: { //
1217 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1218 dynamic_response_info.response_n = 2;
1219 } break;
1220
1221 case 0xCA:
1222 case 0xC2: { // Readers sends deselect command
1223 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1224 dynamic_response_info.response_n = 2;
1225 } break;
1226
1227 default: {
1228 // Never seen this command before
1229 if (tracing) {
1230 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1231 }
1232 Dbprintf("Received unknown command (len=%d):",len);
1233 Dbhexdump(len,receivedCmd,false);
1234 // Do not respond
1235 dynamic_response_info.response_n = 0;
1236 } break;
1237 }
1238
1239 if (dynamic_response_info.response_n > 0) {
1240 // Copy the CID from the reader query
1241 dynamic_response_info.response[1] = receivedCmd[1];
1242
1243 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1244 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1245 dynamic_response_info.response_n += 2;
1246
1247 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1248 Dbprintf("Error preparing tag response");
1249 if (tracing) {
1250 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1251 }
1252 break;
1253 }
1254 p_response = &dynamic_response_info;
1255 }
1256 }
1257
1258 // Count number of wakeups received after a halt
1259 if(order == 6 && lastorder == 5) { happened++; }
1260
1261 // Count number of other messages after a halt
1262 if(order != 6 && lastorder == 5) { happened2++; }
1263
1264 if(cmdsRecvd > 999) {
1265 DbpString("1000 commands later...");
1266 break;
1267 }
1268 cmdsRecvd++;
1269
1270 if (p_response != NULL) {
1271 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1272 // do the tracing for the previous reader request and this tag answer:
1273 uint8_t par[MAX_PARITY_SIZE];
1274 GetParity(p_response->response, p_response->response_n, par);
1275
1276 EmLogTrace(Uart.output,
1277 Uart.len,
1278 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1279 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1280 Uart.parity,
1281 p_response->response,
1282 p_response->response_n,
1283 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1284 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1285 par);
1286 }
1287
1288 if (!tracing) {
1289 Dbprintf("Trace Full. Simulation stopped.");
1290 break;
1291 }
1292 }
1293
1294 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1295
1296 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1297 LED_A_OFF();
1298 BigBuf_free_keep_EM();
1299 }
1300
1301
1302 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1303 // of bits specified in the delay parameter.
1304 void PrepareDelayedTransfer(uint16_t delay)
1305 {
1306 uint8_t bitmask = 0;
1307 uint8_t bits_to_shift = 0;
1308 uint8_t bits_shifted = 0;
1309
1310 delay &= 0x07;
1311 if (delay) {
1312 for (uint16_t i = 0; i < delay; i++) {
1313 bitmask |= (0x01 << i);
1314 }
1315 ToSend[ToSendMax++] = 0x00;
1316 for (uint16_t i = 0; i < ToSendMax; i++) {
1317 bits_to_shift = ToSend[i] & bitmask;
1318 ToSend[i] = ToSend[i] >> delay;
1319 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1320 bits_shifted = bits_to_shift;
1321 }
1322 }
1323 }
1324
1325
1326 //-------------------------------------------------------------------------------------
1327 // Transmit the command (to the tag) that was placed in ToSend[].
1328 // Parameter timing:
1329 // if NULL: transfer at next possible time, taking into account
1330 // request guard time and frame delay time
1331 // if == 0: transfer immediately and return time of transfer
1332 // if != 0: delay transfer until time specified
1333 //-------------------------------------------------------------------------------------
1334 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1335 {
1336
1337 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1338
1339 uint32_t ThisTransferTime = 0;
1340
1341 if (timing) {
1342 if(*timing == 0) { // Measure time
1343 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1344 } else {
1345 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1346 }
1347 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1348 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1349 LastTimeProxToAirStart = *timing;
1350 } else {
1351 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1352 while(GetCountSspClk() < ThisTransferTime);
1353 LastTimeProxToAirStart = ThisTransferTime;
1354 }
1355
1356 // clear TXRDY
1357 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1358
1359 uint16_t c = 0;
1360 for(;;) {
1361 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1362 AT91C_BASE_SSC->SSC_THR = cmd[c];
1363 c++;
1364 if(c >= len) {
1365 break;
1366 }
1367 }
1368 }
1369
1370 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1371 }
1372
1373
1374 //-----------------------------------------------------------------------------
1375 // Prepare reader command (in bits, support short frames) to send to FPGA
1376 //-----------------------------------------------------------------------------
1377 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1378 {
1379 int i, j;
1380 int last;
1381 uint8_t b;
1382
1383 ToSendReset();
1384
1385 // Start of Communication (Seq. Z)
1386 ToSend[++ToSendMax] = SEC_Z;
1387 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1388 last = 0;
1389
1390 size_t bytecount = nbytes(bits);
1391 // Generate send structure for the data bits
1392 for (i = 0; i < bytecount; i++) {
1393 // Get the current byte to send
1394 b = cmd[i];
1395 size_t bitsleft = MIN((bits-(i*8)),8);
1396
1397 for (j = 0; j < bitsleft; j++) {
1398 if (b & 1) {
1399 // Sequence X
1400 ToSend[++ToSendMax] = SEC_X;
1401 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1402 last = 1;
1403 } else {
1404 if (last == 0) {
1405 // Sequence Z
1406 ToSend[++ToSendMax] = SEC_Z;
1407 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1408 } else {
1409 // Sequence Y
1410 ToSend[++ToSendMax] = SEC_Y;
1411 last = 0;
1412 }
1413 }
1414 b >>= 1;
1415 }
1416
1417 // Only transmit parity bit if we transmitted a complete byte
1418 if (j == 8 && parity != NULL) {
1419 // Get the parity bit
1420 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1421 // Sequence X
1422 ToSend[++ToSendMax] = SEC_X;
1423 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1424 last = 1;
1425 } else {
1426 if (last == 0) {
1427 // Sequence Z
1428 ToSend[++ToSendMax] = SEC_Z;
1429 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1430 } else {
1431 // Sequence Y
1432 ToSend[++ToSendMax] = SEC_Y;
1433 last = 0;
1434 }
1435 }
1436 }
1437 }
1438
1439 // End of Communication: Logic 0 followed by Sequence Y
1440 if (last == 0) {
1441 // Sequence Z
1442 ToSend[++ToSendMax] = SEC_Z;
1443 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1444 } else {
1445 // Sequence Y
1446 ToSend[++ToSendMax] = SEC_Y;
1447 last = 0;
1448 }
1449 ToSend[++ToSendMax] = SEC_Y;
1450
1451 // Convert to length of command:
1452 ToSendMax++;
1453 }
1454
1455 //-----------------------------------------------------------------------------
1456 // Prepare reader command to send to FPGA
1457 //-----------------------------------------------------------------------------
1458 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1459 {
1460 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1461 }
1462
1463
1464 //-----------------------------------------------------------------------------
1465 // Wait for commands from reader
1466 // Stop when button is pressed (return 1) or field was gone (return 2)
1467 // Or return 0 when command is captured
1468 //-----------------------------------------------------------------------------
1469 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1470 {
1471 *len = 0;
1472
1473 uint32_t timer = 0, vtime = 0;
1474 int analogCnt = 0;
1475 int analogAVG = 0;
1476
1477 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1478 // only, since we are receiving, not transmitting).
1479 // Signal field is off with the appropriate LED
1480 LED_D_OFF();
1481 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1482
1483 // Set ADC to read field strength
1484 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1485 AT91C_BASE_ADC->ADC_MR =
1486 ADC_MODE_PRESCALE(63) |
1487 ADC_MODE_STARTUP_TIME(1) |
1488 ADC_MODE_SAMPLE_HOLD_TIME(15);
1489 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1490 // start ADC
1491 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1492
1493 // Now run a 'software UART' on the stream of incoming samples.
1494 UartInit(received, parity);
1495
1496 // Clear RXRDY:
1497 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1498
1499 for(;;) {
1500 WDT_HIT();
1501
1502 if (BUTTON_PRESS()) return 1;
1503
1504 // test if the field exists
1505 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1506 analogCnt++;
1507 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1508 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1509 if (analogCnt >= 32) {
1510 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1511 vtime = GetTickCount();
1512 if (!timer) timer = vtime;
1513 // 50ms no field --> card to idle state
1514 if (vtime - timer > 50) return 2;
1515 } else
1516 if (timer) timer = 0;
1517 analogCnt = 0;
1518 analogAVG = 0;
1519 }
1520 }
1521
1522 // receive and test the miller decoding
1523 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1524 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1525 if(MillerDecoding(b, 0)) {
1526 *len = Uart.len;
1527 return 0;
1528 }
1529 }
1530
1531 }
1532 }
1533
1534
1535 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1536 {
1537 uint8_t b;
1538 uint16_t i = 0;
1539 uint32_t ThisTransferTime;
1540
1541 // Modulate Manchester
1542 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1543
1544 // include correction bit if necessary
1545 if (Uart.parityBits & 0x01) {
1546 correctionNeeded = TRUE;
1547 }
1548 if(correctionNeeded) {
1549 // 1236, so correction bit needed
1550 i = 0;
1551 } else {
1552 i = 1;
1553 }
1554
1555 // clear receiving shift register and holding register
1556 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1557 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1558 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1559 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1560
1561 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1562 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1563 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1564 if (AT91C_BASE_SSC->SSC_RHR) break;
1565 }
1566
1567 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1568
1569 // Clear TXRDY:
1570 AT91C_BASE_SSC->SSC_THR = SEC_F;
1571
1572 // send cycle
1573 for(; i < respLen; ) {
1574 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1575 AT91C_BASE_SSC->SSC_THR = resp[i++];
1576 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1577 }
1578
1579 if(BUTTON_PRESS()) {
1580 break;
1581 }
1582 }
1583
1584 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1585 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1586 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1587 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1588 AT91C_BASE_SSC->SSC_THR = SEC_F;
1589 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1590 i++;
1591 }
1592 }
1593
1594 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1595
1596 return 0;
1597 }
1598
1599 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1600 Code4bitAnswerAsTag(resp);
1601 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1602 // do the tracing for the previous reader request and this tag answer:
1603 uint8_t par[1];
1604 GetParity(&resp, 1, par);
1605 EmLogTrace(Uart.output,
1606 Uart.len,
1607 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1608 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1609 Uart.parity,
1610 &resp,
1611 1,
1612 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1613 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1614 par);
1615 return res;
1616 }
1617
1618 int EmSend4bit(uint8_t resp){
1619 return EmSend4bitEx(resp, false);
1620 }
1621
1622 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1623 CodeIso14443aAsTagPar(resp, respLen, par);
1624 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1625 // do the tracing for the previous reader request and this tag answer:
1626 EmLogTrace(Uart.output,
1627 Uart.len,
1628 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1629 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1630 Uart.parity,
1631 resp,
1632 respLen,
1633 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1634 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1635 par);
1636 return res;
1637 }
1638
1639 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1640 uint8_t par[MAX_PARITY_SIZE];
1641 GetParity(resp, respLen, par);
1642 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1643 }
1644
1645 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1646 uint8_t par[MAX_PARITY_SIZE];
1647 GetParity(resp, respLen, par);
1648 return EmSendCmdExPar(resp, respLen, false, par);
1649 }
1650
1651 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1652 return EmSendCmdExPar(resp, respLen, false, par);
1653 }
1654
1655 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1656 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1657 {
1658 if (tracing) {
1659 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1660 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1661 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1662 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1663 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1664 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1665 reader_EndTime = tag_StartTime - exact_fdt;
1666 reader_StartTime = reader_EndTime - reader_modlen;
1667 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1668 return FALSE;
1669 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1670 } else {
1671 return TRUE;
1672 }
1673 }
1674
1675 //-----------------------------------------------------------------------------
1676 // Wait a certain time for tag response
1677 // If a response is captured return TRUE
1678 // If it takes too long return FALSE
1679 //-----------------------------------------------------------------------------
1680 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1681 {
1682 uint32_t c = 0x00;
1683
1684 // Set FPGA mode to "reader listen mode", no modulation (listen
1685 // only, since we are receiving, not transmitting).
1686 // Signal field is on with the appropriate LED
1687 LED_D_ON();
1688 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1689
1690 // Now get the answer from the card
1691 DemodInit(receivedResponse, receivedResponsePar);
1692
1693 // clear RXRDY:
1694 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1695
1696 for(;;) {
1697 WDT_HIT();
1698
1699 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1700 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1701 if(ManchesterDecoding(b, offset, 0)) {
1702 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1703 return TRUE;
1704 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1705 return FALSE;
1706 }
1707 }
1708 }
1709 }
1710
1711
1712 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1713 {
1714 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1715
1716 // Send command to tag
1717 TransmitFor14443a(ToSend, ToSendMax, timing);
1718 if(trigger)
1719 LED_A_ON();
1720
1721 // Log reader command in trace buffer
1722 if (tracing) {
1723 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1724 }
1725 }
1726
1727
1728 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1729 {
1730 ReaderTransmitBitsPar(frame, len*8, par, timing);
1731 }
1732
1733
1734 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1735 {
1736 // Generate parity and redirect
1737 uint8_t par[MAX_PARITY_SIZE];
1738 GetParity(frame, len/8, par);
1739 ReaderTransmitBitsPar(frame, len, par, timing);
1740 }
1741
1742
1743 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1744 {
1745 // Generate parity and redirect
1746 uint8_t par[MAX_PARITY_SIZE];
1747 GetParity(frame, len, par);
1748 ReaderTransmitBitsPar(frame, len*8, par, timing);
1749 }
1750
1751 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1752 {
1753 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1754 if (tracing) {
1755 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1756 }
1757 return Demod.len;
1758 }
1759
1760 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1761 {
1762 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1763 if (tracing) {
1764 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1765 }
1766 return Demod.len;
1767 }
1768
1769 /* performs iso14443a anticollision procedure
1770 * fills the uid pointer unless NULL
1771 * fills resp_data unless NULL */
1772 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1773 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1774 uint8_t sel_all[] = { 0x93,0x20 };
1775 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1776 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1777 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1778 uint8_t resp_par[MAX_PARITY_SIZE];
1779 byte_t uid_resp[4];
1780 size_t uid_resp_len;
1781
1782 uint8_t sak = 0x04; // cascade uid
1783 int cascade_level = 0;
1784 int len;
1785
1786 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1787 ReaderTransmitBitsPar(wupa,7,0, NULL);
1788
1789 // Receive the ATQA
1790 if(!ReaderReceive(resp, resp_par)) return 0;
1791
1792 if(p_hi14a_card) {
1793 memcpy(p_hi14a_card->atqa, resp, 2);
1794 p_hi14a_card->uidlen = 0;
1795 memset(p_hi14a_card->uid,0,10);
1796 }
1797
1798 // clear uid
1799 if (uid_ptr) {
1800 memset(uid_ptr,0,10);
1801 }
1802
1803 // check for proprietary anticollision:
1804 if ((resp[0] & 0x1F) == 0) {
1805 return 3;
1806 }
1807
1808 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1809 // which case we need to make a cascade 2 request and select - this is a long UID
1810 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1811 for(; sak & 0x04; cascade_level++) {
1812 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1813 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1814
1815 // SELECT_ALL
1816 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1817 if (!ReaderReceive(resp, resp_par)) return 0;
1818
1819 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1820 memset(uid_resp, 0, 4);
1821 uint16_t uid_resp_bits = 0;
1822 uint16_t collision_answer_offset = 0;
1823 // anti-collision-loop:
1824 while (Demod.collisionPos) {
1825 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1826 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1827 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1828 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1829 }
1830 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1831 uid_resp_bits++;
1832 // construct anticollosion command:
1833 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1834 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1835 sel_uid[2+i] = uid_resp[i];
1836 }
1837 collision_answer_offset = uid_resp_bits%8;
1838 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1839 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1840 }
1841 // finally, add the last bits and BCC of the UID
1842 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1843 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1844 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1845 }
1846
1847 } else { // no collision, use the response to SELECT_ALL as current uid
1848 memcpy(uid_resp, resp, 4);
1849 }
1850 uid_resp_len = 4;
1851
1852 // calculate crypto UID. Always use last 4 Bytes.
1853 if(cuid_ptr) {
1854 *cuid_ptr = bytes_to_num(uid_resp, 4);
1855 }
1856
1857 // Construct SELECT UID command
1858 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1859 memcpy(sel_uid+2, uid_resp, 4); // the UID
1860 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1861 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1862 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1863
1864 // Receive the SAK
1865 if (!ReaderReceive(resp, resp_par)) return 0;
1866 sak = resp[0];
1867
1868 // Test if more parts of the uid are coming
1869 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1870 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1871 // http://www.nxp.com/documents/application_note/AN10927.pdf
1872 uid_resp[0] = uid_resp[1];
1873 uid_resp[1] = uid_resp[2];
1874 uid_resp[2] = uid_resp[3];
1875
1876 uid_resp_len = 3;
1877 }
1878
1879 if(uid_ptr) {
1880 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1881 }
1882
1883 if(p_hi14a_card) {
1884 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1885 p_hi14a_card->uidlen += uid_resp_len;
1886 }
1887 }
1888
1889 if(p_hi14a_card) {
1890 p_hi14a_card->sak = sak;
1891 p_hi14a_card->ats_len = 0;
1892 }
1893
1894 // non iso14443a compliant tag
1895 if( (sak & 0x20) == 0) return 2;
1896
1897 // Request for answer to select
1898 AppendCrc14443a(rats, 2);
1899 ReaderTransmit(rats, sizeof(rats), NULL);
1900
1901 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1902
1903
1904 if(p_hi14a_card) {
1905 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1906 p_hi14a_card->ats_len = len;
1907 }
1908
1909 // reset the PCB block number
1910 iso14_pcb_blocknum = 0;
1911
1912 // set default timeout based on ATS
1913 iso14a_set_ATS_timeout(resp);
1914
1915 return 1;
1916 }
1917
1918 void iso14443a_setup(uint8_t fpga_minor_mode) {
1919 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1920 // Set up the synchronous serial port
1921 FpgaSetupSsc();
1922 // connect Demodulated Signal to ADC:
1923 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1924
1925 // Signal field is on with the appropriate LED
1926 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1927 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1928 LED_D_ON();
1929 } else {
1930 LED_D_OFF();
1931 }
1932 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1933
1934 // Start the timer
1935 StartCountSspClk();
1936
1937 DemodReset();
1938 UartReset();
1939 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1940 iso14a_set_timeout(10*106); // 10ms default
1941 }
1942
1943 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1944 uint8_t parity[MAX_PARITY_SIZE];
1945 uint8_t real_cmd[cmd_len+4];
1946 real_cmd[0] = 0x0a; //I-Block
1947 // put block number into the PCB
1948 real_cmd[0] |= iso14_pcb_blocknum;
1949 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1950 memcpy(real_cmd+2, cmd, cmd_len);
1951 AppendCrc14443a(real_cmd,cmd_len+2);
1952
1953 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1954 size_t len = ReaderReceive(data, parity);
1955 uint8_t *data_bytes = (uint8_t *) data;
1956 if (!len)
1957 return 0; //DATA LINK ERROR
1958 // if we received an I- or R(ACK)-Block with a block number equal to the
1959 // current block number, toggle the current block number
1960 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1961 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1962 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1963 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1964 {
1965 iso14_pcb_blocknum ^= 1;
1966 }
1967
1968 return len;
1969 }
1970
1971 //-----------------------------------------------------------------------------
1972 // Read an ISO 14443a tag. Send out commands and store answers.
1973 //
1974 //-----------------------------------------------------------------------------
1975 void ReaderIso14443a(UsbCommand *c)
1976 {
1977 iso14a_command_t param = c->arg[0];
1978 uint8_t *cmd = c->d.asBytes;
1979 size_t len = c->arg[1] & 0xffff;
1980 size_t lenbits = c->arg[1] >> 16;
1981 uint32_t timeout = c->arg[2];
1982 uint32_t arg0 = 0;
1983 byte_t buf[USB_CMD_DATA_SIZE];
1984 uint8_t par[MAX_PARITY_SIZE];
1985
1986 if(param & ISO14A_CONNECT) {
1987 clear_trace();
1988 }
1989
1990 set_tracing(TRUE);
1991
1992 if(param & ISO14A_REQUEST_TRIGGER) {
1993 iso14a_set_trigger(TRUE);
1994 }
1995
1996 if(param & ISO14A_CONNECT) {
1997 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1998 if(!(param & ISO14A_NO_SELECT)) {
1999 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2000 arg0 = iso14443a_select_card(NULL,card,NULL);
2001 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2002 }
2003 }
2004
2005 if(param & ISO14A_SET_TIMEOUT) {
2006 iso14a_set_timeout(timeout);
2007 }
2008
2009 if(param & ISO14A_APDU) {
2010 arg0 = iso14_apdu(cmd, len, buf);
2011 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2012 }
2013
2014 if(param & ISO14A_RAW) {
2015 if(param & ISO14A_APPEND_CRC) {
2016 if(param & ISO14A_TOPAZMODE) {
2017 AppendCrc14443b(cmd,len);
2018 } else {
2019 AppendCrc14443a(cmd,len);
2020 }
2021 len += 2;
2022 if (lenbits) lenbits += 16;
2023 }
2024 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2025 if(param & ISO14A_TOPAZMODE) {
2026 int bits_to_send = lenbits;
2027 uint16_t i = 0;
2028 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2029 bits_to_send -= 7;
2030 while (bits_to_send > 0) {
2031 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2032 bits_to_send -= 8;
2033 }
2034 } else {
2035 GetParity(cmd, lenbits/8, par);
2036 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2037 }
2038 } else { // want to send complete bytes only
2039 if(param & ISO14A_TOPAZMODE) {
2040 uint16_t i = 0;
2041 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2042 while (i < len) {
2043 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2044 }
2045 } else {
2046 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2047 }
2048 }
2049 arg0 = ReaderReceive(buf, par);
2050 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2051 }
2052
2053 if(param & ISO14A_REQUEST_TRIGGER) {
2054 iso14a_set_trigger(FALSE);
2055 }
2056
2057 if(param & ISO14A_NO_DISCONNECT) {
2058 return;
2059 }
2060
2061 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2062 LEDsoff();
2063 }
2064
2065
2066 // Determine the distance between two nonces.
2067 // Assume that the difference is small, but we don't know which is first.
2068 // Therefore try in alternating directions.
2069 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2070
2071 if (nt1 == nt2) return 0;
2072
2073 uint16_t i;
2074 uint32_t nttmp1 = nt1;
2075 uint32_t nttmp2 = nt2;
2076
2077 for (i = 1; i < 32768; i++) {
2078 nttmp1 = prng_successor(nttmp1, 1);
2079 if (nttmp1 == nt2) return i;
2080 nttmp2 = prng_successor(nttmp2, 1);
2081 if (nttmp2 == nt1) return -i;
2082 }
2083
2084 return(-99999); // either nt1 or nt2 are invalid nonces
2085 }
2086
2087
2088 //-----------------------------------------------------------------------------
2089 // Recover several bits of the cypher stream. This implements (first stages of)
2090 // the algorithm described in "The Dark Side of Security by Obscurity and
2091 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2092 // (article by Nicolas T. Courtois, 2009)
2093 //-----------------------------------------------------------------------------
2094 void ReaderMifare(bool first_try) {
2095 // free eventually allocated BigBuf memory. We want all for tracing.
2096 BigBuf_free();
2097
2098 clear_trace();
2099 set_tracing(TRUE);
2100
2101 // Mifare AUTH
2102 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2103 uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
2104 static uint8_t mf_nr_ar3 = 0;
2105
2106 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
2107 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
2108
2109 byte_t nt_diff = 0;
2110 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2111 static byte_t par_low = 0;
2112 bool led_on = TRUE;
2113 uint8_t uid[10] = {0x00};
2114 //uint32_t cuid = 0x00;
2115
2116 uint32_t nt = 0;
2117 uint32_t previous_nt = 0;
2118 static uint32_t nt_attacked = 0;
2119 byte_t par_list[8] = {0x00};
2120 byte_t ks_list[8] = {0x00};
2121
2122 static uint32_t sync_time = 0;
2123 static uint32_t sync_cycles = 0;
2124 int catch_up_cycles = 0;
2125 int last_catch_up = 0;
2126 uint16_t consecutive_resyncs = 0;
2127 int isOK = 0;
2128
2129 int numWrongDistance = 0;
2130
2131 if (first_try) {
2132 mf_nr_ar3 = 0;
2133 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2134 sync_time = GetCountSspClk() & 0xfffffff8;
2135 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2136 nt_attacked = 0;
2137 nt = 0;
2138 par[0] = 0;
2139 }
2140 else {
2141 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2142 mf_nr_ar3++;
2143 mf_nr_ar[3] = mf_nr_ar3;
2144 par[0] = par_low;
2145 }
2146
2147 LED_A_ON();
2148 LED_B_OFF();
2149 LED_C_OFF();
2150 LED_C_ON();
2151
2152 for(uint16_t i = 0; TRUE; i++) {
2153
2154 WDT_HIT();
2155
2156 // Test if the action was cancelled
2157 if(BUTTON_PRESS()) break;
2158
2159 if (numWrongDistance > 1000) {
2160 isOK = 0;
2161 break;
2162 }
2163
2164 //if(!iso14443a_select_card(uid, NULL, &cuid)) {
2165 if(!iso14443a_select_card(uid, NULL, NULL)) {
2166 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2167 continue;
2168 }
2169
2170 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2171 catch_up_cycles = 0;
2172
2173 // if we missed the sync time already, advance to the next nonce repeat
2174 while(GetCountSspClk() > sync_time) {
2175 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2176 }
2177
2178 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2179 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2180
2181 // Receive the (4 Byte) "random" nonce
2182 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2183 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2184 continue;
2185 }
2186
2187 previous_nt = nt;
2188 nt = bytes_to_num(receivedAnswer, 4);
2189
2190 // Transmit reader nonce with fake par
2191 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2192
2193 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2194 int nt_distance = dist_nt(previous_nt, nt);
2195 if (nt_distance == 0) {
2196 nt_attacked = nt;
2197 }
2198 else {
2199
2200 // invalid nonce received, try again
2201 if (nt_distance == -99999) {
2202 numWrongDistance++;
2203 if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
2204 continue;
2205 }
2206
2207 sync_cycles = (sync_cycles - nt_distance);
2208 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2209 continue;
2210 }
2211 }
2212
2213 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2214 catch_up_cycles = -dist_nt(nt_attacked, nt);
2215 if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
2216 catch_up_cycles = 0;
2217 continue;
2218 }
2219 if (catch_up_cycles == last_catch_up) {
2220 consecutive_resyncs++;
2221 }
2222 else {
2223 last_catch_up = catch_up_cycles;
2224 consecutive_resyncs = 0;
2225 }
2226 if (consecutive_resyncs < 3) {
2227 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2228 }
2229 else {
2230 sync_cycles = sync_cycles + catch_up_cycles;
2231 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2232 }
2233 continue;
2234 }
2235
2236 consecutive_resyncs = 0;
2237
2238 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2239 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2240 {
2241 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2242
2243 if (nt_diff == 0)
2244 {
2245 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2246 }
2247
2248 led_on = !led_on;
2249 if(led_on) LED_B_ON(); else LED_B_OFF();
2250
2251 par_list[nt_diff] = SwapBits(par[0], 8);
2252 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2253
2254 // Test if the information is complete
2255 if (nt_diff == 0x07) {
2256 isOK = 1;
2257 break;
2258 }
2259
2260 nt_diff = (nt_diff + 1) & 0x07;
2261 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2262 par[0] = par_low;
2263 } else {
2264 if (nt_diff == 0 && first_try)
2265 {
2266 par[0]++;
2267 } else {
2268 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2269 }
2270 }
2271 }
2272
2273 mf_nr_ar[3] &= 0x1F;
2274
2275 byte_t buf[28] = {0x00};
2276
2277 memcpy(buf + 0, uid, 4);
2278 num_to_bytes(nt, 4, buf + 4);
2279 memcpy(buf + 8, par_list, 8);
2280 memcpy(buf + 16, ks_list, 8);
2281 memcpy(buf + 24, mf_nr_ar, 4);
2282
2283 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2284
2285 set_tracing(FALSE);
2286 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2287 LEDsoff();
2288 }
2289
2290
2291 /*
2292 *MIFARE 1K simulate.
2293 *
2294 *@param flags :
2295 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2296 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2297 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2298 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2299 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2300 */
2301 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2302 {
2303 int cardSTATE = MFEMUL_NOFIELD;
2304 int _7BUID = 0;
2305 int vHf = 0; // in mV
2306 int res;
2307 uint32_t selTimer = 0;
2308 uint32_t authTimer = 0;
2309 uint16_t len = 0;
2310 uint8_t cardWRBL = 0;
2311 uint8_t cardAUTHSC = 0;
2312 uint8_t cardAUTHKEY = 0xff; // no authentication
2313 // uint32_t cardRr = 0;
2314 uint32_t cuid = 0;
2315 //uint32_t rn_enc = 0;
2316 uint32_t ans = 0;
2317 uint32_t cardINTREG = 0;
2318 uint8_t cardINTBLOCK = 0;
2319 struct Crypto1State mpcs = {0, 0};
2320 struct Crypto1State *pcs;
2321 pcs = &mpcs;
2322 uint32_t numReads = 0;//Counts numer of times reader read a block
2323 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2324 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2325 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2326 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2327
2328 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2329 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2330 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2331 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2332 uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2333 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2334
2335 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2336 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2337
2338 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2339 // This can be used in a reader-only attack.
2340 // (it can also be retrieved via 'hf 14a list', but hey...
2341 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
2342 uint8_t ar_nr_collected = 0;
2343
2344 Dbprintf("FIRE");
2345
2346 // free eventually allocated BigBuf memory but keep Emulator Memory
2347 BigBuf_free_keep_EM();
2348
2349 // clear trace
2350 clear_trace();
2351 set_tracing(TRUE);
2352
2353 Dbprintf("ICE");
2354 // Authenticate response - nonce
2355 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2356
2357 //-- Determine the UID
2358 // Can be set from emulator memory, incoming data
2359 // and can be 7 or 4 bytes long
2360 if (flags & FLAG_4B_UID_IN_DATA)
2361 {
2362 // 4B uid comes from data-portion of packet
2363 memcpy(rUIDBCC1,datain,4);
2364 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2365
2366 } else if (flags & FLAG_7B_UID_IN_DATA) {
2367 // 7B uid comes from data-portion of packet
2368 memcpy(&rUIDBCC1[1],datain,3);
2369 memcpy(rUIDBCC2, datain+3, 4);
2370 _7BUID = true;
2371 } else {
2372 // get UID from emul memory
2373 emlGetMemBt(receivedCmd, 7, 1);
2374 _7BUID = !(receivedCmd[0] == 0x00);
2375 if (!_7BUID) { // ---------- 4BUID
2376 emlGetMemBt(rUIDBCC1, 0, 4);
2377 } else { // ---------- 7BUID
2378 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2379 emlGetMemBt(rUIDBCC2, 3, 4);
2380 }
2381 }
2382
2383 Dbprintf("ICE2");
2384 // save uid.
2385 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2386 if ( _7BUID )
2387 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2388
2389 /*
2390 * Regardless of what method was used to set the UID, set fifth byte and modify
2391 * the ATQA for 4 or 7-byte UID
2392 */
2393 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2394 if (_7BUID) {
2395 rATQA[0] = 0x44;
2396 rUIDBCC1[0] = 0x88;
2397 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2398 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2399 }
2400
2401 // We need to listen to the high-frequency, peak-detected path.
2402 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2403
2404
2405 if (MF_DBGLEVEL >= 1) {
2406 if (!_7BUID) {
2407 Dbprintf("4B UID: %02x%02x%02x%02x",
2408 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2409 } else {
2410 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2411 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2412 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2413 }
2414 }
2415
2416 Dbprintf("ICE3");
2417 bool finished = FALSE;
2418 while (!BUTTON_PRESS() && !finished) {
2419 WDT_HIT();
2420
2421 // find reader field
2422 if (cardSTATE == MFEMUL_NOFIELD) {
2423 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2424 if (vHf > MF_MINFIELDV) {
2425 cardSTATE_TO_IDLE();
2426 LED_A_ON();
2427 }
2428 }
2429 if(cardSTATE == MFEMUL_NOFIELD) continue;
2430
2431 //Now, get data
2432 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2433 if (res == 2) { //Field is off!
2434 cardSTATE = MFEMUL_NOFIELD;
2435 LEDsoff();
2436 continue;
2437 } else if (res == 1) {
2438 break; //return value 1 means button press
2439 }
2440
2441 // REQ or WUP request in ANY state and WUP in HALTED state
2442 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2443 selTimer = GetTickCount();
2444 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2445 cardSTATE = MFEMUL_SELECT1;
2446
2447 // init crypto block
2448 LED_B_OFF();
2449 LED_C_OFF();
2450 crypto1_destroy(pcs);
2451 cardAUTHKEY = 0xff;
2452 continue;
2453 }
2454
2455 switch (cardSTATE) {
2456 case MFEMUL_NOFIELD:
2457 case MFEMUL_HALTED:
2458 case MFEMUL_IDLE:{
2459 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2460 break;
2461 }
2462 case MFEMUL_SELECT1:{
2463 // select all
2464 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2465 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2466 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2467 break;
2468 }
2469
2470 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2471 {
2472 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2473 }
2474 // select card
2475 if (len == 9 &&
2476 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2477 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2478 cuid = bytes_to_num(rUIDBCC1, 4);
2479 if (!_7BUID) {
2480 cardSTATE = MFEMUL_WORK;
2481 LED_B_ON();
2482 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2483 break;
2484 } else {
2485 cardSTATE = MFEMUL_SELECT2;
2486 }
2487 }
2488 break;
2489 }
2490 case MFEMUL_AUTH1:{
2491 if( len != 8)
2492 {
2493 cardSTATE_TO_IDLE();
2494 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2495 break;
2496 }
2497
2498 uint32_t ar = bytes_to_num(receivedCmd, 4);
2499 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2500
2501 //Collect AR/NR
2502 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2503 if(ar_nr_collected < 2){
2504 if(ar_nr_responses[2] != ar)
2505 {// Avoid duplicates... probably not necessary, ar should vary.
2506 //ar_nr_responses[ar_nr_collected*5] = 0;
2507 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2508 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2509 ar_nr_responses[ar_nr_collected*5+3] = nr;
2510 ar_nr_responses[ar_nr_collected*5+4] = ar;
2511 ar_nr_collected++;
2512 }
2513 // Interactive mode flag, means we need to send ACK
2514 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2515 {
2516 finished = true;
2517 }
2518 }
2519
2520 // --- crypto
2521 //crypto1_word(pcs, ar , 1);
2522 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2523
2524 //test if auth OK
2525 //if (cardRr != prng_successor(nonce, 64)){
2526
2527 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2528 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2529 // cardRr, prng_successor(nonce, 64));
2530 // Shouldn't we respond anything here?
2531 // Right now, we don't nack or anything, which causes the
2532 // reader to do a WUPA after a while. /Martin
2533 // -- which is the correct response. /piwi
2534 //cardSTATE_TO_IDLE();
2535 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2536 //break;
2537 //}
2538
2539 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2540
2541 num_to_bytes(ans, 4, rAUTH_AT);
2542 // --- crypto
2543 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2544 LED_C_ON();
2545 cardSTATE = MFEMUL_WORK;
2546 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2547 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2548 GetTickCount() - authTimer);
2549 break;
2550 }
2551 case MFEMUL_SELECT2:{
2552 if (!len) {
2553 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2554 break;
2555 }
2556 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2557 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2558 break;
2559 }
2560
2561 // select 2 card
2562 if (len == 9 &&
2563 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2564 EmSendCmd(rSAK, sizeof(rSAK));
2565 cuid = bytes_to_num(rUIDBCC2, 4);
2566 cardSTATE = MFEMUL_WORK;
2567 LED_B_ON();
2568 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2569 break;
2570 }
2571
2572 // i guess there is a command). go into the work state.
2573 if (len != 4) {
2574 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2575 break;
2576 }
2577 cardSTATE = MFEMUL_WORK;
2578 //goto lbWORK;
2579 //intentional fall-through to the next case-stmt
2580 }
2581
2582 case MFEMUL_WORK:{
2583 if (len == 0) {
2584 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2585 break;
2586 }
2587
2588 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2589
2590 if(encrypted_data) {
2591 // decrypt seqence
2592 mf_crypto1_decrypt(pcs, receivedCmd, len);
2593 }
2594
2595 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2596 authTimer = GetTickCount();
2597 cardAUTHSC = receivedCmd[1] / 4; // received block num
2598 cardAUTHKEY = receivedCmd[0] - 0x60;
2599 crypto1_destroy(pcs);//Added by martin
2600 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2601
2602 if (!encrypted_data) { // first authentication
2603 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2604
2605 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2606 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2607 } else { // nested authentication
2608 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2609 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2610 num_to_bytes(ans, 4, rAUTH_AT);
2611 }
2612
2613 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2614 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2615 cardSTATE = MFEMUL_AUTH1;
2616 break;
2617 }
2618
2619 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2620 // BUT... ACK --> NACK
2621 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2622 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2623 break;
2624 }
2625
2626 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2627 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2628 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2629 break;
2630 }
2631
2632 if(len != 4) {
2633 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2634 break;
2635 }
2636
2637 if(receivedCmd[0] == 0x30 // read block
2638 || receivedCmd[0] == 0xA0 // write block
2639 || receivedCmd[0] == 0xC0 // inc
2640 || receivedCmd[0] == 0xC1 // dec
2641 || receivedCmd[0] == 0xC2 // restore
2642 || receivedCmd[0] == 0xB0) { // transfer
2643 if (receivedCmd[1] >= 16 * 4) {
2644 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2645 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2646 break;
2647 }
2648
2649 if (receivedCmd[1] / 4 != cardAUTHSC) {
2650 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2651 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2652 break;
2653 }
2654 }
2655 // read block
2656 if (receivedCmd[0] == 0x30) {
2657 if (MF_DBGLEVEL >= 4) {
2658 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2659 }
2660 emlGetMem(response, receivedCmd[1], 1);
2661 AppendCrc14443a(response, 16);
2662 mf_crypto1_encrypt(pcs, response, 18, response_par);
2663 EmSendCmdPar(response, 18, response_par);
2664 numReads++;
2665 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
2666 Dbprintf("%d reads done, exiting", numReads);
2667 finished = true;
2668 }
2669 break;
2670 }
2671 // write block
2672 if (receivedCmd[0] == 0xA0) {
2673 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2674 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2675 cardSTATE = MFEMUL_WRITEBL2;
2676 cardWRBL = receivedCmd[1];
2677 break;
2678 }
2679 // increment, decrement, restore
2680 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2681 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2682 if (emlCheckValBl(receivedCmd[1])) {
2683 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2684 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2685 break;
2686 }
2687 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2688 if (receivedCmd[0] == 0xC1)
2689 cardSTATE = MFEMUL_INTREG_INC;
2690 if (receivedCmd[0] == 0xC0)
2691 cardSTATE = MFEMUL_INTREG_DEC;
2692 if (receivedCmd[0] == 0xC2)
2693 cardSTATE = MFEMUL_INTREG_REST;
2694 cardWRBL = receivedCmd[1];
2695 break;
2696 }
2697 // transfer
2698 if (receivedCmd[0] == 0xB0) {
2699 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2700 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2701 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2702 else
2703 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2704 break;
2705 }
2706 // halt
2707 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2708 LED_B_OFF();
2709 LED_C_OFF();
2710 cardSTATE = MFEMUL_HALTED;
2711 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2712 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2713 break;
2714 }
2715 // RATS
2716 if (receivedCmd[0] == 0xe0) {//RATS
2717 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2718 break;
2719 }
2720 // command not allowed
2721 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2722 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2723 break;
2724 }
2725 case MFEMUL_WRITEBL2:{
2726 if (len == 18){
2727 mf_crypto1_decrypt(pcs, receivedCmd, len);
2728 emlSetMem(receivedCmd, cardWRBL, 1);
2729 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2730 cardSTATE = MFEMUL_WORK;
2731 } else {
2732 cardSTATE_TO_IDLE();
2733 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2734 }
2735 break;
2736 }
2737
2738 case MFEMUL_INTREG_INC:{
2739 mf_crypto1_decrypt(pcs, receivedCmd, len);
2740 memcpy(&ans, receivedCmd, 4);
2741 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2742 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2743 cardSTATE_TO_IDLE();
2744 break;
2745 }
2746 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2747 cardINTREG = cardINTREG + ans;
2748 cardSTATE = MFEMUL_WORK;
2749 break;
2750 }
2751 case MFEMUL_INTREG_DEC:{
2752 mf_crypto1_decrypt(pcs, receivedCmd, len);
2753 memcpy(&ans, receivedCmd, 4);
2754 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2755 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2756 cardSTATE_TO_IDLE();
2757 break;
2758 }
2759 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2760 cardINTREG = cardINTREG - ans;
2761 cardSTATE = MFEMUL_WORK;
2762 break;
2763 }
2764 case MFEMUL_INTREG_REST:{
2765 mf_crypto1_decrypt(pcs, receivedCmd, len);
2766 memcpy(&ans, receivedCmd, 4);
2767 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2768 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2769 cardSTATE_TO_IDLE();
2770 break;
2771 }
2772 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2773 cardSTATE = MFEMUL_WORK;
2774 break;
2775 }
2776 }
2777 }
2778
2779 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2780 LEDsoff();
2781
2782 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2783 {
2784 //May just aswell send the collected ar_nr in the response aswell
2785 uint8_t len = ar_nr_collected*5*4;
2786 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
2787 }
2788
2789 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
2790 {
2791 if(ar_nr_collected > 1 ) {
2792 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2793 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2794 ar_nr_responses[0], // UID1
2795 ar_nr_responses[1], // UID2
2796 ar_nr_responses[2], // NT
2797 ar_nr_responses[3], // AR1
2798 ar_nr_responses[4], // NR1
2799 ar_nr_responses[8], // AR2
2800 ar_nr_responses[9] // NR2
2801 );
2802 } else {
2803 Dbprintf("Failed to obtain two AR/NR pairs!");
2804 if(ar_nr_collected > 0 ) {
2805 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2806 ar_nr_responses[0], // UID1
2807 ar_nr_responses[1], // UID2
2808 ar_nr_responses[2], // NT
2809 ar_nr_responses[3], // AR1
2810 ar_nr_responses[4] // NR1
2811 );
2812 }
2813 }
2814 }
2815 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
2816 }
2817
2818
2819 //-----------------------------------------------------------------------------
2820 // MIFARE sniffer.
2821 //
2822 //-----------------------------------------------------------------------------
2823 void RAMFUNC SniffMifare(uint8_t param) {
2824 // param:
2825 // bit 0 - trigger from first card answer
2826 // bit 1 - trigger from first reader 7-bit request
2827
2828 // free eventually allocated BigBuf memory
2829 BigBuf_free();
2830
2831 // C(red) A(yellow) B(green)
2832 LEDsoff();
2833 // init trace buffer
2834 clear_trace();
2835 set_tracing(TRUE);
2836
2837 // The command (reader -> tag) that we're receiving.
2838 // The length of a received command will in most cases be no more than 18 bytes.
2839 // So 32 should be enough!
2840 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2841 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2842 // The response (tag -> reader) that we're receiving.
2843 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2844 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2845
2846 // allocate the DMA buffer, used to stream samples from the FPGA
2847 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2848 uint8_t *data = dmaBuf;
2849 uint8_t previous_data = 0;
2850 int maxDataLen = 0;
2851 int dataLen = 0;
2852 bool ReaderIsActive = FALSE;
2853 bool TagIsActive = FALSE;
2854
2855 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2856
2857 // Set up the demodulator for tag -> reader responses.
2858 DemodInit(receivedResponse, receivedResponsePar);
2859
2860 // Set up the demodulator for the reader -> tag commands
2861 UartInit(receivedCmd, receivedCmdPar);
2862
2863 // Setup for the DMA.
2864 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2865
2866 LED_D_OFF();
2867
2868 // init sniffer
2869 MfSniffInit();
2870
2871 // And now we loop, receiving samples.
2872 for(uint32_t sniffCounter = 0; TRUE; ) {
2873
2874 if(BUTTON_PRESS()) {
2875 DbpString("cancelled by button");
2876 break;
2877 }
2878
2879 LED_A_ON();
2880 WDT_HIT();
2881
2882 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2883 // check if a transaction is completed (timeout after 2000ms).
2884 // if yes, stop the DMA transfer and send what we have so far to the client
2885 if (MfSniffSend(2000)) {
2886 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2887 sniffCounter = 0;
2888 data = dmaBuf;
2889 maxDataLen = 0;
2890 ReaderIsActive = FALSE;
2891 TagIsActive = FALSE;
2892 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2893 }
2894 }
2895
2896 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2897 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2898 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2899 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2900 } else {
2901 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2902 }
2903 // test for length of buffer
2904 if(dataLen > maxDataLen) { // we are more behind than ever...
2905 maxDataLen = dataLen;
2906 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
2907 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2908 break;
2909 }
2910 }
2911 if(dataLen < 1) continue;
2912
2913 // primary buffer was stopped ( <-- we lost data!
2914 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2915 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2916 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2917 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2918 }
2919 // secondary buffer sets as primary, secondary buffer was stopped
2920 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2921 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2922 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2923 }
2924
2925 LED_A_OFF();
2926
2927 if (sniffCounter & 0x01) {
2928
2929 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2930 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2931 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2932 LED_C_INV();
2933 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
2934
2935 /* And ready to receive another command. */
2936 UartInit(receivedCmd, receivedCmdPar);
2937
2938 /* And also reset the demod code */
2939 DemodReset();
2940 }
2941 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2942 }
2943
2944 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2945 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2946 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2947 LED_C_INV();
2948
2949 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
2950
2951 // And ready to receive another response.
2952 DemodReset();
2953
2954 // And reset the Miller decoder including its (now outdated) input buffer
2955 UartInit(receivedCmd, receivedCmdPar);
2956 }
2957 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2958 }
2959 }
2960
2961 previous_data = *data;
2962 sniffCounter++;
2963 data++;
2964 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2965 data = dmaBuf;
2966 }
2967
2968 } // main cycle
2969
2970 DbpString("COMMAND FINISHED");
2971
2972 FpgaDisableSscDma();
2973 MfSniffEnd();
2974
2975 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2976 LEDsoff();
2977 }
Impressum, Datenschutz