]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
ADD: started with adding a LF AWID26 write function. not done yet.
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "../include/proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "../common/cmd.h"
18 #include "../common/iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22
23 static uint32_t iso14a_timeout;
24 uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
25 int rsamples = 0;
26 int traceLen = 0;
27 int tracing = TRUE;
28 uint8_t trigger = 0;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum = 0;
31
32 //
33 // ISO14443 timing:
34 //
35 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36 #define REQUEST_GUARD_TIME (7000/16 + 1)
37 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39 // bool LastCommandWasRequest = FALSE;
40
41 //
42 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43 //
44 // When the PM acts as reader and is receiving tag data, it takes
45 // 3 ticks delay in the AD converter
46 // 16 ticks until the modulation detector completes and sets curbit
47 // 8 ticks until bit_to_arm is assigned from curbit
48 // 8*16 ticks for the transfer from FPGA to ARM
49 // 4*16 ticks until we measure the time
50 // - 8*16 ticks because we measure the time of the previous transfer
51 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
52
53 // When the PM acts as a reader and is sending, it takes
54 // 4*16 ticks until we can write data to the sending hold register
55 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
56 // 8 ticks until the first transfer starts
57 // 8 ticks later the FPGA samples the data
58 // 1 tick to assign mod_sig_coil
59 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60
61 // When the PM acts as tag and is receiving it takes
62 // 2 ticks delay in the RF part (for the first falling edge),
63 // 3 ticks for the A/D conversion,
64 // 8 ticks on average until the start of the SSC transfer,
65 // 8 ticks until the SSC samples the first data
66 // 7*16 ticks to complete the transfer from FPGA to ARM
67 // 8 ticks until the next ssp_clk rising edge
68 // 4*16 ticks until we measure the time
69 // - 8*16 ticks because we measure the time of the previous transfer
70 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
71
72 // The FPGA will report its internal sending delay in
73 uint16_t FpgaSendQueueDelay;
74 // the 5 first bits are the number of bits buffered in mod_sig_buf
75 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77
78 // When the PM acts as tag and is sending, it takes
79 // 4*16 ticks until we can write data to the sending hold register
80 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
81 // 8 ticks until the first transfer starts
82 // 8 ticks later the FPGA samples the data
83 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84 // + 1 tick to assign mod_sig_coil
85 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
86
87 // When the PM acts as sniffer and is receiving tag data, it takes
88 // 3 ticks A/D conversion
89 // 14 ticks to complete the modulation detection
90 // 8 ticks (on average) until the result is stored in to_arm
91 // + the delays in transferring data - which is the same for
92 // sniffing reader and tag data and therefore not relevant
93 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
94
95 // When the PM acts as sniffer and is receiving reader data, it takes
96 // 2 ticks delay in analogue RF receiver (for the falling edge of the
97 // start bit, which marks the start of the communication)
98 // 3 ticks A/D conversion
99 // 8 ticks on average until the data is stored in to_arm.
100 // + the delays in transferring data - which is the same for
101 // sniffing reader and tag data and therefore not relevant
102 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
103
104 //variables used for timing purposes:
105 //these are in ssp_clk cycles:
106 static uint32_t NextTransferTime;
107 static uint32_t LastTimeProxToAirStart;
108 static uint32_t LastProxToAirDuration;
109
110
111
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
120 #define SEC_D 0xf0
121 #define SEC_E 0x0f
122 #define SEC_F 0x00
123 #define SEC_X 0x0c
124 #define SEC_Y 0x00
125 #define SEC_Z 0xc0
126
127 const uint8_t OddByteParity[256] = {
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144 };
145
146 void iso14a_set_trigger(bool enable) {
147 trigger = enable;
148 }
149
150 void iso14a_clear_trace() {
151 memset(trace, 0x44, TRACE_SIZE);
152 traceLen = 0;
153 }
154
155 void iso14a_set_tracing(bool enable) {
156 tracing = enable;
157 }
158
159 void iso14a_set_timeout(uint32_t timeout) {
160 iso14a_timeout = timeout;
161 }
162
163 //-----------------------------------------------------------------------------
164 // Generate the parity value for a byte sequence
165 //
166 //-----------------------------------------------------------------------------
167 byte_t oddparity (const byte_t bt)
168 {
169 return OddByteParity[bt];
170 }
171
172 void GetParity(const uint8_t * pbtCmd, uint16_t iLen, uint8_t *par)
173 {
174 uint16_t paritybit_cnt = 0;
175 uint16_t paritybyte_cnt = 0;
176 uint8_t parityBits = 0;
177
178 for (uint16_t i = 0; i < iLen; i++) {
179 // Generate the parity bits
180 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
181 if (paritybit_cnt == 7) {
182 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
183 parityBits = 0; // and advance to next Parity Byte
184 paritybyte_cnt++;
185 paritybit_cnt = 0;
186 } else {
187 paritybit_cnt++;
188 }
189 }
190
191 // save remaining parity bits
192 par[paritybyte_cnt] = parityBits;
193
194 }
195
196 void AppendCrc14443a(uint8_t* data, int len)
197 {
198 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
199 }
200
201 // The function LogTrace() is also used by the iClass implementation in iClass.c
202 bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
203 {
204 if (!tracing) return FALSE;
205
206 uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
207 uint16_t duration = timestamp_end - timestamp_start;
208
209 // Return when trace is full
210 if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
211 tracing = FALSE; // don't trace any more
212 return FALSE;
213 }
214
215 // Traceformat:
216 // 32 bits timestamp (little endian)
217 // 16 bits duration (little endian)
218 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
219 // y Bytes data
220 // x Bytes parity (one byte per 8 bytes data)
221
222 // timestamp (start)
223 trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
224 trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
225 trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
226 trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
227
228 // duration
229 trace[traceLen++] = ((duration >> 0) & 0xff);
230 trace[traceLen++] = ((duration >> 8) & 0xff);
231
232 // data length
233 trace[traceLen++] = ((iLen >> 0) & 0xff);
234 trace[traceLen++] = ((iLen >> 8) & 0xff);
235
236 // readerToTag flag
237 if (!readerToTag) {
238 trace[traceLen - 1] |= 0x80;
239 }
240
241 // data bytes
242 if (btBytes != NULL && iLen != 0) {
243 memcpy(trace + traceLen, btBytes, iLen);
244 }
245 traceLen += iLen;
246
247 // parity bytes
248 if (parity != NULL && iLen != 0) {
249 memcpy(trace + traceLen, parity, num_paritybytes);
250 }
251 traceLen += num_paritybytes;
252
253 return TRUE;
254 }
255
256 //=============================================================================
257 // ISO 14443 Type A - Miller decoder
258 //=============================================================================
259 // Basics:
260 // This decoder is used when the PM3 acts as a tag.
261 // The reader will generate "pauses" by temporarily switching of the field.
262 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
263 // The FPGA does a comparison with a threshold and would deliver e.g.:
264 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
265 // The Miller decoder needs to identify the following sequences:
266 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
267 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
268 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
269 // Note 1: the bitstream may start at any time. We therefore need to sync.
270 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
271 //-----------------------------------------------------------------------------
272 static tUart Uart;
273
274 // Lookup-Table to decide if 4 raw bits are a modulation.
275 // We accept two or three consecutive "0" in any position with the rest "1"
276 const bool Mod_Miller_LUT[] = {
277 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
278 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
279 };
280 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
281 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
282
283 void UartReset()
284 {
285 Uart.state = STATE_UNSYNCD;
286 Uart.bitCount = 0;
287 Uart.len = 0; // number of decoded data bytes
288 Uart.parityLen = 0; // number of decoded parity bytes
289 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
290 Uart.parityBits = 0; // holds 8 parity bits
291 Uart.twoBits = 0x0000; // buffer for 2 Bits
292 Uart.highCnt = 0;
293 Uart.startTime = 0;
294 Uart.endTime = 0;
295 }
296
297 void UartInit(uint8_t *data, uint8_t *parity)
298 {
299 Uart.output = data;
300 Uart.parity = parity;
301 UartReset();
302 }
303
304 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
305 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
306 {
307
308 Uart.twoBits = (Uart.twoBits << 8) | bit;
309
310 if (Uart.state == STATE_UNSYNCD) { // not yet synced
311
312 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
313 if (Uart.twoBits == 0xffff) {
314 Uart.highCnt++;
315 } else {
316 Uart.highCnt = 0;
317 }
318 } else {
319 Uart.syncBit = 0xFFFF; // not set
320 // look for 00xx1111 (the start bit)
321 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
322 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
323 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
324 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
325 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
326 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
327 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
328 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
329 if (Uart.syncBit != 0xFFFF) {
330 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
331 Uart.startTime -= Uart.syncBit;
332 Uart.endTime = Uart.startTime;
333 Uart.state = STATE_START_OF_COMMUNICATION;
334 }
335 }
336
337 } else {
338
339 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
340 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
341 UartReset();
342 Uart.highCnt = 6;
343 } else { // Modulation in first half = Sequence Z = logic "0"
344 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
345 UartReset();
346 Uart.highCnt = 6;
347 } else {
348 Uart.bitCount++;
349 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
350 Uart.state = STATE_MILLER_Z;
351 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
352 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
353 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
354 Uart.parityBits <<= 1; // make room for the parity bit
355 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
356 Uart.bitCount = 0;
357 Uart.shiftReg = 0;
358 if((Uart.len & 0x0007) == 0) { // every 8 data bytes
359 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
360 Uart.parityBits = 0;
361 }
362 }
363 }
364 }
365 } else {
366 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
367 Uart.bitCount++;
368 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
369 Uart.state = STATE_MILLER_X;
370 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
371 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
372 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
373 Uart.parityBits <<= 1; // make room for the new parity bit
374 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
375 Uart.bitCount = 0;
376 Uart.shiftReg = 0;
377 if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
378 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
379 Uart.parityBits = 0;
380 }
381 }
382 } else { // no modulation in both halves - Sequence Y
383 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
384 Uart.state = STATE_UNSYNCD;
385 Uart.bitCount--; // last "0" was part of EOC sequence
386 Uart.shiftReg <<= 1; // drop it
387 if(Uart.bitCount > 0) { // if we decoded some bits
388 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
389 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
390 Uart.parityBits <<= 1; // add a (void) parity bit
391 Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align parity bits
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
393 return TRUE;
394 } else if (Uart.len & 0x0007) { // there are some parity bits to store
395 Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align remaining parity bits
396 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
397 return TRUE; // we are finished with decoding the raw data sequence
398 }
399 }
400 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
401 UartReset();
402 Uart.highCnt = 6;
403 } else { // a logic "0"
404 Uart.bitCount++;
405 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
406 Uart.state = STATE_MILLER_Y;
407 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
408 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
409 Uart.parityBits <<= 1; // make room for the parity bit
410 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
411 Uart.bitCount = 0;
412 Uart.shiftReg = 0;
413 if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
414 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
415 Uart.parityBits = 0;
416 }
417 }
418 }
419 }
420 }
421
422 }
423
424 return FALSE; // not finished yet, need more data
425 }
426
427
428
429 //=============================================================================
430 // ISO 14443 Type A - Manchester decoder
431 //=============================================================================
432 // Basics:
433 // This decoder is used when the PM3 acts as a reader.
434 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
435 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
436 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
437 // The Manchester decoder needs to identify the following sequences:
438 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
439 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
440 // 8 ticks unmodulated: Sequence F = end of communication
441 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
442 // Note 1: the bitstream may start at any time. We therefore need to sync.
443 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
444 static tDemod Demod;
445
446 // Lookup-Table to decide if 4 raw bits are a modulation.
447 // We accept three or four "1" in any position
448 const bool Mod_Manchester_LUT[] = {
449 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
450 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
451 };
452
453 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
454 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
455
456
457 void DemodReset()
458 {
459 Demod.state = DEMOD_UNSYNCD;
460 Demod.len = 0; // number of decoded data bytes
461 Demod.parityLen = 0;
462 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
463 Demod.parityBits = 0; //
464 Demod.collisionPos = 0; // Position of collision bit
465 Demod.twoBits = 0xffff; // buffer for 2 Bits
466 Demod.highCnt = 0;
467 Demod.startTime = 0;
468 Demod.endTime = 0;
469 }
470
471 void DemodInit(uint8_t *data, uint8_t *parity)
472 {
473 Demod.output = data;
474 Demod.parity = parity;
475 DemodReset();
476 }
477
478 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
479 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
480 {
481
482 Demod.twoBits = (Demod.twoBits << 8) | bit;
483
484 if (Demod.state == DEMOD_UNSYNCD) {
485
486 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
487 if (Demod.twoBits == 0x0000) {
488 Demod.highCnt++;
489 } else {
490 Demod.highCnt = 0;
491 }
492 } else {
493 Demod.syncBit = 0xFFFF; // not set
494 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
495 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
496 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
497 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
498 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
499 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
500 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
501 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
502 if (Demod.syncBit != 0xFFFF) {
503 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
504 Demod.startTime -= Demod.syncBit;
505 Demod.bitCount = offset; // number of decoded data bits
506 Demod.state = DEMOD_MANCHESTER_DATA;
507 }
508 }
509
510 } else {
511
512 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
513 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
514 if (!Demod.collisionPos) {
515 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
516 }
517 } // modulation in first half only - Sequence D = 1
518 Demod.bitCount++;
519 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
520 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
521 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
522 Demod.parityBits <<= 1; // make room for the parity bit
523 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
524 Demod.bitCount = 0;
525 Demod.shiftReg = 0;
526 if((Demod.len & 0x0007) == 0) { // every 8 data bytes
527 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
528 Demod.parityBits = 0;
529 }
530 }
531 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
532 } else { // no modulation in first half
533 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
534 Demod.bitCount++;
535 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
536 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
537 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
538 Demod.parityBits <<= 1; // make room for the new parity bit
539 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
540 Demod.bitCount = 0;
541 Demod.shiftReg = 0;
542 if ((Demod.len & 0x0007) == 0) { // every 8 data bytes
543 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
544 Demod.parityBits = 0;
545 }
546 }
547 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
548 } else { // no modulation in both halves - End of communication
549 if(Demod.bitCount > 0) { // there are some remaining data bits
550 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
551 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
552 Demod.parityBits <<= 1; // add a (void) parity bit
553 Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
554 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
555 return TRUE;
556 } else if (Demod.len & 0x0007) { // there are some parity bits to store
557 Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
558 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
559 return TRUE; // we are finished with decoding the raw data sequence
560 } else { // nothing received. Start over
561 DemodReset();
562 }
563 }
564 }
565
566 }
567
568 return FALSE; // not finished yet, need more data
569 }
570
571 //=============================================================================
572 // Finally, a `sniffer' for ISO 14443 Type A
573 // Both sides of communication!
574 //=============================================================================
575
576 //-----------------------------------------------------------------------------
577 // Record the sequence of commands sent by the reader to the tag, with
578 // triggering so that we start recording at the point that the tag is moved
579 // near the reader.
580 //-----------------------------------------------------------------------------
581 void RAMFUNC SnoopIso14443a(uint8_t param) {
582 // param:
583 // bit 0 - trigger from first card answer
584 // bit 1 - trigger from first reader 7-bit request
585
586 LEDsoff();
587 // init trace buffer
588 iso14a_clear_trace();
589 iso14a_set_tracing(TRUE);
590
591 // We won't start recording the frames that we acquire until we trigger;
592 // a good trigger condition to get started is probably when we see a
593 // response from the tag.
594 // triggered == FALSE -- to wait first for card
595 bool triggered = !(param & 0x03);
596
597 // The command (reader -> tag) that we're receiving.
598 // The length of a received command will in most cases be no more than 18 bytes.
599 // So 32 should be enough!
600 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
601 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
602
603 // The response (tag -> reader) that we're receiving.
604 uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
605 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
606
607 // As we receive stuff, we copy it from receivedCmd or receivedResponse
608 // into trace, along with its length and other annotations.
609 //uint8_t *trace = (uint8_t *)BigBuf;
610
611 // The DMA buffer, used to stream samples from the FPGA
612 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
613 uint8_t *data = dmaBuf;
614 uint8_t previous_data = 0;
615 int maxDataLen = 0;
616 int dataLen = 0;
617 bool TagIsActive = FALSE;
618 bool ReaderIsActive = FALSE;
619
620 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
621
622 // Set up the demodulator for tag -> reader responses.
623 DemodInit(receivedResponse, receivedResponsePar);
624
625 // Set up the demodulator for the reader -> tag commands
626 UartInit(receivedCmd, receivedCmdPar);
627
628 // Setup and start DMA.
629 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
630
631 // And now we loop, receiving samples.
632 for(uint32_t rsamples = 0; TRUE; ) {
633
634 if(BUTTON_PRESS()) {
635 DbpString("cancelled by button");
636 break;
637 }
638
639 LED_A_ON();
640 WDT_HIT();
641
642 int register readBufDataP = data - dmaBuf;
643 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
644 if (readBufDataP <= dmaBufDataP){
645 dataLen = dmaBufDataP - readBufDataP;
646 } else {
647 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
648 }
649 // test for length of buffer
650 if(dataLen > maxDataLen) {
651 maxDataLen = dataLen;
652 if(dataLen > 400) {
653 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
654 break;
655 }
656 }
657 if(dataLen < 1) continue;
658
659 // primary buffer was stopped( <-- we lost data!
660 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
661 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
662 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
663 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
664 }
665 // secondary buffer sets as primary, secondary buffer was stopped
666 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
667 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
668 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
669 }
670
671 LED_A_OFF();
672
673 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
674
675 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
676 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
677 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
678 LED_C_ON();
679
680 // check - if there is a short 7bit request from reader
681 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
682
683 if(triggered) {
684 if (!LogTrace(receivedCmd,
685 Uart.len,
686 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
687 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
688 Uart.parity,
689 TRUE)) break;
690 }
691 /* And ready to receive another command. */
692 UartReset();
693 /* And also reset the demod code, which might have been */
694 /* false-triggered by the commands from the reader. */
695 DemodReset();
696 LED_B_OFF();
697 }
698 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
699 }
700
701 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
702 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
703 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
704 LED_B_ON();
705
706 if (!LogTrace(receivedResponse,
707 Demod.len,
708 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
709 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
710 Demod.parity,
711 FALSE)) break;
712
713 if ((!triggered) && (param & 0x01)) triggered = TRUE;
714
715 // And ready to receive another response.
716 DemodReset();
717 LED_C_OFF();
718 }
719 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
720 }
721 }
722
723 previous_data = *data;
724 rsamples++;
725 data++;
726 if(data == dmaBuf + DMA_BUFFER_SIZE) {
727 data = dmaBuf;
728 }
729 } // main cycle
730
731 DbpString("COMMAND FINISHED");
732
733 FpgaDisableSscDma();
734 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
735 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
736 LEDsoff();
737 }
738
739 //-----------------------------------------------------------------------------
740 // Prepare tag messages
741 //-----------------------------------------------------------------------------
742 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
743 {
744 ToSendReset();
745
746 // Correction bit, might be removed when not needed
747 ToSendStuffBit(0);
748 ToSendStuffBit(0);
749 ToSendStuffBit(0);
750 ToSendStuffBit(0);
751 ToSendStuffBit(1); // 1
752 ToSendStuffBit(0);
753 ToSendStuffBit(0);
754 ToSendStuffBit(0);
755
756 // Send startbit
757 ToSend[++ToSendMax] = SEC_D;
758 LastProxToAirDuration = 8 * ToSendMax - 4;
759
760 for( uint16_t i = 0; i < len; i++) {
761 uint8_t b = cmd[i];
762
763 // Data bits
764 for(uint16_t j = 0; j < 8; j++) {
765 if(b & 1) {
766 ToSend[++ToSendMax] = SEC_D;
767 } else {
768 ToSend[++ToSendMax] = SEC_E;
769 }
770 b >>= 1;
771 }
772
773 // Get the parity bit
774 if (parity[i>>3] & (0x80>>(i&0x0007))) {
775 ToSend[++ToSendMax] = SEC_D;
776 LastProxToAirDuration = 8 * ToSendMax - 4;
777 } else {
778 ToSend[++ToSendMax] = SEC_E;
779 LastProxToAirDuration = 8 * ToSendMax;
780 }
781 }
782
783 // Send stopbit
784 ToSend[++ToSendMax] = SEC_F;
785
786 // Convert from last byte pos to length
787 ToSendMax++;
788 }
789
790 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
791 {
792 uint8_t par[MAX_PARITY_SIZE];
793
794 GetParity(cmd, len, par);
795 CodeIso14443aAsTagPar(cmd, len, par);
796 }
797
798
799 static void Code4bitAnswerAsTag(uint8_t cmd)
800 {
801 int i;
802
803 ToSendReset();
804
805 // Correction bit, might be removed when not needed
806 ToSendStuffBit(0);
807 ToSendStuffBit(0);
808 ToSendStuffBit(0);
809 ToSendStuffBit(0);
810 ToSendStuffBit(1); // 1
811 ToSendStuffBit(0);
812 ToSendStuffBit(0);
813 ToSendStuffBit(0);
814
815 // Send startbit
816 ToSend[++ToSendMax] = SEC_D;
817
818 uint8_t b = cmd;
819 for(i = 0; i < 4; i++) {
820 if(b & 1) {
821 ToSend[++ToSendMax] = SEC_D;
822 LastProxToAirDuration = 8 * ToSendMax - 4;
823 } else {
824 ToSend[++ToSendMax] = SEC_E;
825 LastProxToAirDuration = 8 * ToSendMax;
826 }
827 b >>= 1;
828 }
829
830 // Send stopbit
831 ToSend[++ToSendMax] = SEC_F;
832
833 // Convert from last byte pos to length
834 ToSendMax++;
835 }
836
837 //-----------------------------------------------------------------------------
838 // Wait for commands from reader
839 // Stop when button is pressed
840 // Or return TRUE when command is captured
841 //-----------------------------------------------------------------------------
842 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
843 {
844 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
845 // only, since we are receiving, not transmitting).
846 // Signal field is off with the appropriate LED
847 LED_D_OFF();
848 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
849
850 // Now run a `software UART' on the stream of incoming samples.
851 UartInit(received, parity);
852
853 // clear RXRDY:
854 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
855
856 for(;;) {
857 WDT_HIT();
858
859 if(BUTTON_PRESS()) return FALSE;
860
861 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
862 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
863 if(MillerDecoding(b, 0)) {
864 *len = Uart.len;
865 return TRUE;
866 }
867 }
868 }
869 }
870
871 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
872 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
873 int EmSend4bit(uint8_t resp);
874 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
875 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
876 int EmSendCmd(uint8_t *resp, uint16_t respLen);
877 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
878 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
879 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
880
881 static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
882
883 typedef struct {
884 uint8_t* response;
885 size_t response_n;
886 uint8_t* modulation;
887 size_t modulation_n;
888 uint32_t ProxToAirDuration;
889 } tag_response_info_t;
890
891 void reset_free_buffer() {
892 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
893 }
894
895 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
896 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
897 // This will need the following byte array for a modulation sequence
898 // 144 data bits (18 * 8)
899 // 18 parity bits
900 // 2 Start and stop
901 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
902 // 1 just for the case
903 // ----------- +
904 // 166 bytes, since every bit that needs to be send costs us a byte
905 //
906
907 // Prepare the tag modulation bits from the message
908 CodeIso14443aAsTag(response_info->response,response_info->response_n);
909
910 // Make sure we do not exceed the free buffer space
911 if (ToSendMax > max_buffer_size) {
912 Dbprintf("Out of memory, when modulating bits for tag answer:");
913 Dbhexdump(response_info->response_n,response_info->response,false);
914 return false;
915 }
916
917 // Copy the byte array, used for this modulation to the buffer position
918 memcpy(response_info->modulation,ToSend,ToSendMax);
919
920 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
921 response_info->modulation_n = ToSendMax;
922 response_info->ProxToAirDuration = LastProxToAirDuration;
923
924 return true;
925 }
926
927 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
928 // Retrieve and store the current buffer index
929 response_info->modulation = free_buffer_pointer;
930
931 // Determine the maximum size we can use from our buffer
932 size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
933
934 // Forward the prepare tag modulation function to the inner function
935 if (prepare_tag_modulation(response_info,max_buffer_size)) {
936 // Update the free buffer offset
937 free_buffer_pointer += ToSendMax;
938 return true;
939 } else {
940 return false;
941 }
942 }
943
944 //-----------------------------------------------------------------------------
945 // Main loop of simulated tag: receive commands from reader, decide what
946 // response to send, and send it.
947 //-----------------------------------------------------------------------------
948 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
949 {
950 // Enable and clear the trace
951 iso14a_clear_trace();
952 iso14a_set_tracing(TRUE);
953
954 uint8_t sak;
955
956 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
957 uint8_t response1[2];
958
959 switch (tagType) {
960 case 1: { // MIFARE Classic
961 // Says: I am Mifare 1k - original line
962 response1[0] = 0x04;
963 response1[1] = 0x00;
964 sak = 0x08;
965 } break;
966 case 2: { // MIFARE Ultralight
967 // Says: I am a stupid memory tag, no crypto
968 response1[0] = 0x04;
969 response1[1] = 0x00;
970 sak = 0x00;
971 } break;
972 case 3: { // MIFARE DESFire
973 // Says: I am a DESFire tag, ph33r me
974 response1[0] = 0x04;
975 response1[1] = 0x03;
976 sak = 0x20;
977 } break;
978 case 4: { // ISO/IEC 14443-4
979 // Says: I am a javacard (JCOP)
980 response1[0] = 0x04;
981 response1[1] = 0x00;
982 sak = 0x28;
983 } break;
984 case 5: { // MIFARE TNP3XXX
985 // Says: I am a toy
986 response1[0] = 0x01;
987 response1[1] = 0x0f;
988 sak = 0x01;
989 } break;
990 default: {
991 Dbprintf("Error: unkown tagtype (%d)",tagType);
992 return;
993 } break;
994 }
995
996 // The second response contains the (mandatory) first 24 bits of the UID
997 uint8_t response2[5];
998
999 // Check if the uid uses the (optional) part
1000 uint8_t response2a[5];
1001 if (uid_2nd) {
1002 response2[0] = 0x88;
1003 num_to_bytes(uid_1st,3,response2+1);
1004 num_to_bytes(uid_2nd,4,response2a);
1005 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1006
1007 // Configure the ATQA and SAK accordingly
1008 response1[0] |= 0x40;
1009 sak |= 0x04;
1010 } else {
1011 num_to_bytes(uid_1st,4,response2);
1012 // Configure the ATQA and SAK accordingly
1013 response1[0] &= 0xBF;
1014 sak &= 0xFB;
1015 }
1016
1017 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1018 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1019
1020 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1021 uint8_t response3[3];
1022 response3[0] = sak;
1023 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1024
1025 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1026 uint8_t response3a[3];
1027 response3a[0] = sak & 0xFB;
1028 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1029
1030 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1031 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1032 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1033 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1034 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1035 // TC(1) = 0x02: CID supported, NAD not supported
1036 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1037
1038 #define TAG_RESPONSE_COUNT 7
1039 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1040 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1041 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1042 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1043 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1044 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1045 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1046 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1047 };
1048
1049 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1050 // Such a response is less time critical, so we can prepare them on the fly
1051 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1052 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1053 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1054 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1055 tag_response_info_t dynamic_response_info = {
1056 .response = dynamic_response_buffer,
1057 .response_n = 0,
1058 .modulation = dynamic_modulation_buffer,
1059 .modulation_n = 0
1060 };
1061
1062 // Reset the offset pointer of the free buffer
1063 reset_free_buffer();
1064
1065 // Prepare the responses of the anticollision phase
1066 // there will be not enough time to do this at the moment the reader sends it REQA
1067 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1068 prepare_allocated_tag_modulation(&responses[i]);
1069 }
1070
1071 int len = 0;
1072
1073 // To control where we are in the protocol
1074 int order = 0;
1075 int lastorder;
1076
1077 // Just to allow some checks
1078 int happened = 0;
1079 int happened2 = 0;
1080 int cmdsRecvd = 0;
1081
1082 // We need to listen to the high-frequency, peak-detected path.
1083 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1084
1085 // buffers used on software Uart:
1086 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
1087 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
1088
1089 cmdsRecvd = 0;
1090 tag_response_info_t* p_response;
1091
1092 LED_A_ON();
1093 for(;;) {
1094 // Clean receive command buffer
1095
1096 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1097 DbpString("Button press");
1098 break;
1099 }
1100
1101 p_response = NULL;
1102
1103 // Okay, look at the command now.
1104 lastorder = order;
1105 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1106 p_response = &responses[0]; order = 1;
1107 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1108 p_response = &responses[0]; order = 6;
1109 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1110 p_response = &responses[1]; order = 2;
1111 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1112 p_response = &responses[2]; order = 20;
1113 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1114 p_response = &responses[3]; order = 3;
1115 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1116 p_response = &responses[4]; order = 30;
1117 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1118 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1119 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1120 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1121 p_response = NULL;
1122 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1123
1124 if (tracing) {
1125 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1126 }
1127 p_response = NULL;
1128 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1129 p_response = &responses[5]; order = 7;
1130 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1131 if (tagType == 1 || tagType == 2) { // RATS not supported
1132 EmSend4bit(CARD_NACK_NA);
1133 p_response = NULL;
1134 } else {
1135 p_response = &responses[6]; order = 70;
1136 }
1137 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1138 if (tracing) {
1139 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1140 }
1141 uint32_t nr = bytes_to_num(receivedCmd,4);
1142 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1143 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1144 } else {
1145 // Check for ISO 14443A-4 compliant commands, look at left nibble
1146 switch (receivedCmd[0]) {
1147
1148 case 0x0B:
1149 case 0x0A: { // IBlock (command)
1150 dynamic_response_info.response[0] = receivedCmd[0];
1151 dynamic_response_info.response[1] = 0x00;
1152 dynamic_response_info.response[2] = 0x90;
1153 dynamic_response_info.response[3] = 0x00;
1154 dynamic_response_info.response_n = 4;
1155 } break;
1156
1157 case 0x1A:
1158 case 0x1B: { // Chaining command
1159 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1160 dynamic_response_info.response_n = 2;
1161 } break;
1162
1163 case 0xaa:
1164 case 0xbb: {
1165 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1166 dynamic_response_info.response_n = 2;
1167 } break;
1168
1169 case 0xBA: { //
1170 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1171 dynamic_response_info.response_n = 2;
1172 } break;
1173
1174 case 0xCA:
1175 case 0xC2: { // Readers sends deselect command
1176 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1177 dynamic_response_info.response_n = 2;
1178 } break;
1179
1180 default: {
1181 // Never seen this command before
1182 if (tracing) {
1183 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1184 }
1185 Dbprintf("Received unknown command (len=%d):",len);
1186 Dbhexdump(len,receivedCmd,false);
1187 // Do not respond
1188 dynamic_response_info.response_n = 0;
1189 } break;
1190 }
1191
1192 if (dynamic_response_info.response_n > 0) {
1193 // Copy the CID from the reader query
1194 dynamic_response_info.response[1] = receivedCmd[1];
1195
1196 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1197 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1198 dynamic_response_info.response_n += 2;
1199
1200 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1201 Dbprintf("Error preparing tag response");
1202 if (tracing) {
1203 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1204 }
1205 break;
1206 }
1207 p_response = &dynamic_response_info;
1208 }
1209 }
1210
1211 // Count number of wakeups received after a halt
1212 if(order == 6 && lastorder == 5) { happened++; }
1213
1214 // Count number of other messages after a halt
1215 if(order != 6 && lastorder == 5) { happened2++; }
1216
1217 if(cmdsRecvd > 999) {
1218 DbpString("1000 commands later...");
1219 break;
1220 }
1221 cmdsRecvd++;
1222
1223 if (p_response != NULL) {
1224 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1225 // do the tracing for the previous reader request and this tag answer:
1226 uint8_t par[MAX_PARITY_SIZE];
1227 GetParity(p_response->response, p_response->response_n, par);
1228
1229 EmLogTrace(Uart.output,
1230 Uart.len,
1231 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1232 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1233 Uart.parity,
1234 p_response->response,
1235 p_response->response_n,
1236 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1237 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1238 par);
1239 }
1240
1241 if (!tracing) {
1242 Dbprintf("Trace Full. Simulation stopped.");
1243 break;
1244 }
1245 }
1246
1247 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1248 LED_A_OFF();
1249 }
1250
1251
1252 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1253 // of bits specified in the delay parameter.
1254 void PrepareDelayedTransfer(uint16_t delay)
1255 {
1256 uint8_t bitmask = 0;
1257 uint8_t bits_to_shift = 0;
1258 uint8_t bits_shifted = 0;
1259
1260 delay &= 0x07;
1261 if (delay) {
1262 for (uint16_t i = 0; i < delay; i++) {
1263 bitmask |= (0x01 << i);
1264 }
1265 ToSend[ToSendMax++] = 0x00;
1266 for (uint16_t i = 0; i < ToSendMax; i++) {
1267 bits_to_shift = ToSend[i] & bitmask;
1268 ToSend[i] = ToSend[i] >> delay;
1269 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1270 bits_shifted = bits_to_shift;
1271 }
1272 }
1273 }
1274
1275
1276 //-------------------------------------------------------------------------------------
1277 // Transmit the command (to the tag) that was placed in ToSend[].
1278 // Parameter timing:
1279 // if NULL: transfer at next possible time, taking into account
1280 // request guard time and frame delay time
1281 // if == 0: transfer immediately and return time of transfer
1282 // if != 0: delay transfer until time specified
1283 //-------------------------------------------------------------------------------------
1284 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1285 {
1286
1287 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1288
1289 uint32_t ThisTransferTime = 0;
1290
1291 if (timing) {
1292 if(*timing == 0) { // Measure time
1293 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1294 } else {
1295 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1296 }
1297 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1298 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1299 LastTimeProxToAirStart = *timing;
1300 } else {
1301 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1302 while(GetCountSspClk() < ThisTransferTime);
1303 LastTimeProxToAirStart = ThisTransferTime;
1304 }
1305
1306 // clear TXRDY
1307 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1308
1309 uint16_t c = 0;
1310 for(;;) {
1311 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1312 AT91C_BASE_SSC->SSC_THR = cmd[c];
1313 c++;
1314 if(c >= len) {
1315 break;
1316 }
1317 }
1318 }
1319
1320 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1321 }
1322
1323
1324 //-----------------------------------------------------------------------------
1325 // Prepare reader command (in bits, support short frames) to send to FPGA
1326 //-----------------------------------------------------------------------------
1327 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, uint16_t bits, const uint8_t *parity)
1328 {
1329 int i, j;
1330 int last;
1331 uint8_t b;
1332
1333 ToSendReset();
1334
1335 // Start of Communication (Seq. Z)
1336 ToSend[++ToSendMax] = SEC_Z;
1337 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1338 last = 0;
1339
1340 size_t bytecount = nbytes(bits);
1341 // Generate send structure for the data bits
1342 for (i = 0; i < bytecount; i++) {
1343 // Get the current byte to send
1344 b = cmd[i];
1345 size_t bitsleft = MIN((bits-(i*8)),8);
1346
1347 for (j = 0; j < bitsleft; j++) {
1348 if (b & 1) {
1349 // Sequence X
1350 ToSend[++ToSendMax] = SEC_X;
1351 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1352 last = 1;
1353 } else {
1354 if (last == 0) {
1355 // Sequence Z
1356 ToSend[++ToSendMax] = SEC_Z;
1357 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1358 } else {
1359 // Sequence Y
1360 ToSend[++ToSendMax] = SEC_Y;
1361 last = 0;
1362 }
1363 }
1364 b >>= 1;
1365 }
1366
1367 // Only transmit parity bit if we transmitted a complete byte
1368 if (j == 8) {
1369 // Get the parity bit
1370 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1371 // Sequence X
1372 ToSend[++ToSendMax] = SEC_X;
1373 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1374 last = 1;
1375 } else {
1376 if (last == 0) {
1377 // Sequence Z
1378 ToSend[++ToSendMax] = SEC_Z;
1379 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1380 } else {
1381 // Sequence Y
1382 ToSend[++ToSendMax] = SEC_Y;
1383 last = 0;
1384 }
1385 }
1386 }
1387 }
1388
1389 // End of Communication: Logic 0 followed by Sequence Y
1390 if (last == 0) {
1391 // Sequence Z
1392 ToSend[++ToSendMax] = SEC_Z;
1393 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1394 } else {
1395 // Sequence Y
1396 ToSend[++ToSendMax] = SEC_Y;
1397 last = 0;
1398 }
1399 ToSend[++ToSendMax] = SEC_Y;
1400
1401 // Convert to length of command:
1402 ToSendMax++;
1403 }
1404
1405 //-----------------------------------------------------------------------------
1406 // Prepare reader command to send to FPGA
1407 //-----------------------------------------------------------------------------
1408 void CodeIso14443aAsReaderPar(const uint8_t * cmd, uint16_t len, const uint8_t *parity)
1409 {
1410 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1411 }
1412
1413 //-----------------------------------------------------------------------------
1414 // Wait for commands from reader
1415 // Stop when button is pressed (return 1) or field was gone (return 2)
1416 // Or return 0 when command is captured
1417 //-----------------------------------------------------------------------------
1418 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1419 {
1420 *len = 0;
1421
1422 uint32_t timer = 0, vtime = 0;
1423 int analogCnt = 0;
1424 int analogAVG = 0;
1425
1426 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1427 // only, since we are receiving, not transmitting).
1428 // Signal field is off with the appropriate LED
1429 LED_D_OFF();
1430 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1431
1432 // Set ADC to read field strength
1433 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1434 AT91C_BASE_ADC->ADC_MR =
1435 ADC_MODE_PRESCALE(32) |
1436 ADC_MODE_STARTUP_TIME(16) |
1437 ADC_MODE_SAMPLE_HOLD_TIME(8);
1438 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1439 // start ADC
1440 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1441
1442 // Now run a 'software UART' on the stream of incoming samples.
1443 UartInit(received, parity);
1444
1445 // Clear RXRDY:
1446 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1447
1448 for(;;) {
1449 WDT_HIT();
1450
1451 if (BUTTON_PRESS()) return 1;
1452
1453 // test if the field exists
1454 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1455 analogCnt++;
1456 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1457 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1458 if (analogCnt >= 32) {
1459 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1460 vtime = GetTickCount();
1461 if (!timer) timer = vtime;
1462 // 50ms no field --> card to idle state
1463 if (vtime - timer > 50) return 2;
1464 } else
1465 if (timer) timer = 0;
1466 analogCnt = 0;
1467 analogAVG = 0;
1468 }
1469 }
1470
1471 // receive and test the miller decoding
1472 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1473 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1474 if(MillerDecoding(b, 0)) {
1475 *len = Uart.len;
1476 return 0;
1477 }
1478 }
1479
1480 }
1481 }
1482
1483
1484 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1485 {
1486 uint8_t b;
1487 uint16_t i = 0;
1488 uint32_t ThisTransferTime;
1489
1490 // Modulate Manchester
1491 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1492
1493 // include correction bit if necessary
1494 if (Uart.parityBits & 0x01) {
1495 correctionNeeded = TRUE;
1496 }
1497 if(correctionNeeded) {
1498 // 1236, so correction bit needed
1499 i = 0;
1500 } else {
1501 i = 1;
1502 }
1503
1504 // clear receiving shift register and holding register
1505 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1506 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1507 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1508 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1509
1510 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1511 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1512 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1513 if (AT91C_BASE_SSC->SSC_RHR) break;
1514 }
1515
1516 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1517
1518 // Clear TXRDY:
1519 AT91C_BASE_SSC->SSC_THR = SEC_F;
1520
1521 // send cycle
1522 for(; i <= respLen; ) {
1523 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1524 AT91C_BASE_SSC->SSC_THR = resp[i++];
1525 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1526 }
1527
1528 if(BUTTON_PRESS()) {
1529 break;
1530 }
1531 }
1532
1533 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1534 for (i = 0; i < 2 ; ) {
1535 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1536 AT91C_BASE_SSC->SSC_THR = SEC_F;
1537 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1538 i++;
1539 }
1540 }
1541
1542 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1543
1544 return 0;
1545 }
1546
1547 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1548 Code4bitAnswerAsTag(resp);
1549 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1550 // do the tracing for the previous reader request and this tag answer:
1551 uint8_t par[1];
1552 GetParity(&resp, 1, par);
1553 EmLogTrace(Uart.output,
1554 Uart.len,
1555 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1556 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1557 Uart.parity,
1558 &resp,
1559 1,
1560 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1561 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1562 par);
1563 return res;
1564 }
1565
1566 int EmSend4bit(uint8_t resp){
1567 return EmSend4bitEx(resp, false);
1568 }
1569
1570 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1571 CodeIso14443aAsTagPar(resp, respLen, par);
1572 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1573 // do the tracing for the previous reader request and this tag answer:
1574 EmLogTrace(Uart.output,
1575 Uart.len,
1576 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1577 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1578 Uart.parity,
1579 resp,
1580 respLen,
1581 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1582 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1583 par);
1584 return res;
1585 }
1586
1587 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1588 uint8_t par[MAX_PARITY_SIZE];
1589 GetParity(resp, respLen, par);
1590 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1591 }
1592
1593 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1594 uint8_t par[MAX_PARITY_SIZE];
1595 GetParity(resp, respLen, par);
1596 return EmSendCmdExPar(resp, respLen, false, par);
1597 }
1598
1599 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1600 return EmSendCmdExPar(resp, respLen, false, par);
1601 }
1602
1603 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1604 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1605 {
1606 if (tracing) {
1607 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1608 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1609 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1610 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1611 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1612 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1613 reader_EndTime = tag_StartTime - exact_fdt;
1614 reader_StartTime = reader_EndTime - reader_modlen;
1615 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1616 return FALSE;
1617 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1618 } else {
1619 return TRUE;
1620 }
1621 }
1622
1623 //-----------------------------------------------------------------------------
1624 // Wait a certain time for tag response
1625 // If a response is captured return TRUE
1626 // If it takes too long return FALSE
1627 //-----------------------------------------------------------------------------
1628 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1629 {
1630 uint16_t c;
1631
1632 // Set FPGA mode to "reader listen mode", no modulation (listen
1633 // only, since we are receiving, not transmitting).
1634 // Signal field is on with the appropriate LED
1635 LED_D_ON();
1636 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1637
1638 // Now get the answer from the card
1639 DemodInit(receivedResponse, receivedResponsePar);
1640
1641 // clear RXRDY:
1642 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1643
1644 c = 0;
1645 for(;;) {
1646 WDT_HIT();
1647
1648 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1649 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1650 if(ManchesterDecoding(b, offset, 0)) {
1651 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1652 return TRUE;
1653 } else if (c++ > iso14a_timeout) {
1654 return FALSE;
1655 }
1656 }
1657 }
1658 }
1659
1660 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1661 {
1662 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1663
1664 // Send command to tag
1665 TransmitFor14443a(ToSend, ToSendMax, timing);
1666 if(trigger)
1667 LED_A_ON();
1668
1669 // Log reader command in trace buffer
1670 if (tracing) {
1671 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1672 }
1673 }
1674
1675 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1676 {
1677 ReaderTransmitBitsPar(frame, len*8, par, timing);
1678 }
1679
1680 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1681 {
1682 // Generate parity and redirect
1683 uint8_t par[MAX_PARITY_SIZE];
1684 GetParity(frame, len/8, par);
1685 ReaderTransmitBitsPar(frame, len, par, timing);
1686 }
1687
1688 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1689 {
1690 // Generate parity and redirect
1691 uint8_t par[MAX_PARITY_SIZE];
1692 GetParity(frame, len, par);
1693 ReaderTransmitBitsPar(frame, len*8, par, timing);
1694 }
1695
1696 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1697 {
1698 if (!GetIso14443aAnswerFromTag(receivedAnswer,parity,offset)) return FALSE;
1699 if (tracing) {
1700 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1701 }
1702 return Demod.len;
1703 }
1704
1705 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1706 {
1707 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1708 if (tracing) {
1709 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1710 }
1711 return Demod.len;
1712 }
1713
1714 /* performs iso14443a anticollision procedure
1715 * fills the uid pointer unless NULL
1716 * fills resp_data unless NULL */
1717 int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
1718 //uint8_t halt[] = { 0x50, 0x00, 0x57, 0xCD }; // HALT
1719 uint8_t wupa[] = { 0x52 }; // WAKE-UP
1720 //uint8_t reqa[] = { 0x26 }; // REQUEST A
1721 uint8_t sel_all[] = { 0x93,0x20 };
1722 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1723 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1724 uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
1725 uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
1726
1727 byte_t uid_resp[4];
1728 size_t uid_resp_len;
1729 uint8_t sak = 0x04; // cascade uid
1730 int cascade_level = 0;
1731 int len;
1732
1733 // test for the SKYLANDERS TOY.
1734 //ReaderTransmit(halt,sizeof(halt), NULL);
1735 //len = ReaderReceive(resp, resp_par);
1736
1737 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1738 ReaderTransmitBitsPar(wupa,7,0, NULL);
1739
1740 // Receive the ATQA
1741 if(!ReaderReceive(resp, resp_par)) return 0;
1742
1743 if(p_hi14a_card) {
1744 memcpy(p_hi14a_card->atqa, resp, 2);
1745 p_hi14a_card->uidlen = 0;
1746 memset(p_hi14a_card->uid,0,10);
1747 }
1748
1749 // clear uid
1750 if (uid_ptr) {
1751 memset(uid_ptr,0,10);
1752 }
1753
1754 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1755 // which case we need to make a cascade 2 request and select - this is a long UID
1756 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1757 for(; sak & 0x04; cascade_level++) {
1758 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1759 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1760
1761 // SELECT_ALL
1762 ReaderTransmit(sel_all,sizeof(sel_all), NULL);
1763 if (!ReaderReceive(resp, resp_par)) return 0;
1764
1765 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1766 memset(uid_resp, 0, 4);
1767 uint16_t uid_resp_bits = 0;
1768 uint16_t collision_answer_offset = 0;
1769 // anti-collision-loop:
1770 while (Demod.collisionPos) {
1771 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1772 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1773 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1774 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1775 }
1776 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1777 uid_resp_bits++;
1778 // construct anticollosion command:
1779 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1780 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1781 sel_uid[2+i] = uid_resp[i];
1782 }
1783 collision_answer_offset = uid_resp_bits%8;
1784 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1785 if (!ReaderReceiveOffset(resp, collision_answer_offset,resp_par)) return 0;
1786 }
1787 // finally, add the last bits and BCC of the UID
1788 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1789 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1790 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1791 }
1792
1793 } else { // no collision, use the response to SELECT_ALL as current uid
1794 memcpy(uid_resp,resp,4);
1795 }
1796 uid_resp_len = 4;
1797
1798 // calculate crypto UID. Always use last 4 Bytes.
1799 if(cuid_ptr) {
1800 *cuid_ptr = bytes_to_num(uid_resp, 4);
1801 }
1802
1803 // Construct SELECT UID command
1804 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1805 memcpy(sel_uid+2,uid_resp,4); // the UID
1806 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1807 AppendCrc14443a(sel_uid,7); // calculate and add CRC
1808 ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
1809
1810 // Receive the SAK
1811 if (!ReaderReceive(resp, resp_par)) return 0;
1812 sak = resp[0];
1813
1814 // Test if more parts of the uid are coming
1815 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1816 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1817 // http://www.nxp.com/documents/application_note/AN10927.pdf
1818 uid_resp[0] = uid_resp[1];
1819 uid_resp[1] = uid_resp[2];
1820 uid_resp[2] = uid_resp[3];
1821
1822 uid_resp_len = 3;
1823 }
1824
1825 if(uid_ptr) {
1826 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1827 }
1828
1829 if(p_hi14a_card) {
1830 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1831 p_hi14a_card->uidlen += uid_resp_len;
1832 }
1833 }
1834
1835 if(p_hi14a_card) {
1836 p_hi14a_card->sak = sak;
1837 p_hi14a_card->ats_len = 0;
1838 }
1839
1840 if( (sak & 0x20) == 0) {
1841 return 2; // non iso14443a compliant tag
1842 }
1843
1844 // Request for answer to select
1845 AppendCrc14443a(rats, 2);
1846 ReaderTransmit(rats, sizeof(rats), NULL);
1847
1848 len = ReaderReceive(resp, resp_par);
1849 if(!len) return 0;
1850
1851 if(p_hi14a_card) {
1852 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1853 p_hi14a_card->ats_len = len;
1854 }
1855
1856 // reset the PCB block number
1857 iso14_pcb_blocknum = 0;
1858 return 1;
1859 }
1860
1861 void iso14443a_setup(uint8_t fpga_minor_mode) {
1862 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1863 // Set up the synchronous serial port
1864 FpgaSetupSsc();
1865 // connect Demodulated Signal to ADC:
1866 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1867
1868 // Signal field is on with the appropriate LED
1869 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1870 LED_D_ON();
1871 } else {
1872 LED_D_OFF();
1873 }
1874 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1875
1876 // Start the timer
1877 StartCountSspClk();
1878
1879 DemodReset();
1880 UartReset();
1881 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1882 iso14a_set_timeout(1050); // 10ms default 10*105 =
1883 }
1884
1885 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1886 uint8_t parity[MAX_PARITY_SIZE];
1887 uint8_t real_cmd[cmd_len+4];
1888 real_cmd[0] = 0x0a; //I-Block
1889 // put block number into the PCB
1890 real_cmd[0] |= iso14_pcb_blocknum;
1891 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1892 memcpy(real_cmd+2, cmd, cmd_len);
1893 AppendCrc14443a(real_cmd,cmd_len+2);
1894
1895 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1896 size_t len = ReaderReceive(data, parity);
1897 uint8_t * data_bytes = (uint8_t *) data;
1898 if (!len)
1899 return 0; //DATA LINK ERROR
1900 // if we received an I- or R(ACK)-Block with a block number equal to the
1901 // current block number, toggle the current block number
1902 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1903 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1904 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1905 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1906 {
1907 iso14_pcb_blocknum ^= 1;
1908 }
1909
1910 return len;
1911 }
1912
1913 //-----------------------------------------------------------------------------
1914 // Read an ISO 14443a tag. Send out commands and store answers.
1915 //
1916 //-----------------------------------------------------------------------------
1917 void ReaderIso14443a(UsbCommand *c)
1918 {
1919 iso14a_command_t param = c->arg[0];
1920 uint8_t *cmd = c->d.asBytes;
1921 size_t len = c->arg[1];
1922 size_t lenbits = c->arg[2];
1923 uint32_t arg0 = 0;
1924 byte_t buf[USB_CMD_DATA_SIZE];
1925 uint8_t par[MAX_PARITY_SIZE];
1926
1927 if(param & ISO14A_CONNECT) {
1928 iso14a_clear_trace();
1929 }
1930
1931 iso14a_set_tracing(TRUE);
1932
1933 if(param & ISO14A_REQUEST_TRIGGER) {
1934 iso14a_set_trigger(TRUE);
1935 }
1936
1937 if(param & ISO14A_CONNECT) {
1938 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1939 if(!(param & ISO14A_NO_SELECT)) {
1940 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1941 arg0 = iso14443a_select_card(NULL,card,NULL);
1942 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1943 }
1944 }
1945
1946 if(param & ISO14A_SET_TIMEOUT) {
1947 iso14a_set_timeout(c->arg[2]);
1948 }
1949
1950 if(param & ISO14A_APDU) {
1951 arg0 = iso14_apdu(cmd, len, buf);
1952 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1953 }
1954
1955 if(param & ISO14A_RAW) {
1956 if(param & ISO14A_APPEND_CRC) {
1957 AppendCrc14443a(cmd,len);
1958 len += 2;
1959 if (lenbits) lenbits += 16;
1960 }
1961 if(lenbits>0) {
1962 GetParity(cmd, lenbits/8, par);
1963 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
1964 } else {
1965 ReaderTransmit(cmd,len, NULL);
1966 }
1967 arg0 = ReaderReceive(buf, par);
1968 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1969 }
1970
1971 if(param & ISO14A_REQUEST_TRIGGER) {
1972 iso14a_set_trigger(FALSE);
1973 }
1974
1975 if(param & ISO14A_NO_DISCONNECT) {
1976 return;
1977 }
1978
1979 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1980 LEDsoff();
1981 }
1982
1983
1984 // Determine the distance between two nonces.
1985 // Assume that the difference is small, but we don't know which is first.
1986 // Therefore try in alternating directions.
1987 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1988
1989 uint16_t i;
1990 uint32_t nttmp1, nttmp2;
1991
1992 if (nt1 == nt2) return 0;
1993
1994 nttmp1 = nt1;
1995 nttmp2 = nt2;
1996
1997 for (i = 1; i < 32768; i++) {
1998 nttmp1 = prng_successor(nttmp1, 1);
1999 if (nttmp1 == nt2) return i;
2000 nttmp2 = prng_successor(nttmp2, 1);
2001 if (nttmp2 == nt1) return -i;
2002 }
2003
2004 return(-99999); // either nt1 or nt2 are invalid nonces
2005 }
2006
2007
2008 //-----------------------------------------------------------------------------
2009 // Recover several bits of the cypher stream. This implements (first stages of)
2010 // the algorithm described in "The Dark Side of Security by Obscurity and
2011 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2012 // (article by Nicolas T. Courtois, 2009)
2013 //-----------------------------------------------------------------------------
2014 void ReaderMifare(bool first_try)
2015 {
2016 // Mifare AUTH
2017 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2018 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2019 static uint8_t mf_nr_ar3;
2020
2021 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2022 uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
2023
2024 iso14a_clear_trace();
2025 iso14a_set_tracing(TRUE);
2026
2027 byte_t nt_diff = 0;
2028 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2029 static byte_t par_low = 0;
2030 bool led_on = TRUE;
2031 uint8_t uid[10] ={0};
2032 uint32_t cuid;
2033
2034 uint32_t nt = 0;
2035 uint32_t previous_nt = 0;
2036 static uint32_t nt_attacked = 0;
2037 byte_t par_list[8] = {0x00};
2038 byte_t ks_list[8] = {0x00};
2039
2040 static uint32_t sync_time;
2041 static uint32_t sync_cycles;
2042 int catch_up_cycles = 0;
2043 int last_catch_up = 0;
2044 uint16_t consecutive_resyncs = 0;
2045 int isOK = 0;
2046
2047 if (first_try) {
2048 mf_nr_ar3 = 0;
2049 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2050 sync_time = GetCountSspClk() & 0xfffffff8;
2051 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2052 nt_attacked = 0;
2053 nt = 0;
2054 par[0] = 0;
2055 }
2056 else {
2057 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2058 mf_nr_ar3++;
2059 mf_nr_ar[3] = mf_nr_ar3;
2060 par[0] = par_low;
2061 }
2062
2063 LED_A_ON();
2064 LED_B_OFF();
2065 LED_C_OFF();
2066
2067
2068 for(uint16_t i = 0; TRUE; i++) {
2069
2070 WDT_HIT();
2071
2072 // Test if the action was cancelled
2073 if(BUTTON_PRESS()) {
2074 break;
2075 }
2076
2077 LED_C_ON();
2078
2079 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2080 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2081 continue;
2082 }
2083
2084 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2085 catch_up_cycles = 0;
2086
2087 // if we missed the sync time already, advance to the next nonce repeat
2088 while(GetCountSspClk() > sync_time) {
2089 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2090 }
2091
2092 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2093 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2094
2095 // Receive the (4 Byte) "random" nonce
2096 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2097 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2098 continue;
2099 }
2100
2101 previous_nt = nt;
2102 nt = bytes_to_num(receivedAnswer, 4);
2103
2104 // Transmit reader nonce with fake par
2105 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2106
2107 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2108 int nt_distance = dist_nt(previous_nt, nt);
2109 if (nt_distance == 0) {
2110 nt_attacked = nt;
2111 }
2112 else {
2113 if (nt_distance == -99999) { // invalid nonce received, try again
2114 continue;
2115 }
2116 sync_cycles = (sync_cycles - nt_distance);
2117 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2118 continue;
2119 }
2120 }
2121
2122 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2123 catch_up_cycles = -dist_nt(nt_attacked, nt);
2124 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2125 catch_up_cycles = 0;
2126 continue;
2127 }
2128 if (catch_up_cycles == last_catch_up) {
2129 consecutive_resyncs++;
2130 }
2131 else {
2132 last_catch_up = catch_up_cycles;
2133 consecutive_resyncs = 0;
2134 }
2135 if (consecutive_resyncs < 3) {
2136 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2137 }
2138 else {
2139 sync_cycles = sync_cycles + catch_up_cycles;
2140 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2141 }
2142 continue;
2143 }
2144
2145 consecutive_resyncs = 0;
2146
2147 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2148 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2149 {
2150 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2151
2152 if (nt_diff == 0)
2153 {
2154 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2155 }
2156
2157 led_on = !led_on;
2158 if(led_on) LED_B_ON(); else LED_B_OFF();
2159
2160 par_list[nt_diff] = SwapBits(par[0], 8);
2161 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2162
2163 // Test if the information is complete
2164 if (nt_diff == 0x07) {
2165 isOK = 1;
2166 break;
2167 }
2168
2169 nt_diff = (nt_diff + 1) & 0x07;
2170 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2171 par[0] = par_low;
2172 } else {
2173 if (nt_diff == 0 && first_try)
2174 {
2175 par[0]++;
2176 } else {
2177 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2178 }
2179 }
2180 }
2181
2182
2183 mf_nr_ar[3] &= 0x1F;
2184
2185 byte_t buf[28];
2186 memcpy(buf + 0, uid, 4);
2187 num_to_bytes(nt, 4, buf + 4);
2188 memcpy(buf + 8, par_list, 8);
2189 memcpy(buf + 16, ks_list, 8);
2190 memcpy(buf + 24, mf_nr_ar, 4);
2191
2192 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2193
2194 // Thats it...
2195 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2196 LEDsoff();
2197
2198 iso14a_set_tracing(FALSE);
2199 }
2200
2201 /**
2202 *MIFARE 1K simulate.
2203 *
2204 *@param flags :
2205 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2206 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2207 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2208 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2209 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2210 */
2211 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2212 {
2213 int cardSTATE = MFEMUL_NOFIELD;
2214 int _7BUID = 0;
2215 int vHf = 0; // in mV
2216 int res;
2217 uint32_t selTimer = 0;
2218 uint32_t authTimer = 0;
2219 uint16_t len = 0;
2220 uint8_t cardWRBL = 0;
2221 uint8_t cardAUTHSC = 0;
2222 uint8_t cardAUTHKEY = 0xff; // no authentication
2223 uint32_t cardRr = 0;
2224 uint32_t cuid = 0;
2225 //uint32_t rn_enc = 0;
2226 uint32_t ans = 0;
2227 uint32_t cardINTREG = 0;
2228 uint8_t cardINTBLOCK = 0;
2229 struct Crypto1State mpcs = {0, 0};
2230 struct Crypto1State *pcs;
2231 pcs = &mpcs;
2232 uint32_t numReads = 0;//Counts numer of times reader read a block
2233 uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
2234 uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
2235 uint8_t* response = get_bigbufptr_recvrespbuf();
2236 uint8_t* response_par = response + MAX_FRAME_SIZE;
2237
2238 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2239 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2240 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2241 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2242 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2243
2244 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2245 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2246
2247 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2248 // This can be used in a reader-only attack.
2249 // (it can also be retrieved via 'hf 14a list', but hey...
2250 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2251 uint8_t ar_nr_collected = 0;
2252
2253 // clear trace
2254 iso14a_clear_trace();
2255 iso14a_set_tracing(TRUE);
2256
2257 // Authenticate response - nonce
2258 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2259
2260 //-- Determine the UID
2261 // Can be set from emulator memory, incoming data
2262 // and can be 7 or 4 bytes long
2263 if (flags & FLAG_4B_UID_IN_DATA)
2264 {
2265 // 4B uid comes from data-portion of packet
2266 memcpy(rUIDBCC1,datain,4);
2267 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2268
2269 } else if (flags & FLAG_7B_UID_IN_DATA) {
2270 // 7B uid comes from data-portion of packet
2271 memcpy(&rUIDBCC1[1],datain,3);
2272 memcpy(rUIDBCC2, datain+3, 4);
2273 _7BUID = true;
2274 } else {
2275 // get UID from emul memory
2276 emlGetMemBt(receivedCmd, 7, 1);
2277 _7BUID = !(receivedCmd[0] == 0x00);
2278 if (!_7BUID) { // ---------- 4BUID
2279 emlGetMemBt(rUIDBCC1, 0, 4);
2280 } else { // ---------- 7BUID
2281 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2282 emlGetMemBt(rUIDBCC2, 3, 4);
2283 }
2284 }
2285
2286 /*
2287 * Regardless of what method was used to set the UID, set fifth byte and modify
2288 * the ATQA for 4 or 7-byte UID
2289 */
2290 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2291 if (_7BUID) {
2292 rATQA[0] = 0x44;
2293 rUIDBCC1[0] = 0x88;
2294 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2295 }
2296
2297 // We need to listen to the high-frequency, peak-detected path.
2298 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2299
2300
2301 if (MF_DBGLEVEL >= 1) {
2302 if (!_7BUID) {
2303 Dbprintf("4B UID: %02x%02x%02x%02x",
2304 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2305 } else {
2306 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2307 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2308 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2309 }
2310 }
2311
2312 bool finished = FALSE;
2313 while (!BUTTON_PRESS() && !finished) {
2314 WDT_HIT();
2315
2316 // find reader field
2317 // Vref = 3300mV, and an 10:1 voltage divider on the input
2318 // can measure voltages up to 33000 mV
2319 if (cardSTATE == MFEMUL_NOFIELD) {
2320 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2321 if (vHf > MF_MINFIELDV) {
2322 cardSTATE_TO_IDLE();
2323 LED_A_ON();
2324 }
2325 }
2326 if(cardSTATE == MFEMUL_NOFIELD) continue;
2327
2328 //Now, get data
2329
2330 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2331 if (res == 2) { //Field is off!
2332 cardSTATE = MFEMUL_NOFIELD;
2333 LEDsoff();
2334 continue;
2335 } else if (res == 1) {
2336 break; //return value 1 means button press
2337 }
2338
2339 // REQ or WUP request in ANY state and WUP in HALTED state
2340 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2341 selTimer = GetTickCount();
2342 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2343 cardSTATE = MFEMUL_SELECT1;
2344
2345 // init crypto block
2346 LED_B_OFF();
2347 LED_C_OFF();
2348 crypto1_destroy(pcs);
2349 cardAUTHKEY = 0xff;
2350 continue;
2351 }
2352
2353 switch (cardSTATE) {
2354 case MFEMUL_NOFIELD:
2355 case MFEMUL_HALTED:
2356 case MFEMUL_IDLE:{
2357 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2358 break;
2359 }
2360 case MFEMUL_SELECT1:{
2361 // select all
2362 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2363 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2364 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2365 break;
2366 }
2367
2368 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2369 {
2370 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2371 }
2372 // select card
2373 if (len == 9 &&
2374 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2375 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2376 cuid = bytes_to_num(rUIDBCC1, 4);
2377 if (!_7BUID) {
2378 cardSTATE = MFEMUL_WORK;
2379 LED_B_ON();
2380 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2381 break;
2382 } else {
2383 cardSTATE = MFEMUL_SELECT2;
2384 }
2385 }
2386 break;
2387 }
2388 case MFEMUL_AUTH1:{
2389 if( len != 8)
2390 {
2391 cardSTATE_TO_IDLE();
2392 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2393 break;
2394 }
2395 uint32_t ar = bytes_to_num(receivedCmd, 4);
2396 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2397
2398 //Collect AR/NR
2399 if(ar_nr_collected < 2){
2400 if(ar_nr_responses[2] != ar)
2401 {// Avoid duplicates... probably not necessary, ar should vary.
2402 ar_nr_responses[ar_nr_collected*4] = cuid;
2403 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2404 ar_nr_responses[ar_nr_collected*4+2] = ar;
2405 ar_nr_responses[ar_nr_collected*4+3] = nr;
2406 ar_nr_collected++;
2407 }
2408 }
2409
2410 // --- crypto
2411 crypto1_word(pcs, ar , 1);
2412 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2413
2414 // test if auth OK
2415 if (cardRr != prng_successor(nonce, 64)){
2416 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2417 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2418 cardRr, prng_successor(nonce, 64));
2419 // Shouldn't we respond anything here?
2420 // Right now, we don't nack or anything, which causes the
2421 // reader to do a WUPA after a while. /Martin
2422 // -- which is the correct response. /piwi
2423 cardSTATE_TO_IDLE();
2424 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2425 break;
2426 }
2427
2428 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2429
2430 num_to_bytes(ans, 4, rAUTH_AT);
2431 // --- crypto
2432 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2433 LED_C_ON();
2434 cardSTATE = MFEMUL_WORK;
2435 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2436 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2437 GetTickCount() - authTimer);
2438 break;
2439 }
2440 case MFEMUL_SELECT2:{
2441 if (!len) {
2442 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2443 break;
2444 }
2445 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2446 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2447 break;
2448 }
2449
2450 // select 2 card
2451 if (len == 9 &&
2452 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2453 EmSendCmd(rSAK, sizeof(rSAK));
2454 cuid = bytes_to_num(rUIDBCC2, 4);
2455 cardSTATE = MFEMUL_WORK;
2456 LED_B_ON();
2457 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2458 break;
2459 }
2460
2461 // i guess there is a command). go into the work state.
2462 if (len != 4) {
2463 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2464 break;
2465 }
2466 cardSTATE = MFEMUL_WORK;
2467 //goto lbWORK;
2468 //intentional fall-through to the next case-stmt
2469 }
2470
2471 case MFEMUL_WORK:{
2472 if (len == 0) {
2473 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2474 break;
2475 }
2476
2477 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2478
2479 if(encrypted_data) {
2480 // decrypt seqence
2481 mf_crypto1_decrypt(pcs, receivedCmd, len);
2482 }
2483
2484 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2485 authTimer = GetTickCount();
2486 cardAUTHSC = receivedCmd[1] / 4; // received block num
2487 cardAUTHKEY = receivedCmd[0] - 0x60;
2488 crypto1_destroy(pcs);//Added by martin
2489 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2490
2491 if (!encrypted_data) { // first authentication
2492 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2493
2494 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2495 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2496 } else { // nested authentication
2497 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2498 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2499 num_to_bytes(ans, 4, rAUTH_AT);
2500 }
2501 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2502 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2503 cardSTATE = MFEMUL_AUTH1;
2504 break;
2505 }
2506
2507 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2508 // BUT... ACK --> NACK
2509 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2510 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2511 break;
2512 }
2513
2514 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2515 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2516 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2517 break;
2518 }
2519
2520 if(len != 4) {
2521 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2522 break;
2523 }
2524
2525 if(receivedCmd[0] == 0x30 // read block
2526 || receivedCmd[0] == 0xA0 // write block
2527 || receivedCmd[0] == 0xC0 // inc
2528 || receivedCmd[0] == 0xC1 // dec
2529 || receivedCmd[0] == 0xC2 // restore
2530 || receivedCmd[0] == 0xB0) { // transfer
2531 if (receivedCmd[1] >= 16 * 4) {
2532 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2533 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2534 break;
2535 }
2536
2537 if (receivedCmd[1] / 4 != cardAUTHSC) {
2538 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2539 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2540 break;
2541 }
2542 }
2543 // read block
2544 if (receivedCmd[0] == 0x30) {
2545 if (MF_DBGLEVEL >= 4) {
2546 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2547 }
2548 emlGetMem(response, receivedCmd[1], 1);
2549 AppendCrc14443a(response, 16);
2550 mf_crypto1_encrypt(pcs, response, 18, response_par);
2551 EmSendCmdPar(response, 18, response_par);
2552 numReads++;
2553 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2554 Dbprintf("%d reads done, exiting", numReads);
2555 finished = true;
2556 }
2557 break;
2558 }
2559 // write block
2560 if (receivedCmd[0] == 0xA0) {
2561 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2562 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2563 cardSTATE = MFEMUL_WRITEBL2;
2564 cardWRBL = receivedCmd[1];
2565 break;
2566 }
2567 // increment, decrement, restore
2568 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2569 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2570 if (emlCheckValBl(receivedCmd[1])) {
2571 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2572 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2573 break;
2574 }
2575 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2576 if (receivedCmd[0] == 0xC1)
2577 cardSTATE = MFEMUL_INTREG_INC;
2578 if (receivedCmd[0] == 0xC0)
2579 cardSTATE = MFEMUL_INTREG_DEC;
2580 if (receivedCmd[0] == 0xC2)
2581 cardSTATE = MFEMUL_INTREG_REST;
2582 cardWRBL = receivedCmd[1];
2583 break;
2584 }
2585 // transfer
2586 if (receivedCmd[0] == 0xB0) {
2587 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2588 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2589 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2590 else
2591 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2592 break;
2593 }
2594 // halt
2595 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2596 LED_B_OFF();
2597 LED_C_OFF();
2598 cardSTATE = MFEMUL_HALTED;
2599 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2600 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2601 break;
2602 }
2603 // RATS
2604 if (receivedCmd[0] == 0xe0) {//RATS
2605 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2606 break;
2607 }
2608 // command not allowed
2609 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2610 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2611 break;
2612 }
2613 case MFEMUL_WRITEBL2:{
2614 if (len == 18){
2615 mf_crypto1_decrypt(pcs, receivedCmd, len);
2616 emlSetMem(receivedCmd, cardWRBL, 1);
2617 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2618 cardSTATE = MFEMUL_WORK;
2619 } else {
2620 cardSTATE_TO_IDLE();
2621 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2622 }
2623 break;
2624 }
2625
2626 case MFEMUL_INTREG_INC:{
2627 mf_crypto1_decrypt(pcs, receivedCmd, len);
2628 memcpy(&ans, receivedCmd, 4);
2629 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2630 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2631 cardSTATE_TO_IDLE();
2632 break;
2633 }
2634 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2635 cardINTREG = cardINTREG + ans;
2636 cardSTATE = MFEMUL_WORK;
2637 break;
2638 }
2639 case MFEMUL_INTREG_DEC:{
2640 mf_crypto1_decrypt(pcs, receivedCmd, len);
2641 memcpy(&ans, receivedCmd, 4);
2642 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2643 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2644 cardSTATE_TO_IDLE();
2645 break;
2646 }
2647 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2648 cardINTREG = cardINTREG - ans;
2649 cardSTATE = MFEMUL_WORK;
2650 break;
2651 }
2652 case MFEMUL_INTREG_REST:{
2653 mf_crypto1_decrypt(pcs, receivedCmd, len);
2654 memcpy(&ans, receivedCmd, 4);
2655 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2656 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2657 cardSTATE_TO_IDLE();
2658 break;
2659 }
2660 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2661 cardSTATE = MFEMUL_WORK;
2662 break;
2663 }
2664 }
2665 }
2666
2667 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2668 LEDsoff();
2669
2670 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2671 {
2672 //May just aswell send the collected ar_nr in the response aswell
2673 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2674 }
2675
2676 if(flags & FLAG_NR_AR_ATTACK)
2677 {
2678 if(ar_nr_collected > 1) {
2679 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2680 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2681 ar_nr_responses[0], // UID
2682 ar_nr_responses[1], //NT
2683 ar_nr_responses[2], //AR1
2684 ar_nr_responses[3], //NR1
2685 ar_nr_responses[6], //AR2
2686 ar_nr_responses[7] //NR2
2687 );
2688 } else {
2689 Dbprintf("Failed to obtain two AR/NR pairs!");
2690 if(ar_nr_collected >0) {
2691 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2692 ar_nr_responses[0], // UID
2693 ar_nr_responses[1], //NT
2694 ar_nr_responses[2], //AR1
2695 ar_nr_responses[3] //NR1
2696 );
2697 }
2698 }
2699 }
2700 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
2701 }
2702
2703
2704
2705 //-----------------------------------------------------------------------------
2706 // MIFARE sniffer.
2707 //
2708 //-----------------------------------------------------------------------------
2709 void RAMFUNC SniffMifare(uint8_t param) {
2710 // param:
2711 // bit 0 - trigger from first card answer
2712 // bit 1 - trigger from first reader 7-bit request
2713
2714 // C(red) A(yellow) B(green)
2715 LEDsoff();
2716 // init trace buffer
2717 iso14a_clear_trace();
2718 iso14a_set_tracing(TRUE);
2719
2720 // The command (reader -> tag) that we're receiving.
2721 // The length of a received command will in most cases be no more than 18 bytes.
2722 // So 32 should be enough!
2723 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
2724 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
2725 // The response (tag -> reader) that we're receiving.
2726 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2727 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
2728
2729 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2730 // into trace, along with its length and other annotations.
2731 //uint8_t *trace = (uint8_t *)BigBuf;
2732
2733 // The DMA buffer, used to stream samples from the FPGA
2734 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2735 uint8_t *data = dmaBuf;
2736 uint8_t previous_data = 0;
2737 int maxDataLen = 0;
2738 int dataLen = 0;
2739 bool ReaderIsActive = FALSE;
2740 bool TagIsActive = FALSE;
2741
2742 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2743
2744 // Set up the demodulator for tag -> reader responses.
2745 DemodInit(receivedResponse, receivedResponsePar);
2746
2747 // Set up the demodulator for the reader -> tag commands
2748 UartInit(receivedCmd, receivedCmdPar);
2749
2750 // Setup for the DMA.
2751 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2752
2753 LED_D_OFF();
2754
2755 // init sniffer
2756 MfSniffInit();
2757
2758 // And now we loop, receiving samples.
2759 for(uint32_t sniffCounter = 0; TRUE; ) {
2760
2761 if(BUTTON_PRESS()) {
2762 DbpString("cancelled by button");
2763 break;
2764 }
2765
2766 LED_A_ON();
2767 WDT_HIT();
2768
2769 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2770 // check if a transaction is completed (timeout after 2000ms).
2771 // if yes, stop the DMA transfer and send what we have so far to the client
2772 if (MfSniffSend(2000)) {
2773 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2774 sniffCounter = 0;
2775 data = dmaBuf;
2776 maxDataLen = 0;
2777 ReaderIsActive = FALSE;
2778 TagIsActive = FALSE;
2779 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2780 }
2781 }
2782
2783 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2784 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2785 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2786 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2787 } else {
2788 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2789 }
2790 // test for length of buffer
2791 if(dataLen > maxDataLen) { // we are more behind than ever...
2792 maxDataLen = dataLen;
2793 if(dataLen > 400) {
2794 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2795 break;
2796 }
2797 }
2798 if(dataLen < 1) continue;
2799
2800 // primary buffer was stopped ( <-- we lost data!
2801 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2802 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2803 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2804 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2805 }
2806 // secondary buffer sets as primary, secondary buffer was stopped
2807 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2808 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2809 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2810 }
2811
2812 LED_A_OFF();
2813
2814 if (sniffCounter & 0x01) {
2815
2816 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2817 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2818 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2819 LED_C_INV();
2820 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
2821
2822 /* And ready to receive another command. */
2823 UartReset();
2824
2825 /* And also reset the demod code */
2826 DemodReset();
2827 }
2828 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2829 }
2830
2831 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2832 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2833 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2834 LED_C_INV();
2835
2836 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
2837
2838 // And ready to receive another response.
2839 DemodReset();
2840 }
2841 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2842 }
2843 }
2844
2845 previous_data = *data;
2846 sniffCounter++;
2847 data++;
2848 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2849 data = dmaBuf;
2850 }
2851
2852 } // main cycle
2853
2854 DbpString("COMMAND FINISHED");
2855
2856 FpgaDisableSscDma();
2857 MfSniffEnd();
2858
2859 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2860 LEDsoff();
2861 }
Impressum, Datenschutz