]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Added a lf acquisition-mode which can do decimation and quantization, in order to...
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "proxmark3.h"
13 #include "apps.h"
14 #include "util.h"
15 #include "hitag2.h"
16 #include "crc16.h"
17 #include "string.h"
18 #include "lfdemod.h"
19
20 typedef struct {
21 uint8_t * buffer;
22 uint32_t numbits;
23 uint8_t position;
24 } BitstreamOut;
25 /**
26 * @brief Pushes bit onto the stream
27 * @param stream
28 * @param bit
29 */
30 void pushBit( BitstreamOut* stream, bool bit)
31 {
32 int bytepos = stream->position >> 3; // divide by 8
33 int bitpos = stream->position & 7;
34 *(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
35 stream->position++;
36 stream->numbits++;
37 }
38 void DoAcquisition(int decimation, int quantization, int trigger_threshold, bool averaging)
39 {
40 //A decimation of 2 means we keep every 2nd sample
41 //A decimation of 3 means we keep 1 in 3 samples.
42 //A quantization of 1 means one bit is discarded from the sample (division by 2).
43 uint8_t *dest = (uint8_t *)BigBuf;
44 int bufsize = BIGBUF_SIZE;
45 memset(dest, 0, bufsize);
46 // You can't decimate 8 bits more than 7 times
47 if(quantization > 7) quantization = 7;
48 // Use a bit stream to handle the output
49 BitstreamOut data = { dest , 0, 0};
50 int sample_counter = 0;
51 uint8_t sample = 0;
52 //If we want to do averaging
53 uint32_t sample_sum =0 ;
54 uint32_t sample_total_numbers =0 ;
55 uint32_t sample_total_saved =0 ;
56
57 for(;;) {
58 WDT_HIT();
59 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
60 AT91C_BASE_SSC->SSC_THR = 0x43;
61 LED_D_ON();
62 }
63 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
64 sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
65 sample_total_numbers++;
66 if (trigger_threshold != -1 && sample < trigger_threshold)
67 continue;
68
69 LED_D_OFF();
70 trigger_threshold = -1;
71 sample_counter++;
72 sample_sum += sample;
73 //Check decimation
74 if(sample_counter < decimation) continue;
75 //Averaging
76 if(averaging) sample = sample_sum / decimation;
77
78 sample_counter = 0;
79 sample_sum =0;
80 sample_total_saved ++;
81 pushBit(&data, sample & 0x80);
82 if(quantization < 7) pushBit(&data, sample & 0x40);
83 if(quantization < 6) pushBit(&data, sample & 0x20);
84 if(quantization < 5) pushBit(&data, sample & 0x10);
85 if(quantization < 4) pushBit(&data, sample & 0x08);
86 if(quantization < 3) pushBit(&data, sample & 0x04);
87 if(quantization < 2) pushBit(&data, sample & 0x02);
88 if(quantization < 1) pushBit(&data, sample & 0x01);
89
90 if(data.numbits +1 >= bufsize) break;
91 }
92 }
93 Dbprintf("Done, saved %l out of %l seen samples.",sample_total_saved, sample_total_numbers);
94
95 }
96
97
98 /**
99 * Does the sample acquisition. If threshold is specified, the actual sampling
100 * is not commenced until the threshold has been reached.
101 * @param trigger_threshold - the threshold
102 * @param silent - is true, now outputs are made. If false, dbprints the status
103 */
104 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
105 {
106 uint8_t *dest = (uint8_t *)BigBuf;
107 int n = sizeof(BigBuf);
108 int i;
109
110 memset(dest, 0, n);
111 i = 0;
112 for(;;) {
113 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
114 AT91C_BASE_SSC->SSC_THR = 0x43;
115 LED_D_ON();
116 }
117 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
118 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
119 LED_D_OFF();
120 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
121 continue;
122 else
123 trigger_threshold = -1;
124 if (++i >= n) break;
125 }
126 }
127 if(!silent)
128 {
129 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
130 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
131
132 }
133 }
134 /**
135 * Perform sample aquisition.
136 */
137 void DoAcquisition125k(int trigger_threshold)
138 {
139 DoAcquisition125k_internal(trigger_threshold, false);
140 }
141
142 /**
143 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
144 * if not already loaded, sets divisor and starts up the antenna.
145 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
146 * 0 or 95 ==> 125 KHz
147 *
148 **/
149 void LFSetupFPGAForADC(int divisor, bool lf_field)
150 {
151 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
152 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
154 else if (divisor == 0)
155 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
156 else
157 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
158
159 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
160
161 // Connect the A/D to the peak-detected low-frequency path.
162 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
163 // Give it a bit of time for the resonant antenna to settle.
164 SpinDelay(50);
165 // Now set up the SSC to get the ADC samples that are now streaming at us.
166 FpgaSetupSsc();
167 }
168 /**
169 * Initializes the FPGA, and acquires the samples.
170 **/
171 void AcquireRawAdcSamples125k(int divisor)
172 {
173 LFSetupFPGAForADC(divisor, true);
174 // Now call the acquisition routine
175 DoAcquisition125k_internal(-1,false);
176 }
177 /**
178 * Initializes the FPGA for snoop-mode, and acquires the samples.
179 **/
180
181 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
182 {
183 LFSetupFPGAForADC(divisor, false);
184 DoAcquisition125k(trigger_threshold);
185 }
186
187 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
188 {
189
190 /* Make sure the tag is reset */
191 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
192 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
193 SpinDelay(2500);
194
195
196 int divisor_used = 95; // 125 KHz
197 // see if 'h' was specified
198
199 if (command[strlen((char *) command) - 1] == 'h')
200 divisor_used = 88; // 134.8 KHz
201
202
203 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
205 // Give it a bit of time for the resonant antenna to settle.
206 SpinDelay(50);
207
208 // And a little more time for the tag to fully power up
209 SpinDelay(2000);
210
211 // Now set up the SSC to get the ADC samples that are now streaming at us.
212 FpgaSetupSsc();
213
214 // now modulate the reader field
215 while(*command != '\0' && *command != ' ') {
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
217 LED_D_OFF();
218 SpinDelayUs(delay_off);
219 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
220
221 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
222 LED_D_ON();
223 if(*(command++) == '0')
224 SpinDelayUs(period_0);
225 else
226 SpinDelayUs(period_1);
227 }
228 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
229 LED_D_OFF();
230 SpinDelayUs(delay_off);
231 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
232
233 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
234
235 // now do the read
236 DoAcquisition125k(-1);
237 }
238
239 /* blank r/w tag data stream
240 ...0000000000000000 01111111
241 1010101010101010101010101010101010101010101010101010101010101010
242 0011010010100001
243 01111111
244 101010101010101[0]000...
245
246 [5555fe852c5555555555555555fe0000]
247 */
248 void ReadTItag(void)
249 {
250 // some hardcoded initial params
251 // when we read a TI tag we sample the zerocross line at 2Mhz
252 // TI tags modulate a 1 as 16 cycles of 123.2Khz
253 // TI tags modulate a 0 as 16 cycles of 134.2Khz
254 #define FSAMPLE 2000000
255 #define FREQLO 123200
256 #define FREQHI 134200
257
258 signed char *dest = (signed char *)BigBuf;
259 int n = sizeof(BigBuf);
260 // 128 bit shift register [shift3:shift2:shift1:shift0]
261 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
262
263 int i, cycles=0, samples=0;
264 // how many sample points fit in 16 cycles of each frequency
265 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
266 // when to tell if we're close enough to one freq or another
267 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
268
269 // TI tags charge at 134.2Khz
270 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
271 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
272
273 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
274 // connects to SSP_DIN and the SSP_DOUT logic level controls
275 // whether we're modulating the antenna (high)
276 // or listening to the antenna (low)
277 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
278
279 // get TI tag data into the buffer
280 AcquireTiType();
281
282 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
283
284 for (i=0; i<n-1; i++) {
285 // count cycles by looking for lo to hi zero crossings
286 if ( (dest[i]<0) && (dest[i+1]>0) ) {
287 cycles++;
288 // after 16 cycles, measure the frequency
289 if (cycles>15) {
290 cycles=0;
291 samples=i-samples; // number of samples in these 16 cycles
292
293 // TI bits are coming to us lsb first so shift them
294 // right through our 128 bit right shift register
295 shift0 = (shift0>>1) | (shift1 << 31);
296 shift1 = (shift1>>1) | (shift2 << 31);
297 shift2 = (shift2>>1) | (shift3 << 31);
298 shift3 >>= 1;
299
300 // check if the cycles fall close to the number
301 // expected for either the low or high frequency
302 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
303 // low frequency represents a 1
304 shift3 |= (1<<31);
305 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
306 // high frequency represents a 0
307 } else {
308 // probably detected a gay waveform or noise
309 // use this as gaydar or discard shift register and start again
310 shift3 = shift2 = shift1 = shift0 = 0;
311 }
312 samples = i;
313
314 // for each bit we receive, test if we've detected a valid tag
315
316 // if we see 17 zeroes followed by 6 ones, we might have a tag
317 // remember the bits are backwards
318 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
319 // if start and end bytes match, we have a tag so break out of the loop
320 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
321 cycles = 0xF0B; //use this as a flag (ugly but whatever)
322 break;
323 }
324 }
325 }
326 }
327 }
328
329 // if flag is set we have a tag
330 if (cycles!=0xF0B) {
331 DbpString("Info: No valid tag detected.");
332 } else {
333 // put 64 bit data into shift1 and shift0
334 shift0 = (shift0>>24) | (shift1 << 8);
335 shift1 = (shift1>>24) | (shift2 << 8);
336
337 // align 16 bit crc into lower half of shift2
338 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
339
340 // if r/w tag, check ident match
341 if (shift3 & (1<<15) ) {
342 DbpString("Info: TI tag is rewriteable");
343 // only 15 bits compare, last bit of ident is not valid
344 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
345 DbpString("Error: Ident mismatch!");
346 } else {
347 DbpString("Info: TI tag ident is valid");
348 }
349 } else {
350 DbpString("Info: TI tag is readonly");
351 }
352
353 // WARNING the order of the bytes in which we calc crc below needs checking
354 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
355 // bytes in reverse or something
356 // calculate CRC
357 uint32_t crc=0;
358
359 crc = update_crc16(crc, (shift0)&0xff);
360 crc = update_crc16(crc, (shift0>>8)&0xff);
361 crc = update_crc16(crc, (shift0>>16)&0xff);
362 crc = update_crc16(crc, (shift0>>24)&0xff);
363 crc = update_crc16(crc, (shift1)&0xff);
364 crc = update_crc16(crc, (shift1>>8)&0xff);
365 crc = update_crc16(crc, (shift1>>16)&0xff);
366 crc = update_crc16(crc, (shift1>>24)&0xff);
367
368 Dbprintf("Info: Tag data: %x%08x, crc=%x",
369 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
370 if (crc != (shift2&0xffff)) {
371 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
372 } else {
373 DbpString("Info: CRC is good");
374 }
375 }
376 }
377
378 void WriteTIbyte(uint8_t b)
379 {
380 int i = 0;
381
382 // modulate 8 bits out to the antenna
383 for (i=0; i<8; i++)
384 {
385 if (b&(1<<i)) {
386 // stop modulating antenna
387 LOW(GPIO_SSC_DOUT);
388 SpinDelayUs(1000);
389 // modulate antenna
390 HIGH(GPIO_SSC_DOUT);
391 SpinDelayUs(1000);
392 } else {
393 // stop modulating antenna
394 LOW(GPIO_SSC_DOUT);
395 SpinDelayUs(300);
396 // modulate antenna
397 HIGH(GPIO_SSC_DOUT);
398 SpinDelayUs(1700);
399 }
400 }
401 }
402
403 void AcquireTiType(void)
404 {
405 int i, j, n;
406 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
407 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
408 #define TIBUFLEN 1250
409
410 // clear buffer
411 memset(BigBuf,0,sizeof(BigBuf));
412
413 // Set up the synchronous serial port
414 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
415 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
416
417 // steal this pin from the SSP and use it to control the modulation
418 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
419 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
420
421 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
422 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
423
424 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
425 // 48/2 = 24 MHz clock must be divided by 12
426 AT91C_BASE_SSC->SSC_CMR = 12;
427
428 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
429 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
430 AT91C_BASE_SSC->SSC_TCMR = 0;
431 AT91C_BASE_SSC->SSC_TFMR = 0;
432
433 LED_D_ON();
434
435 // modulate antenna
436 HIGH(GPIO_SSC_DOUT);
437
438 // Charge TI tag for 50ms.
439 SpinDelay(50);
440
441 // stop modulating antenna and listen
442 LOW(GPIO_SSC_DOUT);
443
444 LED_D_OFF();
445
446 i = 0;
447 for(;;) {
448 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
449 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
450 i++; if(i >= TIBUFLEN) break;
451 }
452 WDT_HIT();
453 }
454
455 // return stolen pin to SSP
456 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
457 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
458
459 char *dest = (char *)BigBuf;
460 n = TIBUFLEN*32;
461 // unpack buffer
462 for (i=TIBUFLEN-1; i>=0; i--) {
463 for (j=0; j<32; j++) {
464 if(BigBuf[i] & (1 << j)) {
465 dest[--n] = 1;
466 } else {
467 dest[--n] = -1;
468 }
469 }
470 }
471 }
472
473 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
474 // if crc provided, it will be written with the data verbatim (even if bogus)
475 // if not provided a valid crc will be computed from the data and written.
476 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
477 {
478 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
479 if(crc == 0) {
480 crc = update_crc16(crc, (idlo)&0xff);
481 crc = update_crc16(crc, (idlo>>8)&0xff);
482 crc = update_crc16(crc, (idlo>>16)&0xff);
483 crc = update_crc16(crc, (idlo>>24)&0xff);
484 crc = update_crc16(crc, (idhi)&0xff);
485 crc = update_crc16(crc, (idhi>>8)&0xff);
486 crc = update_crc16(crc, (idhi>>16)&0xff);
487 crc = update_crc16(crc, (idhi>>24)&0xff);
488 }
489 Dbprintf("Writing to tag: %x%08x, crc=%x",
490 (unsigned int) idhi, (unsigned int) idlo, crc);
491
492 // TI tags charge at 134.2Khz
493 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
494 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
495 // connects to SSP_DIN and the SSP_DOUT logic level controls
496 // whether we're modulating the antenna (high)
497 // or listening to the antenna (low)
498 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
499 LED_A_ON();
500
501 // steal this pin from the SSP and use it to control the modulation
502 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
503 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
504
505 // writing algorithm:
506 // a high bit consists of a field off for 1ms and field on for 1ms
507 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
508 // initiate a charge time of 50ms (field on) then immediately start writing bits
509 // start by writing 0xBB (keyword) and 0xEB (password)
510 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
511 // finally end with 0x0300 (write frame)
512 // all data is sent lsb firts
513 // finish with 15ms programming time
514
515 // modulate antenna
516 HIGH(GPIO_SSC_DOUT);
517 SpinDelay(50); // charge time
518
519 WriteTIbyte(0xbb); // keyword
520 WriteTIbyte(0xeb); // password
521 WriteTIbyte( (idlo )&0xff );
522 WriteTIbyte( (idlo>>8 )&0xff );
523 WriteTIbyte( (idlo>>16)&0xff );
524 WriteTIbyte( (idlo>>24)&0xff );
525 WriteTIbyte( (idhi )&0xff );
526 WriteTIbyte( (idhi>>8 )&0xff );
527 WriteTIbyte( (idhi>>16)&0xff );
528 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
529 WriteTIbyte( (crc )&0xff ); // crc lo
530 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
531 WriteTIbyte(0x00); // write frame lo
532 WriteTIbyte(0x03); // write frame hi
533 HIGH(GPIO_SSC_DOUT);
534 SpinDelay(50); // programming time
535
536 LED_A_OFF();
537
538 // get TI tag data into the buffer
539 AcquireTiType();
540
541 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
542 DbpString("Now use tiread to check");
543 }
544
545 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
546 {
547 int i;
548 uint8_t *tab = (uint8_t *)BigBuf;
549
550 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
551 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
552
553 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
554
555 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
556 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
557
558 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
559 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
560
561 i = 0;
562 for(;;) {
563 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
564 if(BUTTON_PRESS()) {
565 DbpString("Stopped");
566 return;
567 }
568 WDT_HIT();
569 }
570
571 if (ledcontrol)
572 LED_D_ON();
573
574 if(tab[i])
575 OPEN_COIL();
576 else
577 SHORT_COIL();
578
579 if (ledcontrol)
580 LED_D_OFF();
581
582 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
583 if(BUTTON_PRESS()) {
584 DbpString("Stopped");
585 return;
586 }
587 WDT_HIT();
588 }
589
590 i++;
591 if(i == period) {
592 i = 0;
593 if (gap) {
594 SHORT_COIL();
595 SpinDelayUs(gap);
596 }
597 }
598 }
599 }
600
601 #define DEBUG_FRAME_CONTENTS 1
602 void SimulateTagLowFrequencyBidir(int divisor, int t0)
603 {
604 }
605
606 // compose fc/8 fc/10 waveform
607 static void fc(int c, int *n) {
608 uint8_t *dest = (uint8_t *)BigBuf;
609 int idx;
610
611 // for when we want an fc8 pattern every 4 logical bits
612 if(c==0) {
613 dest[((*n)++)]=1;
614 dest[((*n)++)]=1;
615 dest[((*n)++)]=0;
616 dest[((*n)++)]=0;
617 dest[((*n)++)]=0;
618 dest[((*n)++)]=0;
619 dest[((*n)++)]=0;
620 dest[((*n)++)]=0;
621 }
622 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
623 if(c==8) {
624 for (idx=0; idx<6; idx++) {
625 dest[((*n)++)]=1;
626 dest[((*n)++)]=1;
627 dest[((*n)++)]=0;
628 dest[((*n)++)]=0;
629 dest[((*n)++)]=0;
630 dest[((*n)++)]=0;
631 dest[((*n)++)]=0;
632 dest[((*n)++)]=0;
633 }
634 }
635
636 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
637 if(c==10) {
638 for (idx=0; idx<5; idx++) {
639 dest[((*n)++)]=1;
640 dest[((*n)++)]=1;
641 dest[((*n)++)]=1;
642 dest[((*n)++)]=0;
643 dest[((*n)++)]=0;
644 dest[((*n)++)]=0;
645 dest[((*n)++)]=0;
646 dest[((*n)++)]=0;
647 dest[((*n)++)]=0;
648 dest[((*n)++)]=0;
649 }
650 }
651 }
652
653 // prepare a waveform pattern in the buffer based on the ID given then
654 // simulate a HID tag until the button is pressed
655 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
656 {
657 int n=0, i=0;
658 /*
659 HID tag bitstream format
660 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
661 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
662 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
663 A fc8 is inserted before every 4 bits
664 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
665 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
666 */
667
668 if (hi>0xFFF) {
669 DbpString("Tags can only have 44 bits.");
670 return;
671 }
672 fc(0,&n);
673 // special start of frame marker containing invalid bit sequences
674 fc(8, &n); fc(8, &n); // invalid
675 fc(8, &n); fc(10, &n); // logical 0
676 fc(10, &n); fc(10, &n); // invalid
677 fc(8, &n); fc(10, &n); // logical 0
678
679 WDT_HIT();
680 // manchester encode bits 43 to 32
681 for (i=11; i>=0; i--) {
682 if ((i%4)==3) fc(0,&n);
683 if ((hi>>i)&1) {
684 fc(10, &n); fc(8, &n); // low-high transition
685 } else {
686 fc(8, &n); fc(10, &n); // high-low transition
687 }
688 }
689
690 WDT_HIT();
691 // manchester encode bits 31 to 0
692 for (i=31; i>=0; i--) {
693 if ((i%4)==3) fc(0,&n);
694 if ((lo>>i)&1) {
695 fc(10, &n); fc(8, &n); // low-high transition
696 } else {
697 fc(8, &n); fc(10, &n); // high-low transition
698 }
699 }
700
701 if (ledcontrol)
702 LED_A_ON();
703 SimulateTagLowFrequency(n, 0, ledcontrol);
704
705 if (ledcontrol)
706 LED_A_OFF();
707 }
708
709 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
710 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
711 {
712 uint8_t *dest = (uint8_t *)BigBuf;
713
714 size_t size=0; //, found=0;
715 uint32_t hi2=0, hi=0, lo=0;
716
717 // Configure to go in 125Khz listen mode
718 LFSetupFPGAForADC(95, true);
719
720 while(!BUTTON_PRESS()) {
721
722 WDT_HIT();
723 if (ledcontrol) LED_A_ON();
724
725 DoAcquisition125k_internal(-1,true);
726 // FSK demodulator
727 size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
728
729 WDT_HIT();
730
731 if (size>0 && lo>0){
732 // final loop, go over previously decoded manchester data and decode into usable tag ID
733 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
734 if (hi2 != 0){ //extra large HID tags
735 Dbprintf("TAG ID: %x%08x%08x (%d)",
736 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
737 }else { //standard HID tags <38 bits
738 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
739 uint8_t bitlen = 0;
740 uint32_t fc = 0;
741 uint32_t cardnum = 0;
742 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
743 uint32_t lo2=0;
744 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
745 uint8_t idx3 = 1;
746 while(lo2 > 1){ //find last bit set to 1 (format len bit)
747 lo2=lo2 >> 1;
748 idx3++;
749 }
750 bitlen = idx3+19;
751 fc =0;
752 cardnum=0;
753 if(bitlen == 26){
754 cardnum = (lo>>1)&0xFFFF;
755 fc = (lo>>17)&0xFF;
756 }
757 if(bitlen == 37){
758 cardnum = (lo>>1)&0x7FFFF;
759 fc = ((hi&0xF)<<12)|(lo>>20);
760 }
761 if(bitlen == 34){
762 cardnum = (lo>>1)&0xFFFF;
763 fc= ((hi&1)<<15)|(lo>>17);
764 }
765 if(bitlen == 35){
766 cardnum = (lo>>1)&0xFFFFF;
767 fc = ((hi&1)<<11)|(lo>>21);
768 }
769 }
770 else { //if bit 38 is not set then 37 bit format is used
771 bitlen= 37;
772 fc =0;
773 cardnum=0;
774 if(bitlen==37){
775 cardnum = (lo>>1)&0x7FFFF;
776 fc = ((hi&0xF)<<12)|(lo>>20);
777 }
778 }
779 //Dbprintf("TAG ID: %x%08x (%d)",
780 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
781 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
782 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
783 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
784 }
785 if (findone){
786 if (ledcontrol) LED_A_OFF();
787 return;
788 }
789 // reset
790 hi2 = hi = lo = 0;
791 }
792 WDT_HIT();
793 }
794 DbpString("Stopped");
795 if (ledcontrol) LED_A_OFF();
796 }
797
798 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
799 {
800 uint8_t *dest = (uint8_t *)BigBuf;
801
802 size_t size=0;
803 int clk=0, invert=0, errCnt=0;
804 uint64_t lo=0;
805 // Configure to go in 125Khz listen mode
806 LFSetupFPGAForADC(95, true);
807
808 while(!BUTTON_PRESS()) {
809
810 WDT_HIT();
811 if (ledcontrol) LED_A_ON();
812
813 DoAcquisition125k_internal(-1,true);
814 size = sizeof(BigBuf);
815 //Dbprintf("DEBUG: Buffer got");
816 //askdemod and manchester decode
817 errCnt = askmandemod(dest, &size, &clk, &invert);
818 //Dbprintf("DEBUG: ASK Got");
819 WDT_HIT();
820
821 if (errCnt>=0){
822 lo = Em410xDecode(dest,size);
823 //Dbprintf("DEBUG: EM GOT");
824 if (lo>0){
825 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
826 (uint32_t)(lo>>32),
827 (uint32_t)lo,
828 (uint32_t)(lo&0xFFFF),
829 (uint32_t)((lo>>16LL) & 0xFF),
830 (uint32_t)(lo & 0xFFFFFF));
831 }
832 if (findone){
833 if (ledcontrol) LED_A_OFF();
834 return;
835 }
836 } else{
837 //Dbprintf("DEBUG: No Tag");
838 }
839 WDT_HIT();
840 lo = 0;
841 clk=0;
842 invert=0;
843 errCnt=0;
844 size=0;
845 }
846 DbpString("Stopped");
847 if (ledcontrol) LED_A_OFF();
848 }
849
850 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
851 {
852 uint8_t *dest = (uint8_t *)BigBuf;
853 int idx=0;
854 uint32_t code=0, code2=0;
855 uint8_t version=0;
856 uint8_t facilitycode=0;
857 uint16_t number=0;
858 // Configure to go in 125Khz listen mode
859 LFSetupFPGAForADC(95, true);
860
861 while(!BUTTON_PRESS()) {
862 WDT_HIT();
863 if (ledcontrol) LED_A_ON();
864 DoAcquisition125k_internal(-1,true);
865 //fskdemod and get start index
866 WDT_HIT();
867 idx = IOdemodFSK(dest,sizeof(BigBuf));
868 if (idx>0){
869 //valid tag found
870
871 //Index map
872 //0 10 20 30 40 50 60
873 //| | | | | | |
874 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
875 //-----------------------------------------------------------------------------
876 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
877 //
878 //XSF(version)facility:codeone+codetwo
879 //Handle the data
880 if(findone){ //only print binary if we are doing one
881 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
882 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
883 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
884 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
885 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
886 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
887 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
888 }
889 code = bytebits_to_byte(dest+idx,32);
890 code2 = bytebits_to_byte(dest+idx+32,32);
891 version = bytebits_to_byte(dest+idx+27,8); //14,4
892 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
893 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
894
895 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
896 // if we're only looking for one tag
897 if (findone){
898 if (ledcontrol) LED_A_OFF();
899 //LED_A_OFF();
900 return;
901 }
902 code=code2=0;
903 version=facilitycode=0;
904 number=0;
905 idx=0;
906 }
907 WDT_HIT();
908 }
909 DbpString("Stopped");
910 if (ledcontrol) LED_A_OFF();
911 }
912
913 /*------------------------------
914 * T5555/T5557/T5567 routines
915 *------------------------------
916 */
917
918 /* T55x7 configuration register definitions */
919 #define T55x7_POR_DELAY 0x00000001
920 #define T55x7_ST_TERMINATOR 0x00000008
921 #define T55x7_PWD 0x00000010
922 #define T55x7_MAXBLOCK_SHIFT 5
923 #define T55x7_AOR 0x00000200
924 #define T55x7_PSKCF_RF_2 0
925 #define T55x7_PSKCF_RF_4 0x00000400
926 #define T55x7_PSKCF_RF_8 0x00000800
927 #define T55x7_MODULATION_DIRECT 0
928 #define T55x7_MODULATION_PSK1 0x00001000
929 #define T55x7_MODULATION_PSK2 0x00002000
930 #define T55x7_MODULATION_PSK3 0x00003000
931 #define T55x7_MODULATION_FSK1 0x00004000
932 #define T55x7_MODULATION_FSK2 0x00005000
933 #define T55x7_MODULATION_FSK1a 0x00006000
934 #define T55x7_MODULATION_FSK2a 0x00007000
935 #define T55x7_MODULATION_MANCHESTER 0x00008000
936 #define T55x7_MODULATION_BIPHASE 0x00010000
937 #define T55x7_BITRATE_RF_8 0
938 #define T55x7_BITRATE_RF_16 0x00040000
939 #define T55x7_BITRATE_RF_32 0x00080000
940 #define T55x7_BITRATE_RF_40 0x000C0000
941 #define T55x7_BITRATE_RF_50 0x00100000
942 #define T55x7_BITRATE_RF_64 0x00140000
943 #define T55x7_BITRATE_RF_100 0x00180000
944 #define T55x7_BITRATE_RF_128 0x001C0000
945
946 /* T5555 (Q5) configuration register definitions */
947 #define T5555_ST_TERMINATOR 0x00000001
948 #define T5555_MAXBLOCK_SHIFT 0x00000001
949 #define T5555_MODULATION_MANCHESTER 0
950 #define T5555_MODULATION_PSK1 0x00000010
951 #define T5555_MODULATION_PSK2 0x00000020
952 #define T5555_MODULATION_PSK3 0x00000030
953 #define T5555_MODULATION_FSK1 0x00000040
954 #define T5555_MODULATION_FSK2 0x00000050
955 #define T5555_MODULATION_BIPHASE 0x00000060
956 #define T5555_MODULATION_DIRECT 0x00000070
957 #define T5555_INVERT_OUTPUT 0x00000080
958 #define T5555_PSK_RF_2 0
959 #define T5555_PSK_RF_4 0x00000100
960 #define T5555_PSK_RF_8 0x00000200
961 #define T5555_USE_PWD 0x00000400
962 #define T5555_USE_AOR 0x00000800
963 #define T5555_BITRATE_SHIFT 12
964 #define T5555_FAST_WRITE 0x00004000
965 #define T5555_PAGE_SELECT 0x00008000
966
967 /*
968 * Relevant times in microsecond
969 * To compensate antenna falling times shorten the write times
970 * and enlarge the gap ones.
971 */
972 #define START_GAP 250
973 #define WRITE_GAP 160
974 #define WRITE_0 144 // 192
975 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
976
977 // Write one bit to card
978 void T55xxWriteBit(int bit)
979 {
980 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
981 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
982 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
983 if (bit == 0)
984 SpinDelayUs(WRITE_0);
985 else
986 SpinDelayUs(WRITE_1);
987 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
988 SpinDelayUs(WRITE_GAP);
989 }
990
991 // Write one card block in page 0, no lock
992 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
993 {
994 //unsigned int i; //enio adjustment 12/10/14
995 uint32_t i;
996
997 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
998 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
999 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1000
1001 // Give it a bit of time for the resonant antenna to settle.
1002 // And for the tag to fully power up
1003 SpinDelay(150);
1004
1005 // Now start writting
1006 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1007 SpinDelayUs(START_GAP);
1008
1009 // Opcode
1010 T55xxWriteBit(1);
1011 T55xxWriteBit(0); //Page 0
1012 if (PwdMode == 1){
1013 // Pwd
1014 for (i = 0x80000000; i != 0; i >>= 1)
1015 T55xxWriteBit(Pwd & i);
1016 }
1017 // Lock bit
1018 T55xxWriteBit(0);
1019
1020 // Data
1021 for (i = 0x80000000; i != 0; i >>= 1)
1022 T55xxWriteBit(Data & i);
1023
1024 // Block
1025 for (i = 0x04; i != 0; i >>= 1)
1026 T55xxWriteBit(Block & i);
1027
1028 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1029 // so wait a little more)
1030 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1031 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1032 SpinDelay(20);
1033 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1034 }
1035
1036 // Read one card block in page 0
1037 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1038 {
1039 uint8_t *dest = (uint8_t *)BigBuf;
1040 //int m=0, i=0; //enio adjustment 12/10/14
1041 uint32_t m=0, i=0;
1042 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1043 m = sizeof(BigBuf);
1044 // Clear destination buffer before sending the command
1045 memset(dest, 128, m);
1046 // Connect the A/D to the peak-detected low-frequency path.
1047 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1048 // Now set up the SSC to get the ADC samples that are now streaming at us.
1049 FpgaSetupSsc();
1050
1051 LED_D_ON();
1052 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1053 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1054
1055 // Give it a bit of time for the resonant antenna to settle.
1056 // And for the tag to fully power up
1057 SpinDelay(150);
1058
1059 // Now start writting
1060 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1061 SpinDelayUs(START_GAP);
1062
1063 // Opcode
1064 T55xxWriteBit(1);
1065 T55xxWriteBit(0); //Page 0
1066 if (PwdMode == 1){
1067 // Pwd
1068 for (i = 0x80000000; i != 0; i >>= 1)
1069 T55xxWriteBit(Pwd & i);
1070 }
1071 // Lock bit
1072 T55xxWriteBit(0);
1073 // Block
1074 for (i = 0x04; i != 0; i >>= 1)
1075 T55xxWriteBit(Block & i);
1076
1077 // Turn field on to read the response
1078 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1079 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1080
1081 // Now do the acquisition
1082 i = 0;
1083 for(;;) {
1084 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1085 AT91C_BASE_SSC->SSC_THR = 0x43;
1086 }
1087 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1088 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1089 // we don't care about actual value, only if it's more or less than a
1090 // threshold essentially we capture zero crossings for later analysis
1091 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1092 i++;
1093 if (i >= m) break;
1094 }
1095 }
1096
1097 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1098 LED_D_OFF();
1099 DbpString("DONE!");
1100 }
1101
1102 // Read card traceability data (page 1)
1103 void T55xxReadTrace(void){
1104 uint8_t *dest = (uint8_t *)BigBuf;
1105 int m=0, i=0;
1106
1107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1108 m = sizeof(BigBuf);
1109 // Clear destination buffer before sending the command
1110 memset(dest, 128, m);
1111 // Connect the A/D to the peak-detected low-frequency path.
1112 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1113 // Now set up the SSC to get the ADC samples that are now streaming at us.
1114 FpgaSetupSsc();
1115
1116 LED_D_ON();
1117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1118 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1119
1120 // Give it a bit of time for the resonant antenna to settle.
1121 // And for the tag to fully power up
1122 SpinDelay(150);
1123
1124 // Now start writting
1125 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1126 SpinDelayUs(START_GAP);
1127
1128 // Opcode
1129 T55xxWriteBit(1);
1130 T55xxWriteBit(1); //Page 1
1131
1132 // Turn field on to read the response
1133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1134 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1135
1136 // Now do the acquisition
1137 i = 0;
1138 for(;;) {
1139 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1140 AT91C_BASE_SSC->SSC_THR = 0x43;
1141 }
1142 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1143 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1144 i++;
1145 if (i >= m) break;
1146 }
1147 }
1148
1149 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1150 LED_D_OFF();
1151 DbpString("DONE!");
1152 }
1153
1154 /*-------------- Cloning routines -----------*/
1155 // Copy HID id to card and setup block 0 config
1156 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1157 {
1158 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1159 int last_block = 0;
1160
1161 if (longFMT){
1162 // Ensure no more than 84 bits supplied
1163 if (hi2>0xFFFFF) {
1164 DbpString("Tags can only have 84 bits.");
1165 return;
1166 }
1167 // Build the 6 data blocks for supplied 84bit ID
1168 last_block = 6;
1169 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1170 for (int i=0;i<4;i++) {
1171 if (hi2 & (1<<(19-i)))
1172 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1173 else
1174 data1 |= (1<<((3-i)*2)); // 0 -> 01
1175 }
1176
1177 data2 = 0;
1178 for (int i=0;i<16;i++) {
1179 if (hi2 & (1<<(15-i)))
1180 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1181 else
1182 data2 |= (1<<((15-i)*2)); // 0 -> 01
1183 }
1184
1185 data3 = 0;
1186 for (int i=0;i<16;i++) {
1187 if (hi & (1<<(31-i)))
1188 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1189 else
1190 data3 |= (1<<((15-i)*2)); // 0 -> 01
1191 }
1192
1193 data4 = 0;
1194 for (int i=0;i<16;i++) {
1195 if (hi & (1<<(15-i)))
1196 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1197 else
1198 data4 |= (1<<((15-i)*2)); // 0 -> 01
1199 }
1200
1201 data5 = 0;
1202 for (int i=0;i<16;i++) {
1203 if (lo & (1<<(31-i)))
1204 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1205 else
1206 data5 |= (1<<((15-i)*2)); // 0 -> 01
1207 }
1208
1209 data6 = 0;
1210 for (int i=0;i<16;i++) {
1211 if (lo & (1<<(15-i)))
1212 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1213 else
1214 data6 |= (1<<((15-i)*2)); // 0 -> 01
1215 }
1216 }
1217 else {
1218 // Ensure no more than 44 bits supplied
1219 if (hi>0xFFF) {
1220 DbpString("Tags can only have 44 bits.");
1221 return;
1222 }
1223
1224 // Build the 3 data blocks for supplied 44bit ID
1225 last_block = 3;
1226
1227 data1 = 0x1D000000; // load preamble
1228
1229 for (int i=0;i<12;i++) {
1230 if (hi & (1<<(11-i)))
1231 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1232 else
1233 data1 |= (1<<((11-i)*2)); // 0 -> 01
1234 }
1235
1236 data2 = 0;
1237 for (int i=0;i<16;i++) {
1238 if (lo & (1<<(31-i)))
1239 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1240 else
1241 data2 |= (1<<((15-i)*2)); // 0 -> 01
1242 }
1243
1244 data3 = 0;
1245 for (int i=0;i<16;i++) {
1246 if (lo & (1<<(15-i)))
1247 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1248 else
1249 data3 |= (1<<((15-i)*2)); // 0 -> 01
1250 }
1251 }
1252
1253 LED_D_ON();
1254 // Program the data blocks for supplied ID
1255 // and the block 0 for HID format
1256 T55xxWriteBlock(data1,1,0,0);
1257 T55xxWriteBlock(data2,2,0,0);
1258 T55xxWriteBlock(data3,3,0,0);
1259
1260 if (longFMT) { // if long format there are 6 blocks
1261 T55xxWriteBlock(data4,4,0,0);
1262 T55xxWriteBlock(data5,5,0,0);
1263 T55xxWriteBlock(data6,6,0,0);
1264 }
1265
1266 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1267 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1268 T55x7_MODULATION_FSK2a |
1269 last_block << T55x7_MAXBLOCK_SHIFT,
1270 0,0,0);
1271
1272 LED_D_OFF();
1273
1274 DbpString("DONE!");
1275 }
1276
1277 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1278 {
1279 int data1=0, data2=0; //up to six blocks for long format
1280
1281 data1 = hi; // load preamble
1282 data2 = lo;
1283
1284 LED_D_ON();
1285 // Program the data blocks for supplied ID
1286 // and the block 0 for HID format
1287 T55xxWriteBlock(data1,1,0,0);
1288 T55xxWriteBlock(data2,2,0,0);
1289
1290 //Config Block
1291 T55xxWriteBlock(0x00147040,0,0,0);
1292 LED_D_OFF();
1293
1294 DbpString("DONE!");
1295 }
1296
1297 // Define 9bit header for EM410x tags
1298 #define EM410X_HEADER 0x1FF
1299 #define EM410X_ID_LENGTH 40
1300
1301 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1302 {
1303 int i, id_bit;
1304 uint64_t id = EM410X_HEADER;
1305 uint64_t rev_id = 0; // reversed ID
1306 int c_parity[4]; // column parity
1307 int r_parity = 0; // row parity
1308 uint32_t clock = 0;
1309
1310 // Reverse ID bits given as parameter (for simpler operations)
1311 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1312 if (i < 32) {
1313 rev_id = (rev_id << 1) | (id_lo & 1);
1314 id_lo >>= 1;
1315 } else {
1316 rev_id = (rev_id << 1) | (id_hi & 1);
1317 id_hi >>= 1;
1318 }
1319 }
1320
1321 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1322 id_bit = rev_id & 1;
1323
1324 if (i % 4 == 0) {
1325 // Don't write row parity bit at start of parsing
1326 if (i)
1327 id = (id << 1) | r_parity;
1328 // Start counting parity for new row
1329 r_parity = id_bit;
1330 } else {
1331 // Count row parity
1332 r_parity ^= id_bit;
1333 }
1334
1335 // First elements in column?
1336 if (i < 4)
1337 // Fill out first elements
1338 c_parity[i] = id_bit;
1339 else
1340 // Count column parity
1341 c_parity[i % 4] ^= id_bit;
1342
1343 // Insert ID bit
1344 id = (id << 1) | id_bit;
1345 rev_id >>= 1;
1346 }
1347
1348 // Insert parity bit of last row
1349 id = (id << 1) | r_parity;
1350
1351 // Fill out column parity at the end of tag
1352 for (i = 0; i < 4; ++i)
1353 id = (id << 1) | c_parity[i];
1354
1355 // Add stop bit
1356 id <<= 1;
1357
1358 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1359 LED_D_ON();
1360
1361 // Write EM410x ID
1362 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1363 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1364
1365 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1366 if (card) {
1367 // Clock rate is stored in bits 8-15 of the card value
1368 clock = (card & 0xFF00) >> 8;
1369 Dbprintf("Clock rate: %d", clock);
1370 switch (clock)
1371 {
1372 case 32:
1373 clock = T55x7_BITRATE_RF_32;
1374 break;
1375 case 16:
1376 clock = T55x7_BITRATE_RF_16;
1377 break;
1378 case 0:
1379 // A value of 0 is assumed to be 64 for backwards-compatibility
1380 // Fall through...
1381 case 64:
1382 clock = T55x7_BITRATE_RF_64;
1383 break;
1384 default:
1385 Dbprintf("Invalid clock rate: %d", clock);
1386 return;
1387 }
1388
1389 // Writing configuration for T55x7 tag
1390 T55xxWriteBlock(clock |
1391 T55x7_MODULATION_MANCHESTER |
1392 2 << T55x7_MAXBLOCK_SHIFT,
1393 0, 0, 0);
1394 }
1395 else
1396 // Writing configuration for T5555(Q5) tag
1397 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1398 T5555_MODULATION_MANCHESTER |
1399 2 << T5555_MAXBLOCK_SHIFT,
1400 0, 0, 0);
1401
1402 LED_D_OFF();
1403 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1404 (uint32_t)(id >> 32), (uint32_t)id);
1405 }
1406
1407 // Clone Indala 64-bit tag by UID to T55x7
1408 void CopyIndala64toT55x7(int hi, int lo)
1409 {
1410
1411 //Program the 2 data blocks for supplied 64bit UID
1412 // and the block 0 for Indala64 format
1413 T55xxWriteBlock(hi,1,0,0);
1414 T55xxWriteBlock(lo,2,0,0);
1415 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1416 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1417 T55x7_MODULATION_PSK1 |
1418 2 << T55x7_MAXBLOCK_SHIFT,
1419 0, 0, 0);
1420 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1421 // T5567WriteBlock(0x603E1042,0);
1422
1423 DbpString("DONE!");
1424
1425 }
1426
1427 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1428 {
1429
1430 //Program the 7 data blocks for supplied 224bit UID
1431 // and the block 0 for Indala224 format
1432 T55xxWriteBlock(uid1,1,0,0);
1433 T55xxWriteBlock(uid2,2,0,0);
1434 T55xxWriteBlock(uid3,3,0,0);
1435 T55xxWriteBlock(uid4,4,0,0);
1436 T55xxWriteBlock(uid5,5,0,0);
1437 T55xxWriteBlock(uid6,6,0,0);
1438 T55xxWriteBlock(uid7,7,0,0);
1439 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1440 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1441 T55x7_MODULATION_PSK1 |
1442 7 << T55x7_MAXBLOCK_SHIFT,
1443 0,0,0);
1444 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1445 // T5567WriteBlock(0x603E10E2,0);
1446
1447 DbpString("DONE!");
1448
1449 }
1450
1451
1452 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1453 #define max(x,y) ( x<y ? y:x)
1454
1455 int DemodPCF7931(uint8_t **outBlocks) {
1456 uint8_t BitStream[256];
1457 uint8_t Blocks[8][16];
1458 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1459 int GraphTraceLen = sizeof(BigBuf);
1460 int i, j, lastval, bitidx, half_switch;
1461 int clock = 64;
1462 int tolerance = clock / 8;
1463 int pmc, block_done;
1464 int lc, warnings = 0;
1465 int num_blocks = 0;
1466 int lmin=128, lmax=128;
1467 uint8_t dir;
1468
1469 AcquireRawAdcSamples125k(0);
1470
1471 lmin = 64;
1472 lmax = 192;
1473
1474 i = 2;
1475
1476 /* Find first local max/min */
1477 if(GraphBuffer[1] > GraphBuffer[0]) {
1478 while(i < GraphTraceLen) {
1479 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1480 break;
1481 i++;
1482 }
1483 dir = 0;
1484 }
1485 else {
1486 while(i < GraphTraceLen) {
1487 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1488 break;
1489 i++;
1490 }
1491 dir = 1;
1492 }
1493
1494 lastval = i++;
1495 half_switch = 0;
1496 pmc = 0;
1497 block_done = 0;
1498
1499 for (bitidx = 0; i < GraphTraceLen; i++)
1500 {
1501 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1502 {
1503 lc = i - lastval;
1504 lastval = i;
1505
1506 // Switch depending on lc length:
1507 // Tolerance is 1/8 of clock rate (arbitrary)
1508 if (abs(lc-clock/4) < tolerance) {
1509 // 16T0
1510 if((i - pmc) == lc) { /* 16T0 was previous one */
1511 /* It's a PMC ! */
1512 i += (128+127+16+32+33+16)-1;
1513 lastval = i;
1514 pmc = 0;
1515 block_done = 1;
1516 }
1517 else {
1518 pmc = i;
1519 }
1520 } else if (abs(lc-clock/2) < tolerance) {
1521 // 32TO
1522 if((i - pmc) == lc) { /* 16T0 was previous one */
1523 /* It's a PMC ! */
1524 i += (128+127+16+32+33)-1;
1525 lastval = i;
1526 pmc = 0;
1527 block_done = 1;
1528 }
1529 else if(half_switch == 1) {
1530 BitStream[bitidx++] = 0;
1531 half_switch = 0;
1532 }
1533 else
1534 half_switch++;
1535 } else if (abs(lc-clock) < tolerance) {
1536 // 64TO
1537 BitStream[bitidx++] = 1;
1538 } else {
1539 // Error
1540 warnings++;
1541 if (warnings > 10)
1542 {
1543 Dbprintf("Error: too many detection errors, aborting.");
1544 return 0;
1545 }
1546 }
1547
1548 if(block_done == 1) {
1549 if(bitidx == 128) {
1550 for(j=0; j<16; j++) {
1551 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1552 64*BitStream[j*8+6]+
1553 32*BitStream[j*8+5]+
1554 16*BitStream[j*8+4]+
1555 8*BitStream[j*8+3]+
1556 4*BitStream[j*8+2]+
1557 2*BitStream[j*8+1]+
1558 BitStream[j*8];
1559 }
1560 num_blocks++;
1561 }
1562 bitidx = 0;
1563 block_done = 0;
1564 half_switch = 0;
1565 }
1566 if(i < GraphTraceLen)
1567 {
1568 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1569 else dir = 1;
1570 }
1571 }
1572 if(bitidx==255)
1573 bitidx=0;
1574 warnings = 0;
1575 if(num_blocks == 4) break;
1576 }
1577 memcpy(outBlocks, Blocks, 16*num_blocks);
1578 return num_blocks;
1579 }
1580
1581 int IsBlock0PCF7931(uint8_t *Block) {
1582 // Assume RFU means 0 :)
1583 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1584 return 1;
1585 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1586 return 1;
1587 return 0;
1588 }
1589
1590 int IsBlock1PCF7931(uint8_t *Block) {
1591 // Assume RFU means 0 :)
1592 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1593 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1594 return 1;
1595
1596 return 0;
1597 }
1598
1599 #define ALLOC 16
1600
1601 void ReadPCF7931() {
1602 uint8_t Blocks[8][17];
1603 uint8_t tmpBlocks[4][16];
1604 int i, j, ind, ind2, n;
1605 int num_blocks = 0;
1606 int max_blocks = 8;
1607 int ident = 0;
1608 int error = 0;
1609 int tries = 0;
1610
1611 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1612
1613 do {
1614 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1615 n = DemodPCF7931((uint8_t**)tmpBlocks);
1616 if(!n)
1617 error++;
1618 if(error==10 && num_blocks == 0) {
1619 Dbprintf("Error, no tag or bad tag");
1620 return;
1621 }
1622 else if (tries==20 || error==10) {
1623 Dbprintf("Error reading the tag");
1624 Dbprintf("Here is the partial content");
1625 goto end;
1626 }
1627
1628 for(i=0; i<n; i++)
1629 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1630 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1631 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1632 if(!ident) {
1633 for(i=0; i<n; i++) {
1634 if(IsBlock0PCF7931(tmpBlocks[i])) {
1635 // Found block 0 ?
1636 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1637 // Found block 1!
1638 // \o/
1639 ident = 1;
1640 memcpy(Blocks[0], tmpBlocks[i], 16);
1641 Blocks[0][ALLOC] = 1;
1642 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1643 Blocks[1][ALLOC] = 1;
1644 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1645 // Debug print
1646 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1647 num_blocks = 2;
1648 // Handle following blocks
1649 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1650 if(j==n) j=0;
1651 if(j==i) break;
1652 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1653 Blocks[ind2][ALLOC] = 1;
1654 }
1655 break;
1656 }
1657 }
1658 }
1659 }
1660 else {
1661 for(i=0; i<n; i++) { // Look for identical block in known blocks
1662 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1663 for(j=0; j<max_blocks; j++) {
1664 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1665 // Found an identical block
1666 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1667 if(ind2 < 0)
1668 ind2 = max_blocks;
1669 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1670 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1671 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1672 Blocks[ind2][ALLOC] = 1;
1673 num_blocks++;
1674 if(num_blocks == max_blocks) goto end;
1675 }
1676 }
1677 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1678 if(ind2 > max_blocks)
1679 ind2 = 0;
1680 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1681 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1682 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1683 Blocks[ind2][ALLOC] = 1;
1684 num_blocks++;
1685 if(num_blocks == max_blocks) goto end;
1686 }
1687 }
1688 }
1689 }
1690 }
1691 }
1692 }
1693 tries++;
1694 if (BUTTON_PRESS()) return;
1695 } while (num_blocks != max_blocks);
1696 end:
1697 Dbprintf("-----------------------------------------");
1698 Dbprintf("Memory content:");
1699 Dbprintf("-----------------------------------------");
1700 for(i=0; i<max_blocks; i++) {
1701 if(Blocks[i][ALLOC]==1)
1702 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1703 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1704 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1705 else
1706 Dbprintf("<missing block %d>", i);
1707 }
1708 Dbprintf("-----------------------------------------");
1709
1710 return ;
1711 }
1712
1713
1714 //-----------------------------------
1715 // EM4469 / EM4305 routines
1716 //-----------------------------------
1717 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1718 #define FWD_CMD_WRITE 0xA
1719 #define FWD_CMD_READ 0x9
1720 #define FWD_CMD_DISABLE 0x5
1721
1722
1723 uint8_t forwardLink_data[64]; //array of forwarded bits
1724 uint8_t * forward_ptr; //ptr for forward message preparation
1725 uint8_t fwd_bit_sz; //forwardlink bit counter
1726 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1727
1728 //====================================================================
1729 // prepares command bits
1730 // see EM4469 spec
1731 //====================================================================
1732 //--------------------------------------------------------------------
1733 uint8_t Prepare_Cmd( uint8_t cmd ) {
1734 //--------------------------------------------------------------------
1735
1736 *forward_ptr++ = 0; //start bit
1737 *forward_ptr++ = 0; //second pause for 4050 code
1738
1739 *forward_ptr++ = cmd;
1740 cmd >>= 1;
1741 *forward_ptr++ = cmd;
1742 cmd >>= 1;
1743 *forward_ptr++ = cmd;
1744 cmd >>= 1;
1745 *forward_ptr++ = cmd;
1746
1747 return 6; //return number of emited bits
1748 }
1749
1750 //====================================================================
1751 // prepares address bits
1752 // see EM4469 spec
1753 //====================================================================
1754
1755 //--------------------------------------------------------------------
1756 uint8_t Prepare_Addr( uint8_t addr ) {
1757 //--------------------------------------------------------------------
1758
1759 register uint8_t line_parity;
1760
1761 uint8_t i;
1762 line_parity = 0;
1763 for(i=0;i<6;i++) {
1764 *forward_ptr++ = addr;
1765 line_parity ^= addr;
1766 addr >>= 1;
1767 }
1768
1769 *forward_ptr++ = (line_parity & 1);
1770
1771 return 7; //return number of emited bits
1772 }
1773
1774 //====================================================================
1775 // prepares data bits intreleaved with parity bits
1776 // see EM4469 spec
1777 //====================================================================
1778
1779 //--------------------------------------------------------------------
1780 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1781 //--------------------------------------------------------------------
1782
1783 register uint8_t line_parity;
1784 register uint8_t column_parity;
1785 register uint8_t i, j;
1786 register uint16_t data;
1787
1788 data = data_low;
1789 column_parity = 0;
1790
1791 for(i=0; i<4; i++) {
1792 line_parity = 0;
1793 for(j=0; j<8; j++) {
1794 line_parity ^= data;
1795 column_parity ^= (data & 1) << j;
1796 *forward_ptr++ = data;
1797 data >>= 1;
1798 }
1799 *forward_ptr++ = line_parity;
1800 if(i == 1)
1801 data = data_hi;
1802 }
1803
1804 for(j=0; j<8; j++) {
1805 *forward_ptr++ = column_parity;
1806 column_parity >>= 1;
1807 }
1808 *forward_ptr = 0;
1809
1810 return 45; //return number of emited bits
1811 }
1812
1813 //====================================================================
1814 // Forward Link send function
1815 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1816 // fwd_bit_count set with number of bits to be sent
1817 //====================================================================
1818 void SendForward(uint8_t fwd_bit_count) {
1819
1820 fwd_write_ptr = forwardLink_data;
1821 fwd_bit_sz = fwd_bit_count;
1822
1823 LED_D_ON();
1824
1825 //Field on
1826 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1827 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1828 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1829
1830 // Give it a bit of time for the resonant antenna to settle.
1831 // And for the tag to fully power up
1832 SpinDelay(150);
1833
1834 // force 1st mod pulse (start gap must be longer for 4305)
1835 fwd_bit_sz--; //prepare next bit modulation
1836 fwd_write_ptr++;
1837 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1838 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1839 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1840 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1841 SpinDelayUs(16*8); //16 cycles on (8us each)
1842
1843 // now start writting
1844 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1845 if(((*fwd_write_ptr++) & 1) == 1)
1846 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1847 else {
1848 //These timings work for 4469/4269/4305 (with the 55*8 above)
1849 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1850 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1851 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1853 SpinDelayUs(9*8); //16 cycles on (8us each)
1854 }
1855 }
1856 }
1857
1858 void EM4xLogin(uint32_t Password) {
1859
1860 uint8_t fwd_bit_count;
1861
1862 forward_ptr = forwardLink_data;
1863 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1864 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1865
1866 SendForward(fwd_bit_count);
1867
1868 //Wait for command to complete
1869 SpinDelay(20);
1870
1871 }
1872
1873 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1874
1875 uint8_t fwd_bit_count;
1876 uint8_t *dest = (uint8_t *)BigBuf;
1877 int m=0, i=0;
1878
1879 //If password mode do login
1880 if (PwdMode == 1) EM4xLogin(Pwd);
1881
1882 forward_ptr = forwardLink_data;
1883 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1884 fwd_bit_count += Prepare_Addr( Address );
1885
1886 m = sizeof(BigBuf);
1887 // Clear destination buffer before sending the command
1888 memset(dest, 128, m);
1889 // Connect the A/D to the peak-detected low-frequency path.
1890 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1891 // Now set up the SSC to get the ADC samples that are now streaming at us.
1892 FpgaSetupSsc();
1893
1894 SendForward(fwd_bit_count);
1895
1896 // Now do the acquisition
1897 i = 0;
1898 for(;;) {
1899 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1900 AT91C_BASE_SSC->SSC_THR = 0x43;
1901 }
1902 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1903 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1904 i++;
1905 if (i >= m) break;
1906 }
1907 }
1908 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1909 LED_D_OFF();
1910 }
1911
1912 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1913
1914 uint8_t fwd_bit_count;
1915
1916 //If password mode do login
1917 if (PwdMode == 1) EM4xLogin(Pwd);
1918
1919 forward_ptr = forwardLink_data;
1920 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1921 fwd_bit_count += Prepare_Addr( Address );
1922 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1923
1924 SendForward(fwd_bit_count);
1925
1926 //Wait for write to complete
1927 SpinDelay(20);
1928 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1929 LED_D_OFF();
1930 }
Impressum, Datenschutz