1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "../include/proxmark3.h"
17 #include "../common/cmd.h"
18 #include "../common/iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
24 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum
= 0;
35 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36 #define REQUEST_GUARD_TIME (7000/16 + 1)
37 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39 // bool LastCommandWasRequest = FALSE;
42 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44 // When the PM acts as reader and is receiving tag data, it takes
45 // 3 ticks delay in the AD converter
46 // 16 ticks until the modulation detector completes and sets curbit
47 // 8 ticks until bit_to_arm is assigned from curbit
48 // 8*16 ticks for the transfer from FPGA to ARM
49 // 4*16 ticks until we measure the time
50 // - 8*16 ticks because we measure the time of the previous transfer
51 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
53 // When the PM acts as a reader and is sending, it takes
54 // 4*16 ticks until we can write data to the sending hold register
55 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
56 // 8 ticks until the first transfer starts
57 // 8 ticks later the FPGA samples the data
58 // 1 tick to assign mod_sig_coil
59 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61 // When the PM acts as tag and is receiving it takes
62 // 2 ticks delay in the RF part (for the first falling edge),
63 // 3 ticks for the A/D conversion,
64 // 8 ticks on average until the start of the SSC transfer,
65 // 8 ticks until the SSC samples the first data
66 // 7*16 ticks to complete the transfer from FPGA to ARM
67 // 8 ticks until the next ssp_clk rising edge
68 // 4*16 ticks until we measure the time
69 // - 8*16 ticks because we measure the time of the previous transfer
70 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
72 // The FPGA will report its internal sending delay in
73 uint16_t FpgaSendQueueDelay
;
74 // the 5 first bits are the number of bits buffered in mod_sig_buf
75 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78 // When the PM acts as tag and is sending, it takes
79 // 4*16 ticks until we can write data to the sending hold register
80 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
81 // 8 ticks until the first transfer starts
82 // 8 ticks later the FPGA samples the data
83 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84 // + 1 tick to assign mod_sig_coil
85 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
87 // When the PM acts as sniffer and is receiving tag data, it takes
88 // 3 ticks A/D conversion
89 // 14 ticks to complete the modulation detection
90 // 8 ticks (on average) until the result is stored in to_arm
91 // + the delays in transferring data - which is the same for
92 // sniffing reader and tag data and therefore not relevant
93 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
95 // When the PM acts as sniffer and is receiving reader data, it takes
96 // 2 ticks delay in analogue RF receiver (for the falling edge of the
97 // start bit, which marks the start of the communication)
98 // 3 ticks A/D conversion
99 // 8 ticks on average until the data is stored in to_arm.
100 // + the delays in transferring data - which is the same for
101 // sniffing reader and tag data and therefore not relevant
102 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
104 //variables used for timing purposes:
105 //these are in ssp_clk cycles:
106 uint32_t NextTransferTime
;
107 uint32_t LastTimeProxToAirStart
;
108 uint32_t LastProxToAirDuration
;
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
127 const uint8_t OddByteParity
[256] = {
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
147 void iso14a_set_trigger(bool enable
) {
151 void iso14a_clear_trace() {
152 memset(trace
, 0x44, TRACE_SIZE
);
156 void iso14a_set_tracing(bool enable
) {
160 void iso14a_set_timeout(uint32_t timeout
) {
161 iso14a_timeout
= timeout
;
164 //-----------------------------------------------------------------------------
165 // Generate the parity value for a byte sequence
167 //-----------------------------------------------------------------------------
168 byte_t
oddparity (const byte_t bt
)
170 return OddByteParity
[bt
];
173 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
178 // Generate the parity bits
179 for (i
= 0; i
< iLen
; i
++) {
180 // and save them to a 32Bit word
181 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
186 void AppendCrc14443a(uint8_t* data
, int len
)
188 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
191 // The function LogTrace() is also used by the iClass implementation in iClass.c
192 bool RAMFUNC
LogTrace(const uint8_t * btBytes
, uint8_t iLen
, uint32_t timestamp
, uint32_t dwParity
, bool readerToTag
)
194 if (!tracing
) return FALSE
;
195 // Return when trace is full
196 if (traceLen
+ sizeof(timestamp
) + sizeof(dwParity
) + iLen
>= TRACE_SIZE
) {
197 tracing
= FALSE
; // don't trace any more
201 // Trace the random, i'm curious
202 trace
[traceLen
++] = ((timestamp
>> 0) & 0xff);
203 trace
[traceLen
++] = ((timestamp
>> 8) & 0xff);
204 trace
[traceLen
++] = ((timestamp
>> 16) & 0xff);
205 trace
[traceLen
++] = ((timestamp
>> 24) & 0xff);
208 trace
[traceLen
- 1] |= 0x80;
210 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
211 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
212 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
213 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
214 trace
[traceLen
++] = iLen
;
215 if (btBytes
!= NULL
&& iLen
!= 0) {
216 memcpy(trace
+ traceLen
, btBytes
, iLen
);
222 //=============================================================================
223 // ISO 14443 Type A - Miller decoder
224 //=============================================================================
226 // This decoder is used when the PM3 acts as a tag.
227 // The reader will generate "pauses" by temporarily switching of the field.
228 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
229 // The FPGA does a comparison with a threshold and would deliver e.g.:
230 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
231 // The Miller decoder needs to identify the following sequences:
232 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
233 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
234 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
235 // Note 1: the bitstream may start at any time. We therefore need to sync.
236 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
237 //-----------------------------------------------------------------------------
240 // Lookup-Table to decide if 4 raw bits are a modulation.
241 // We accept two or three consecutive "0" in any position with the rest "1"
242 const bool Mod_Miller_LUT
[] = {
243 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
244 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
246 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
247 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
251 Uart
.state
= STATE_UNSYNCD
;
253 Uart
.len
= 0; // number of decoded data bytes
254 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
255 Uart
.parityBits
= 0; //
256 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
263 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
264 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
267 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
269 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
270 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
271 if (Uart
.twoBits
== 0xffff) {
277 Uart
.syncBit
= 0xFFFF; // not set
278 // look for 00xx1111 (the start bit)
279 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
280 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
281 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
282 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
283 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
284 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
285 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
286 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
287 if (Uart
.syncBit
!= 0xFFFF) {
288 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
289 Uart
.startTime
-= Uart
.syncBit
;
290 Uart
.endTime
= Uart
.startTime
;
291 Uart
.state
= STATE_START_OF_COMMUNICATION
;
297 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
298 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
301 } else { // Modulation in first half = Sequence Z = logic "0"
302 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
307 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
308 Uart
.state
= STATE_MILLER_Z
;
309 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
310 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
311 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
312 Uart
.parityBits
<<= 1; // make room for the parity bit
313 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
320 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
322 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
323 Uart
.state
= STATE_MILLER_X
;
324 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
325 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
326 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
327 Uart
.parityBits
<<= 1; // make room for the new parity bit
328 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
332 } else { // no modulation in both halves - Sequence Y
333 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
334 Uart
.state
= STATE_UNSYNCD
;
335 if(Uart
.len
== 0 && Uart
.bitCount
> 0) { // if we decoded some bits
336 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // add them to the output
337 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
338 Uart
.parityBits
<<= 1; // no parity bit - add "0"
339 Uart
.bitCount
--; // last "0" was part of the EOC sequence
343 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
346 } else { // a logic "0"
348 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
349 Uart
.state
= STATE_MILLER_Y
;
350 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
351 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
352 Uart
.parityBits
<<= 1; // make room for the parity bit
353 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
363 return FALSE
; // not finished yet, need more data
368 //=============================================================================
369 // ISO 14443 Type A - Manchester decoder
370 //=============================================================================
372 // This decoder is used when the PM3 acts as a reader.
373 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
374 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
375 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
376 // The Manchester decoder needs to identify the following sequences:
377 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
378 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
379 // 8 ticks unmodulated: Sequence F = end of communication
380 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
381 // Note 1: the bitstream may start at any time. We therefore need to sync.
382 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
385 // Lookup-Table to decide if 4 raw bits are a modulation.
386 // We accept three or four "1" in any position
387 const bool Mod_Manchester_LUT
[] = {
388 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
389 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
392 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
393 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
398 Demod
.state
= DEMOD_UNSYNCD
;
399 Demod
.len
= 0; // number of decoded data bytes
400 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
401 Demod
.parityBits
= 0; //
402 Demod
.collisionPos
= 0; // Position of collision bit
403 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
409 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
410 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
413 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
415 if (Demod
.state
== DEMOD_UNSYNCD
) {
417 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
418 if (Demod
.twoBits
== 0x0000) {
424 Demod
.syncBit
= 0xFFFF; // not set
425 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
426 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
427 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
428 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
429 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
430 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
431 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
432 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
433 if (Demod
.syncBit
!= 0xFFFF) {
434 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
435 Demod
.startTime
-= Demod
.syncBit
;
436 Demod
.bitCount
= offset
; // number of decoded data bits
437 Demod
.state
= DEMOD_MANCHESTER_DATA
;
443 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
444 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
445 if (!Demod
.collisionPos
) {
446 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
448 } // modulation in first half only - Sequence D = 1
450 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
451 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
452 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
453 Demod
.parityBits
<<= 1; // make room for the parity bit
454 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
458 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
459 } else { // no modulation in first half
460 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
462 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
463 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
464 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
465 Demod
.parityBits
<<= 1; // make room for the new parity bit
466 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
470 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
471 } else { // no modulation in both halves - End of communication
472 if (Demod
.len
> 0 || Demod
.bitCount
> 0) { // received something
473 if(Demod
.bitCount
> 0) { // if we decoded bits
474 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // add the remaining decoded bits to the output
475 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff;
476 // No parity bit, so just shift a 0
477 Demod
.parityBits
<<= 1;
479 return TRUE
; // we are finished with decoding the raw data sequence
480 } else { // nothing received. Start over
488 return FALSE
; // not finished yet, need more data
491 //=============================================================================
492 // Finally, a `sniffer' for ISO 14443 Type A
493 // Both sides of communication!
494 //=============================================================================
496 //-----------------------------------------------------------------------------
497 // Record the sequence of commands sent by the reader to the tag, with
498 // triggering so that we start recording at the point that the tag is moved
500 //-----------------------------------------------------------------------------
501 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
503 // bit 0 - trigger from first card answer
504 // bit 1 - trigger from first reader 7-bit request
508 iso14a_clear_trace();
509 iso14a_set_tracing(TRUE
);
511 // We won't start recording the frames that we acquire until we trigger;
512 // a good trigger condition to get started is probably when we see a
513 // response from the tag.
514 // triggered == FALSE -- to wait first for card
515 bool triggered
= !(param
& 0x03);
517 // The command (reader -> tag) that we're receiving.
518 // The length of a received command will in most cases be no more than 18 bytes.
519 // So 32 should be enough!
520 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
521 // The response (tag -> reader) that we're receiving.
522 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
524 // As we receive stuff, we copy it from receivedCmd or receivedResponse
525 // into trace, along with its length and other annotations.
526 //uint8_t *trace = (uint8_t *)BigBuf;
528 // The DMA buffer, used to stream samples from the FPGA
529 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
530 uint8_t *data
= dmaBuf
;
531 uint8_t previous_data
= 0;
534 bool TagIsActive
= FALSE
;
535 bool ReaderIsActive
= FALSE
;
537 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
539 // Set up the demodulator for tag -> reader responses.
540 Demod
.output
= receivedResponse
;
542 // Set up the demodulator for the reader -> tag commands
543 Uart
.output
= receivedCmd
;
545 // Setup and start DMA.
546 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
548 // And now we loop, receiving samples.
549 for(uint32_t rsamples
= 0; TRUE
; ) {
552 DbpString("cancelled by button");
559 int register readBufDataP
= data
- dmaBuf
;
560 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
561 if (readBufDataP
<= dmaBufDataP
){
562 dataLen
= dmaBufDataP
- readBufDataP
;
564 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
566 // test for length of buffer
567 if(dataLen
> maxDataLen
) {
568 maxDataLen
= dataLen
;
570 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
574 if(dataLen
< 1) continue;
576 // primary buffer was stopped( <-- we lost data!
577 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
578 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
579 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
580 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
582 // secondary buffer sets as primary, secondary buffer was stopped
583 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
584 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
585 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
590 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
592 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
593 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
594 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
597 // check - if there is a short 7bit request from reader
598 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
601 if (!LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, Uart
.parityBits
, TRUE
)) break;
602 if (!LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, 0, TRUE
)) break;
604 /* And ready to receive another command. */
606 /* And also reset the demod code, which might have been */
607 /* false-triggered by the commands from the reader. */
611 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
614 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
615 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
616 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
619 if (!LogTrace(receivedResponse
, Demod
.len
, Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, Demod
.parityBits
, FALSE
)) break;
620 if (!LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, 0, FALSE
)) break;
622 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
624 // And ready to receive another response.
628 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
632 previous_data
= *data
;
635 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
640 DbpString("COMMAND FINISHED");
643 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
644 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
648 //-----------------------------------------------------------------------------
649 // Prepare tag messages
650 //-----------------------------------------------------------------------------
651 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
657 // Correction bit, might be removed when not needed
662 ToSendStuffBit(1); // 1
668 ToSend
[++ToSendMax
] = SEC_D
;
669 LastProxToAirDuration
= 8 * ToSendMax
- 4;
671 for(i
= 0; i
< len
; i
++) {
676 for(j
= 0; j
< 8; j
++) {
678 ToSend
[++ToSendMax
] = SEC_D
;
680 ToSend
[++ToSendMax
] = SEC_E
;
685 // Get the parity bit
686 if ((dwParity
>> i
) & 0x01) {
687 ToSend
[++ToSendMax
] = SEC_D
;
688 LastProxToAirDuration
= 8 * ToSendMax
- 4;
690 ToSend
[++ToSendMax
] = SEC_E
;
691 LastProxToAirDuration
= 8 * ToSendMax
;
696 ToSend
[++ToSendMax
] = SEC_F
;
698 // Convert from last byte pos to length
702 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
703 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
707 static void Code4bitAnswerAsTag(uint8_t cmd
)
713 // Correction bit, might be removed when not needed
718 ToSendStuffBit(1); // 1
724 ToSend
[++ToSendMax
] = SEC_D
;
727 for(i
= 0; i
< 4; i
++) {
729 ToSend
[++ToSendMax
] = SEC_D
;
730 LastProxToAirDuration
= 8 * ToSendMax
- 4;
732 ToSend
[++ToSendMax
] = SEC_E
;
733 LastProxToAirDuration
= 8 * ToSendMax
;
739 ToSend
[++ToSendMax
] = SEC_F
;
741 // Convert from last byte pos to length
745 //-----------------------------------------------------------------------------
746 // Wait for commands from reader
747 // Stop when button is pressed
748 // Or return TRUE when command is captured
749 //-----------------------------------------------------------------------------
750 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
752 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
753 // only, since we are receiving, not transmitting).
754 // Signal field is off with the appropriate LED
756 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
758 // Now run a `software UART' on the stream of incoming samples.
760 Uart
.output
= received
;
763 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
768 if(BUTTON_PRESS()) return FALSE
;
770 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
771 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
772 if(MillerDecoding(b
, 0)) {
780 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
);
781 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
782 int EmSend4bit(uint8_t resp
);
783 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
784 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
785 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
);
786 int EmSendCmd(uint8_t *resp
, int respLen
);
787 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
788 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
789 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
);
791 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
798 uint32_t ProxToAirDuration
;
799 } tag_response_info_t
;
801 void reset_free_buffer() {
802 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
805 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
806 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
807 // This will need the following byte array for a modulation sequence
808 // 144 data bits (18 * 8)
811 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
812 // 1 just for the case
814 // 166 bytes, since every bit that needs to be send costs us a byte
817 // Prepare the tag modulation bits from the message
818 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
820 // Make sure we do not exceed the free buffer space
821 if (ToSendMax
> max_buffer_size
) {
822 Dbprintf("Out of memory, when modulating bits for tag answer:");
823 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
827 // Copy the byte array, used for this modulation to the buffer position
828 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
830 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
831 response_info
->modulation_n
= ToSendMax
;
832 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
837 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
838 // Retrieve and store the current buffer index
839 response_info
->modulation
= free_buffer_pointer
;
841 // Determine the maximum size we can use from our buffer
842 size_t max_buffer_size
= (((uint8_t *)BigBuf
)+FREE_BUFFER_OFFSET
+FREE_BUFFER_SIZE
)-free_buffer_pointer
;
844 // Forward the prepare tag modulation function to the inner function
845 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
846 // Update the free buffer offset
847 free_buffer_pointer
+= ToSendMax
;
854 //-----------------------------------------------------------------------------
855 // Main loop of simulated tag: receive commands from reader, decide what
856 // response to send, and send it.
857 //-----------------------------------------------------------------------------
858 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
860 // Enable and clear the trace
861 iso14a_clear_trace();
862 iso14a_set_tracing(TRUE
);
866 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
867 uint8_t response1
[2];
870 case 1: { // MIFARE Classic
871 // Says: I am Mifare 1k - original line
876 case 2: { // MIFARE Ultralight
877 // Says: I am a stupid memory tag, no crypto
882 case 3: { // MIFARE DESFire
883 // Says: I am a DESFire tag, ph33r me
888 case 4: { // ISO/IEC 14443-4
889 // Says: I am a javacard (JCOP)
895 Dbprintf("Error: unkown tagtype (%d)",tagType
);
900 // The second response contains the (mandatory) first 24 bits of the UID
901 uint8_t response2
[5];
903 // Check if the uid uses the (optional) part
904 uint8_t response2a
[5];
907 num_to_bytes(uid_1st
,3,response2
+1);
908 num_to_bytes(uid_2nd
,4,response2a
);
909 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
911 // Configure the ATQA and SAK accordingly
912 response1
[0] |= 0x40;
915 num_to_bytes(uid_1st
,4,response2
);
916 // Configure the ATQA and SAK accordingly
917 response1
[0] &= 0xBF;
921 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
922 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
924 // Prepare the mandatory SAK (for 4 and 7 byte UID)
925 uint8_t response3
[3];
927 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
929 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
930 uint8_t response3a
[3];
931 response3a
[0] = sak
& 0xFB;
932 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
934 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
935 uint8_t response6
[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
936 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
938 #define TAG_RESPONSE_COUNT 7
939 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
940 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
941 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
942 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
943 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
944 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
945 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
946 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
949 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
950 // Such a response is less time critical, so we can prepare them on the fly
951 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
952 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
953 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
954 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
955 tag_response_info_t dynamic_response_info
= {
956 .response
= dynamic_response_buffer
,
958 .modulation
= dynamic_modulation_buffer
,
962 // Reset the offset pointer of the free buffer
965 // Prepare the responses of the anticollision phase
966 // there will be not enough time to do this at the moment the reader sends it REQA
967 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
968 prepare_allocated_tag_modulation(&responses
[i
]);
971 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
974 // To control where we are in the protocol
978 // Just to allow some checks
983 // We need to listen to the high-frequency, peak-detected path.
984 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
987 tag_response_info_t
* p_response
;
991 // Clean receive command buffer
993 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
994 DbpString("Button press");
1000 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1001 // Okay, look at the command now.
1003 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1004 p_response
= &responses
[0]; order
= 1;
1005 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1006 p_response
= &responses
[0]; order
= 6;
1007 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1008 p_response
= &responses
[1]; order
= 2;
1009 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1010 p_response
= &responses
[2]; order
= 20;
1011 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1012 p_response
= &responses
[3]; order
= 3;
1013 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1014 p_response
= &responses
[4]; order
= 30;
1015 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1016 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1017 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1018 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1020 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1021 // DbpString("Reader requested we HALT!:");
1023 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1024 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1027 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1028 p_response
= &responses
[5]; order
= 7;
1029 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1030 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1031 EmSend4bit(CARD_NACK_NA
);
1034 p_response
= &responses
[6]; order
= 70;
1036 } else if (order
== 7 && len
== 8) { // Received authentication request
1038 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1039 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1041 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1042 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1043 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1045 // Check for ISO 14443A-4 compliant commands, look at left nibble
1046 switch (receivedCmd
[0]) {
1049 case 0x0A: { // IBlock (command)
1050 dynamic_response_info
.response
[0] = receivedCmd
[0];
1051 dynamic_response_info
.response
[1] = 0x00;
1052 dynamic_response_info
.response
[2] = 0x90;
1053 dynamic_response_info
.response
[3] = 0x00;
1054 dynamic_response_info
.response_n
= 4;
1058 case 0x1B: { // Chaining command
1059 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1060 dynamic_response_info
.response_n
= 2;
1065 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1066 dynamic_response_info
.response_n
= 2;
1070 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1071 dynamic_response_info
.response_n
= 2;
1075 case 0xC2: { // Readers sends deselect command
1076 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1077 dynamic_response_info
.response_n
= 2;
1081 // Never seen this command before
1083 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1084 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1086 Dbprintf("Received unknown command (len=%d):",len
);
1087 Dbhexdump(len
,receivedCmd
,false);
1089 dynamic_response_info
.response_n
= 0;
1093 if (dynamic_response_info
.response_n
> 0) {
1094 // Copy the CID from the reader query
1095 dynamic_response_info
.response
[1] = receivedCmd
[1];
1097 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1098 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1099 dynamic_response_info
.response_n
+= 2;
1101 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1102 Dbprintf("Error preparing tag response");
1104 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1105 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1109 p_response
= &dynamic_response_info
;
1113 // Count number of wakeups received after a halt
1114 if(order
== 6 && lastorder
== 5) { happened
++; }
1116 // Count number of other messages after a halt
1117 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1119 if(cmdsRecvd
> 999) {
1120 DbpString("1000 commands later...");
1125 if (p_response
!= NULL
) {
1126 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1127 // do the tracing for the previous reader request and this tag answer:
1128 EmLogTrace(Uart
.output
,
1130 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1131 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1133 p_response
->response
,
1134 p_response
->response_n
,
1135 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1136 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1137 SwapBits(GetParity(p_response
->response
, p_response
->response_n
), p_response
->response_n
));
1141 Dbprintf("Trace Full. Simulation stopped.");
1146 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1151 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1152 // of bits specified in the delay parameter.
1153 void PrepareDelayedTransfer(uint16_t delay
)
1155 uint8_t bitmask
= 0;
1156 uint8_t bits_to_shift
= 0;
1157 uint8_t bits_shifted
= 0;
1161 for (uint16_t i
= 0; i
< delay
; i
++) {
1162 bitmask
|= (0x01 << i
);
1164 ToSend
[ToSendMax
++] = 0x00;
1165 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1166 bits_to_shift
= ToSend
[i
] & bitmask
;
1167 ToSend
[i
] = ToSend
[i
] >> delay
;
1168 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1169 bits_shifted
= bits_to_shift
;
1175 //-------------------------------------------------------------------------------------
1176 // Transmit the command (to the tag) that was placed in ToSend[].
1177 // Parameter timing:
1178 // if NULL: transfer at next possible time, taking into account
1179 // request guard time and frame delay time
1180 // if == 0: transfer immediately and return time of transfer
1181 // if != 0: delay transfer until time specified
1182 //-------------------------------------------------------------------------------------
1183 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1188 uint32_t ThisTransferTime
= 0;
1191 if(*timing
== 0) { // Measure time
1192 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1194 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1196 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1197 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1198 LastTimeProxToAirStart
= *timing
;
1200 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1201 while(GetCountSspClk() < ThisTransferTime
);
1202 LastTimeProxToAirStart
= ThisTransferTime
;
1206 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1208 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1209 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1210 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1217 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1218 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1226 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1231 //-----------------------------------------------------------------------------
1232 // Prepare reader command (in bits, support short frames) to send to FPGA
1233 //-----------------------------------------------------------------------------
1234 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1242 // Start of Communication (Seq. Z)
1243 ToSend
[++ToSendMax
] = SEC_Z
;
1244 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1247 size_t bytecount
= nbytes(bits
);
1248 // Generate send structure for the data bits
1249 for (i
= 0; i
< bytecount
; i
++) {
1250 // Get the current byte to send
1252 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1254 for (j
= 0; j
< bitsleft
; j
++) {
1257 ToSend
[++ToSendMax
] = SEC_X
;
1258 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1263 ToSend
[++ToSendMax
] = SEC_Z
;
1264 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1267 ToSend
[++ToSendMax
] = SEC_Y
;
1274 // Only transmit (last) parity bit if we transmitted a complete byte
1276 // Get the parity bit
1277 if ((dwParity
>> i
) & 0x01) {
1279 ToSend
[++ToSendMax
] = SEC_X
;
1280 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1285 ToSend
[++ToSendMax
] = SEC_Z
;
1286 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1289 ToSend
[++ToSendMax
] = SEC_Y
;
1296 // End of Communication: Logic 0 followed by Sequence Y
1299 ToSend
[++ToSendMax
] = SEC_Z
;
1300 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1303 ToSend
[++ToSendMax
] = SEC_Y
;
1306 ToSend
[++ToSendMax
] = SEC_Y
;
1308 // Convert to length of command:
1312 //-----------------------------------------------------------------------------
1313 // Prepare reader command to send to FPGA
1314 //-----------------------------------------------------------------------------
1315 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1317 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1320 //-----------------------------------------------------------------------------
1321 // Wait for commands from reader
1322 // Stop when button is pressed (return 1) or field was gone (return 2)
1323 // Or return 0 when command is captured
1324 //-----------------------------------------------------------------------------
1325 static int EmGetCmd(uint8_t *received
, int *len
)
1329 uint32_t timer
= 0, vtime
= 0;
1333 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1334 // only, since we are receiving, not transmitting).
1335 // Signal field is off with the appropriate LED
1337 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1339 // Set ADC to read field strength
1340 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1341 AT91C_BASE_ADC
->ADC_MR
=
1342 ADC_MODE_PRESCALE(32) |
1343 ADC_MODE_STARTUP_TIME(16) |
1344 ADC_MODE_SAMPLE_HOLD_TIME(8);
1345 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1347 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1349 // Now run a 'software UART' on the stream of incoming samples.
1351 Uart
.output
= received
;
1354 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1359 if (BUTTON_PRESS()) return 1;
1361 // test if the field exists
1362 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1364 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1365 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1366 if (analogCnt
>= 32) {
1367 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1368 vtime
= GetTickCount();
1369 if (!timer
) timer
= vtime
;
1370 // 50ms no field --> card to idle state
1371 if (vtime
- timer
> 50) return 2;
1373 if (timer
) timer
= 0;
1379 // receive and test the miller decoding
1380 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1381 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1382 if(MillerDecoding(b
, 0)) {
1392 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
)
1396 uint32_t ThisTransferTime
;
1398 // Modulate Manchester
1399 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1401 // include correction bit if necessary
1402 if (Uart
.parityBits
& 0x01) {
1403 correctionNeeded
= TRUE
;
1405 if(correctionNeeded
) {
1406 // 1236, so correction bit needed
1412 // clear receiving shift register and holding register
1413 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1414 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1415 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1416 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1418 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1419 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1420 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1421 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1424 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1427 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1430 for(; i
<= respLen
; ) {
1431 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1432 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1433 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1436 if(BUTTON_PRESS()) {
1441 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1442 for (i
= 0; i
< 2 ; ) {
1443 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1444 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1445 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1450 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1455 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1456 Code4bitAnswerAsTag(resp
);
1457 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1458 // do the tracing for the previous reader request and this tag answer:
1459 EmLogTrace(Uart
.output
,
1461 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1462 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1466 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1467 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1468 SwapBits(GetParity(&resp
, 1), 1));
1472 int EmSend4bit(uint8_t resp
){
1473 return EmSend4bitEx(resp
, false);
1476 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
){
1477 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1478 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1479 // do the tracing for the previous reader request and this tag answer:
1480 EmLogTrace(Uart
.output
,
1482 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1483 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1487 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1488 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1489 SwapBits(GetParity(resp
, respLen
), respLen
));
1493 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
){
1494 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1497 int EmSendCmd(uint8_t *resp
, int respLen
){
1498 return EmSendCmdExPar(resp
, respLen
, false, GetParity(resp
, respLen
));
1501 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1502 return EmSendCmdExPar(resp
, respLen
, false, par
);
1505 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
1506 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
)
1509 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1510 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1511 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1512 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1513 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1514 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1515 reader_EndTime
= tag_StartTime
- exact_fdt
;
1516 reader_StartTime
= reader_EndTime
- reader_modlen
;
1517 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_Parity
, TRUE
)) {
1519 } else if (!LogTrace(NULL
, 0, reader_EndTime
, 0, TRUE
)) {
1521 } else if (!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_Parity
, FALSE
)) {
1524 return (!LogTrace(NULL
, 0, tag_EndTime
, 0, FALSE
));
1531 //-----------------------------------------------------------------------------
1532 // Wait a certain time for tag response
1533 // If a response is captured return TRUE
1534 // If it takes too long return FALSE
1535 //-----------------------------------------------------------------------------
1536 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint16_t offset
, int maxLen
)
1540 // Set FPGA mode to "reader listen mode", no modulation (listen
1541 // only, since we are receiving, not transmitting).
1542 // Signal field is on with the appropriate LED
1544 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1546 // Now get the answer from the card
1548 Demod
.output
= receivedResponse
;
1551 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1557 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1558 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1559 if(ManchesterDecoding(b
, offset
, 0)) {
1560 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1562 } else if(c
++ > iso14a_timeout
) {
1569 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1572 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1574 // Send command to tag
1575 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1579 // Log reader command in trace buffer
1581 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1582 LogTrace(NULL
, 0, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, 0, TRUE
);
1586 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1588 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1591 void ReaderTransmitBits(uint8_t* frame
, int len
, uint32_t *timing
)
1593 // Generate parity and redirect
1594 ReaderTransmitBitsPar(frame
,len
,GetParity(frame
,len
/8), timing
);
1597 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1599 // Generate parity and redirect
1600 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1603 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
)
1605 if (!GetIso14443aAnswerFromTag(receivedAnswer
,offset
,160)) return FALSE
;
1607 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1608 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1613 int ReaderReceive(uint8_t* receivedAnswer
)
1615 return ReaderReceiveOffset(receivedAnswer
, 0);
1618 int ReaderReceiveDesfiresAuthTiming(uint8_t *receivedAnswer
, uint32_t *elapsedTime
)
1620 int len
= ReaderReceiveOffset(receivedAnswer
, 0);
1621 *elapsedTime
= (Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
) - (Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
);
1625 int ReaderReceivePar(uint8_t *receivedAnswer
, uint32_t *parptr
)
1627 if (!GetIso14443aAnswerFromTag(receivedAnswer
,0,160)) return FALSE
;
1629 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1630 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1632 *parptr
= Demod
.parityBits
;
1636 /* performs iso14443a anticollision procedure
1637 * fills the uid pointer unless NULL
1638 * fills resp_data unless NULL */
1639 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1640 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1641 uint8_t sel_all
[] = { 0x93,0x20 };
1642 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1643 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1644 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1646 size_t uid_resp_len
;
1648 uint8_t sak
= 0x04; // cascade uid
1649 int cascade_level
= 0;
1652 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1653 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1656 if(!ReaderReceive(resp
)) return 0;
1657 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1660 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1661 p_hi14a_card
->uidlen
= 0;
1662 memset(p_hi14a_card
->uid
,0,10);
1667 memset(uid_ptr
,0,10);
1670 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1671 // which case we need to make a cascade 2 request and select - this is a long UID
1672 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1673 for(; sak
& 0x04; cascade_level
++) {
1674 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1675 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1678 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1679 if (!ReaderReceive(resp
)) return 0;
1681 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1682 memset(uid_resp
, 0, 4);
1683 uint16_t uid_resp_bits
= 0;
1684 uint16_t collision_answer_offset
= 0;
1685 // anti-collision-loop:
1686 while (Demod
.collisionPos
) {
1687 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1688 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1689 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1690 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1692 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1694 // construct anticollosion command:
1695 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1696 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1697 sel_uid
[2+i
] = uid_resp
[i
];
1699 collision_answer_offset
= uid_resp_bits
%8;
1700 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1701 if (!ReaderReceiveOffset(resp
, collision_answer_offset
)) return 0;
1703 // finally, add the last bits and BCC of the UID
1704 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1705 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1706 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1709 } else { // no collision, use the response to SELECT_ALL as current uid
1710 memcpy(uid_resp
,resp
,4);
1713 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1715 // calculate crypto UID. Always use last 4 Bytes.
1717 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1720 // Construct SELECT UID command
1721 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1722 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1723 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1724 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1725 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1728 if (!ReaderReceive(resp
)) return 0;
1731 // Test if more parts of the uid are comming
1732 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1733 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1734 // http://www.nxp.com/documents/application_note/AN10927.pdf
1735 memcpy(uid_resp
, uid_resp
+ 1, 3);
1740 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1744 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1745 p_hi14a_card
->uidlen
+= uid_resp_len
;
1750 p_hi14a_card
->sak
= sak
;
1751 p_hi14a_card
->ats_len
= 0;
1754 if( (sak
& 0x20) == 0) {
1755 return 2; // non iso14443a compliant tag
1758 // Request for answer to select
1759 AppendCrc14443a(rats
, 2);
1760 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1762 if (!(len
= ReaderReceive(resp
))) return 0;
1765 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1766 p_hi14a_card
->ats_len
= len
;
1769 // reset the PCB block number
1770 iso14_pcb_blocknum
= 0;
1774 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1775 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1776 // Set up the synchronous serial port
1778 // connect Demodulated Signal to ADC:
1779 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1781 // Signal field is on with the appropriate LED
1782 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1783 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1788 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1795 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1796 iso14a_set_timeout(1050); // 10ms default 10*105 =
1799 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1800 uint8_t real_cmd
[cmd_len
+4];
1801 real_cmd
[0] = 0x0a; //I-Block
1802 // put block number into the PCB
1803 real_cmd
[0] |= iso14_pcb_blocknum
;
1804 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1805 memcpy(real_cmd
+2, cmd
, cmd_len
);
1806 AppendCrc14443a(real_cmd
,cmd_len
+2);
1808 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1809 size_t len
= ReaderReceive(data
);
1810 uint8_t * data_bytes
= (uint8_t *) data
;
1812 return 0; //DATA LINK ERROR
1813 // if we received an I- or R(ACK)-Block with a block number equal to the
1814 // current block number, toggle the current block number
1815 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1816 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1817 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1818 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1820 iso14_pcb_blocknum
^= 1;
1826 //-----------------------------------------------------------------------------
1827 // Read an ISO 14443a tag. Send out commands and store answers.
1829 //-----------------------------------------------------------------------------
1830 void ReaderIso14443a(UsbCommand
*c
)
1832 iso14a_command_t param
= c
->arg
[0];
1833 uint8_t *cmd
= c
->d
.asBytes
;
1834 size_t len
= c
->arg
[1] & 0xFFFF;
1835 size_t lenbits
= c
->arg
[1] >> 16;
1837 byte_t buf
[USB_CMD_DATA_SIZE
];
1839 if(param
& ISO14A_CONNECT
) {
1840 iso14a_clear_trace();
1843 iso14a_set_tracing(TRUE
);
1845 if(param
& ISO14A_REQUEST_TRIGGER
) {
1846 iso14a_set_trigger(TRUE
);
1849 if(param
& ISO14A_CONNECT
) {
1850 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1851 if(!(param
& ISO14A_NO_SELECT
)) {
1852 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1853 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1854 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1858 if(param
& ISO14A_SET_TIMEOUT
) {
1859 iso14a_timeout
= c
->arg
[2];
1862 if(param
& ISO14A_APDU
) {
1863 arg0
= iso14_apdu(cmd
, len
, buf
);
1864 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1867 if(param
& ISO14A_RAW
) {
1868 if(param
& ISO14A_APPEND_CRC
) {
1869 AppendCrc14443a(cmd
,len
);
1875 ReaderTransmitBitsPar(cmd
,lenbits
,GetParity(cmd
,lenbits
/8), NULL
);
1877 ReaderTransmit(cmd
,len
, NULL
);
1879 arg0
= ReaderReceive(buf
);
1880 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1883 if(param
& ISO14A_REQUEST_TRIGGER
) {
1884 iso14a_set_trigger(FALSE
);
1887 if(param
& ISO14A_NO_DISCONNECT
) {
1891 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1896 // Determine the distance between two nonces.
1897 // Assume that the difference is small, but we don't know which is first.
1898 // Therefore try in alternating directions.
1899 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1902 uint32_t nttmp1
, nttmp2
;
1904 if (nt1
== nt2
) return 0;
1909 for (i
= 1; i
< 32768; i
++) {
1910 nttmp1
= prng_successor(nttmp1
, 1);
1911 if (nttmp1
== nt2
) return i
;
1912 nttmp2
= prng_successor(nttmp2
, 1);
1913 if (nttmp2
== nt1
) return -i
;
1916 return(-99999); // either nt1 or nt2 are invalid nonces
1920 //-----------------------------------------------------------------------------
1921 // Recover several bits of the cypher stream. This implements (first stages of)
1922 // the algorithm described in "The Dark Side of Security by Obscurity and
1923 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1924 // (article by Nicolas T. Courtois, 2009)
1925 //-----------------------------------------------------------------------------
1926 void ReaderMifare(bool first_try
)
1929 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1930 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1931 static uint8_t mf_nr_ar3
;
1933 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1935 iso14a_clear_trace();
1936 iso14a_set_tracing(TRUE
);
1940 //byte_t par_mask = 0xff;
1941 static byte_t par_low
= 0;
1946 uint32_t nt
, previous_nt
;
1947 static uint32_t nt_attacked
= 0;
1948 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1949 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1951 static uint32_t sync_time
;
1952 static uint32_t sync_cycles
;
1953 int catch_up_cycles
= 0;
1954 int last_catch_up
= 0;
1955 uint16_t consecutive_resyncs
= 0;
1962 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
1963 sync_time
= GetCountSspClk() & 0xfffffff8;
1964 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1970 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1971 // nt_attacked = prng_successor(nt_attacked, 1);
1973 mf_nr_ar
[3] = mf_nr_ar3
;
1982 for(uint16_t i
= 0; TRUE
; i
++) {
1986 // Test if the action was cancelled
1987 if(BUTTON_PRESS()) {
1993 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1994 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
1998 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
1999 catch_up_cycles
= 0;
2001 // if we missed the sync time already, advance to the next nonce repeat
2002 while(GetCountSspClk() > sync_time
) {
2003 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2006 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2007 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2009 // Receive the (4 Byte) "random" nonce
2010 if (!ReaderReceive(receivedAnswer
)) {
2011 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2016 nt
= bytes_to_num(receivedAnswer
, 4);
2018 // Transmit reader nonce with fake par
2019 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2021 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2022 int nt_distance
= dist_nt(previous_nt
, nt
);
2023 if (nt_distance
== 0) {
2027 if (nt_distance
== -99999) { // invalid nonce received, try again
2030 sync_cycles
= (sync_cycles
- nt_distance
);
2031 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2036 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2037 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2038 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2039 catch_up_cycles
= 0;
2042 if (catch_up_cycles
== last_catch_up
) {
2043 consecutive_resyncs
++;
2046 last_catch_up
= catch_up_cycles
;
2047 consecutive_resyncs
= 0;
2049 if (consecutive_resyncs
< 3) {
2050 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2053 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2054 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2059 consecutive_resyncs
= 0;
2061 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2062 if (ReaderReceive(receivedAnswer
))
2064 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2068 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2072 if(led_on
) LED_B_ON(); else LED_B_OFF();
2074 par_list
[nt_diff
] = par
;
2075 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2077 // Test if the information is complete
2078 if (nt_diff
== 0x07) {
2083 nt_diff
= (nt_diff
+ 1) & 0x07;
2084 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2087 if (nt_diff
== 0 && first_try
)
2091 par
= (((par
>> 3) + 1) << 3) | par_low
;
2097 mf_nr_ar
[3] &= 0x1F;
2100 memcpy(buf
+ 0, uid
, 4);
2101 num_to_bytes(nt
, 4, buf
+ 4);
2102 memcpy(buf
+ 8, par_list
, 8);
2103 memcpy(buf
+ 16, ks_list
, 8);
2104 memcpy(buf
+ 24, mf_nr_ar
, 4);
2106 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2109 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2112 iso14a_set_tracing(FALSE
);
2116 *MIFARE 1K simulate.
2119 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2120 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2121 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2122 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2123 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2125 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2127 int cardSTATE
= MFEMUL_NOFIELD
;
2129 int vHf
= 0; // in mV
2131 uint32_t selTimer
= 0;
2132 uint32_t authTimer
= 0;
2135 uint8_t cardWRBL
= 0;
2136 uint8_t cardAUTHSC
= 0;
2137 uint8_t cardAUTHKEY
= 0xff; // no authentication
2138 uint32_t cardRr
= 0;
2140 //uint32_t rn_enc = 0;
2142 uint32_t cardINTREG
= 0;
2143 uint8_t cardINTBLOCK
= 0;
2144 struct Crypto1State mpcs
= {0, 0};
2145 struct Crypto1State
*pcs
;
2147 uint32_t numReads
= 0;//Counts numer of times reader read a block
2148 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2149 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2151 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2152 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2153 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2154 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2155 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2157 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2158 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2160 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2161 // This can be used in a reader-only attack.
2162 // (it can also be retrieved via 'hf 14a list', but hey...
2163 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2164 uint8_t ar_nr_collected
= 0;
2167 iso14a_clear_trace();
2168 iso14a_set_tracing(TRUE
);
2170 // Authenticate response - nonce
2171 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2173 //-- Determine the UID
2174 // Can be set from emulator memory, incoming data
2175 // and can be 7 or 4 bytes long
2176 if (flags
& FLAG_4B_UID_IN_DATA
)
2178 // 4B uid comes from data-portion of packet
2179 memcpy(rUIDBCC1
,datain
,4);
2180 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2182 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2183 // 7B uid comes from data-portion of packet
2184 memcpy(&rUIDBCC1
[1],datain
,3);
2185 memcpy(rUIDBCC2
, datain
+3, 4);
2188 // get UID from emul memory
2189 emlGetMemBt(receivedCmd
, 7, 1);
2190 _7BUID
= !(receivedCmd
[0] == 0x00);
2191 if (!_7BUID
) { // ---------- 4BUID
2192 emlGetMemBt(rUIDBCC1
, 0, 4);
2193 } else { // ---------- 7BUID
2194 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2195 emlGetMemBt(rUIDBCC2
, 3, 4);
2200 * Regardless of what method was used to set the UID, set fifth byte and modify
2201 * the ATQA for 4 or 7-byte UID
2203 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2207 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2210 // We need to listen to the high-frequency, peak-detected path.
2211 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2214 if (MF_DBGLEVEL
>= 1) {
2216 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3]);
2218 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3],rUIDBCC2
[0],rUIDBCC2
[1] ,rUIDBCC2
[2] , rUIDBCC2
[3]);
2222 bool finished
= FALSE
;
2223 while (!BUTTON_PRESS() && !finished
) {
2226 // find reader field
2227 // Vref = 3300mV, and an 10:1 voltage divider on the input
2228 // can measure voltages up to 33000 mV
2229 if (cardSTATE
== MFEMUL_NOFIELD
) {
2230 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2231 if (vHf
> MF_MINFIELDV
) {
2232 cardSTATE_TO_IDLE();
2236 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2240 res
= EmGetCmd(receivedCmd
, &len
);
2241 if (res
== 2) { //Field is off!
2242 cardSTATE
= MFEMUL_NOFIELD
;
2245 } else if (res
== 1) {
2246 break; //return value 1 means button press
2249 // REQ or WUP request in ANY state and WUP in HALTED state
2250 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2251 selTimer
= GetTickCount();
2252 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2253 cardSTATE
= MFEMUL_SELECT1
;
2255 // init crypto block
2258 crypto1_destroy(pcs
);
2263 switch (cardSTATE
) {
2264 case MFEMUL_NOFIELD
:
2267 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2268 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2271 case MFEMUL_SELECT1
:{
2273 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2274 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2275 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2279 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2281 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2285 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2286 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2287 cuid
= bytes_to_num(rUIDBCC1
, 4);
2289 cardSTATE
= MFEMUL_WORK
;
2291 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2294 cardSTATE
= MFEMUL_SELECT2
;
2302 cardSTATE_TO_IDLE();
2303 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2304 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2307 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2308 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2311 if(ar_nr_collected
< 2){
2312 if(ar_nr_responses
[2] != ar
)
2313 {// Avoid duplicates... probably not necessary, ar should vary.
2314 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2315 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2316 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2317 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2323 crypto1_word(pcs
, ar
, 1);
2324 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2327 if (cardRr
!= prng_successor(nonce
, 64)){
2328 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr
, prng_successor(nonce
, 64));
2329 // Shouldn't we respond anything here?
2330 // Right now, we don't nack or anything, which causes the
2331 // reader to do a WUPA after a while. /Martin
2332 // -- which is the correct response. /piwi
2333 cardSTATE_TO_IDLE();
2334 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2335 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2339 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2341 num_to_bytes(ans
, 4, rAUTH_AT
);
2343 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2345 cardSTATE
= MFEMUL_WORK
;
2346 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2347 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2348 GetTickCount() - authTimer
);
2351 case MFEMUL_SELECT2
:{
2353 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2354 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2357 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2358 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2364 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2365 EmSendCmd(rSAK
, sizeof(rSAK
));
2366 cuid
= bytes_to_num(rUIDBCC2
, 4);
2367 cardSTATE
= MFEMUL_WORK
;
2369 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2373 // i guess there is a command). go into the work state.
2375 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2376 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2379 cardSTATE
= MFEMUL_WORK
;
2381 //intentional fall-through to the next case-stmt
2386 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2387 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2391 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2393 if(encrypted_data
) {
2395 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2398 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2399 authTimer
= GetTickCount();
2400 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2401 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2402 crypto1_destroy(pcs
);//Added by martin
2403 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2405 if (!encrypted_data
) { // first authentication
2406 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2408 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2409 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2410 } else { // nested authentication
2411 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2412 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2413 num_to_bytes(ans
, 4, rAUTH_AT
);
2415 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2416 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2417 cardSTATE
= MFEMUL_AUTH1
;
2421 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2422 // BUT... ACK --> NACK
2423 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2424 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2428 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2429 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2430 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2435 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2436 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2440 if(receivedCmd
[0] == 0x30 // read block
2441 || receivedCmd
[0] == 0xA0 // write block
2442 || receivedCmd
[0] == 0xC0 // inc
2443 || receivedCmd
[0] == 0xC1 // dec
2444 || receivedCmd
[0] == 0xC2 // restore
2445 || receivedCmd
[0] == 0xB0) { // transfer
2446 if (receivedCmd
[1] >= 16 * 4) {
2447 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2448 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2452 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2453 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2454 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2459 if (receivedCmd
[0] == 0x30) {
2460 if (MF_DBGLEVEL
>= 4) {
2461 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2463 emlGetMem(response
, receivedCmd
[1], 1);
2464 AppendCrc14443a(response
, 16);
2465 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2466 EmSendCmdPar(response
, 18, par
);
2468 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2469 Dbprintf("%d reads done, exiting", numReads
);
2475 if (receivedCmd
[0] == 0xA0) {
2476 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2477 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2478 cardSTATE
= MFEMUL_WRITEBL2
;
2479 cardWRBL
= receivedCmd
[1];
2482 // increment, decrement, restore
2483 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2484 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2485 if (emlCheckValBl(receivedCmd
[1])) {
2486 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2487 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2490 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2491 if (receivedCmd
[0] == 0xC1)
2492 cardSTATE
= MFEMUL_INTREG_INC
;
2493 if (receivedCmd
[0] == 0xC0)
2494 cardSTATE
= MFEMUL_INTREG_DEC
;
2495 if (receivedCmd
[0] == 0xC2)
2496 cardSTATE
= MFEMUL_INTREG_REST
;
2497 cardWRBL
= receivedCmd
[1];
2501 if (receivedCmd
[0] == 0xB0) {
2502 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2503 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2504 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2506 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2510 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2513 cardSTATE
= MFEMUL_HALTED
;
2514 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2515 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2516 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2520 if (receivedCmd
[0] == 0xe0) {//RATS
2521 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2524 // command not allowed
2525 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2526 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2529 case MFEMUL_WRITEBL2
:{
2531 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2532 emlSetMem(receivedCmd
, cardWRBL
, 1);
2533 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2534 cardSTATE
= MFEMUL_WORK
;
2536 cardSTATE_TO_IDLE();
2537 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2538 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2543 case MFEMUL_INTREG_INC
:{
2544 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2545 memcpy(&ans
, receivedCmd
, 4);
2546 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2547 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2548 cardSTATE_TO_IDLE();
2551 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2552 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2553 cardINTREG
= cardINTREG
+ ans
;
2554 cardSTATE
= MFEMUL_WORK
;
2557 case MFEMUL_INTREG_DEC
:{
2558 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2559 memcpy(&ans
, receivedCmd
, 4);
2560 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2561 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2562 cardSTATE_TO_IDLE();
2565 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2566 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2567 cardINTREG
= cardINTREG
- ans
;
2568 cardSTATE
= MFEMUL_WORK
;
2571 case MFEMUL_INTREG_REST
:{
2572 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2573 memcpy(&ans
, receivedCmd
, 4);
2574 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2575 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2576 cardSTATE_TO_IDLE();
2579 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2580 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2581 cardSTATE
= MFEMUL_WORK
;
2587 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2590 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2592 //May just aswell send the collected ar_nr in the response aswell
2593 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2596 if(flags
& FLAG_NR_AR_ATTACK
)
2598 if(ar_nr_collected
> 1) {
2599 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2600 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2601 ar_nr_responses
[0], // UID
2602 ar_nr_responses
[1], //NT
2603 ar_nr_responses
[2], //AR1
2604 ar_nr_responses
[3], //NR1
2605 ar_nr_responses
[6], //AR2
2606 ar_nr_responses
[7] //NR2
2609 Dbprintf("Failed to obtain two AR/NR pairs!");
2610 if(ar_nr_collected
>0) {
2611 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2612 ar_nr_responses
[0], // UID
2613 ar_nr_responses
[1], //NT
2614 ar_nr_responses
[2], //AR1
2615 ar_nr_responses
[3] //NR1
2620 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2625 //-----------------------------------------------------------------------------
2628 //-----------------------------------------------------------------------------
2629 void RAMFUNC
SniffMifare(uint8_t param
) {
2631 // bit 0 - trigger from first card answer
2632 // bit 1 - trigger from first reader 7-bit request
2634 // C(red) A(yellow) B(green)
2636 // init trace buffer
2637 iso14a_clear_trace();
2638 iso14a_set_tracing(TRUE
);
2640 // The command (reader -> tag) that we're receiving.
2641 // The length of a received command will in most cases be no more than 18 bytes.
2642 // So 32 should be enough!
2643 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2644 // The response (tag -> reader) that we're receiving.
2645 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2647 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2648 // into trace, along with its length and other annotations.
2649 //uint8_t *trace = (uint8_t *)BigBuf;
2651 // The DMA buffer, used to stream samples from the FPGA
2652 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2653 uint8_t *data
= dmaBuf
;
2654 uint8_t previous_data
= 0;
2657 bool ReaderIsActive
= FALSE
;
2658 bool TagIsActive
= FALSE
;
2660 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2662 // Set up the demodulator for tag -> reader responses.
2663 Demod
.output
= receivedResponse
;
2665 // Set up the demodulator for the reader -> tag commands
2666 Uart
.output
= receivedCmd
;
2668 // Setup for the DMA.
2669 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2676 // And now we loop, receiving samples.
2677 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2679 if(BUTTON_PRESS()) {
2680 DbpString("cancelled by button");
2687 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2688 // check if a transaction is completed (timeout after 2000ms).
2689 // if yes, stop the DMA transfer and send what we have so far to the client
2690 if (MfSniffSend(2000)) {
2691 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2695 ReaderIsActive
= FALSE
;
2696 TagIsActive
= FALSE
;
2697 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2701 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2702 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2703 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2704 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2706 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2708 // test for length of buffer
2709 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2710 maxDataLen
= dataLen
;
2712 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2716 if(dataLen
< 1) continue;
2718 // primary buffer was stopped ( <-- we lost data!
2719 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2720 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2721 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2722 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2724 // secondary buffer sets as primary, secondary buffer was stopped
2725 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2726 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2727 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2732 if (sniffCounter
& 0x01) {
2734 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2735 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2736 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2738 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parityBits
, Uart
.bitCount
, TRUE
)) break;
2740 /* And ready to receive another command. */
2743 /* And also reset the demod code */
2746 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2749 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2750 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2751 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2754 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2756 // And ready to receive another response.
2759 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2763 previous_data
= *data
;
2766 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2772 DbpString("COMMAND FINISHED");
2774 FpgaDisableSscDma();
2777 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);