]>
Commit | Line | Data |
---|---|---|
ec1bef8e | 1 | /* |
2 | * ox - infrared to usb keyboard/mouse adapter | |
3 | * | |
4 | * by Alexander Neumann <alexander@lochraster.org> | |
5 | * | |
6 | * inspired by InfraHID by Alex Badea, | |
7 | * see http://vamposdecampos.googlepages.com/infrahid.html | |
8 | * | |
9 | * This program is free software; you can redistribute it and/or modify | |
10 | * it under the terms of the GNU General Public License version 2 as | |
11 | * published by the Free Software Foundation. | |
12 | * | |
13 | * This program is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | * GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
19 | * along with this program; if not, write to the Free Software | |
20 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
21 | * | |
22 | * For more information on the GPL, please go to: | |
23 | * http://www.gnu.org/copyleft/gpl.html | |
24 | */ | |
25 | ||
26 | #include "ir-cluster.h" | |
27 | ||
28 | /* return the position of the (first) minimum value within data[], | |
29 | * considering only values at even positions */ | |
30 | static uint8_t minimum(uint16_t data[], uint8_t len) | |
31 | { | |
32 | uint8_t min = 0; | |
33 | ||
34 | for (uint8_t i = 0; i < 2*len; i += 2) { | |
35 | if (data[i] < data[min]) | |
36 | min = i; | |
37 | } | |
38 | ||
39 | return min; | |
40 | } | |
41 | ||
42 | /* search next bigger value (starting at data[from]) within data[], just | |
43 | * considering the even values, return -1 on error (no bigger value found) */ | |
44 | static int8_t next(uint16_t data[], uint8_t len, uint8_t from) | |
45 | { | |
46 | len *= 2; | |
47 | ||
48 | uint16_t old = data[from]; | |
49 | ||
50 | /* test if the same value appears again within data[] after from */ | |
51 | for (uint8_t i = from+2; i < len; i += 2) { | |
52 | if (data[i] == old) | |
53 | /* found the same value again, at pos i */ | |
54 | return i; | |
55 | } | |
56 | ||
57 | /* else search for the next bigger value */ | |
58 | int16_t pos = -1; | |
59 | for (uint8_t i = 0; i < len; i += 2) { | |
60 | ||
61 | /* if the current value is lower than the old value, try next */ | |
62 | if (data[i] <= old) | |
63 | continue; | |
64 | ||
65 | /* if we haven't found a bigger value yet, or if the current value | |
66 | * is smaller than the value we looked at before, | |
67 | * consider the current position as the next value */ | |
68 | if (pos < 0 || data[i] < data[pos]) | |
69 | pos = i; | |
70 | } | |
71 | ||
72 | return pos; | |
73 | } | |
74 | ||
75 | /* search for (one-dimensional) clusters within data[], | |
76 | * consider only values at even positions */ | |
77 | uint8_t ir_cluster(uint16_t data[], uint8_t len, uint16_t cluster[], uint8_t max) | |
78 | { | |
79 | uint8_t cindex = 0; | |
80 | ||
81 | /* search minimum within data[] */ | |
82 | uint8_t pos = minimum(data, len); | |
83 | ||
84 | /* initialize mean value */ | |
85 | uint32_t mean = data[pos]; | |
86 | uint8_t count = 1; | |
87 | ||
88 | /* iterate over data[], processing the values (at even positions) in | |
89 | * ascending order */ | |
90 | for (uint8_t i = 0; i < len-1; i++) { | |
91 | ||
92 | /* search position of the next element within data[] */ | |
93 | uint8_t nextpos = next(data, len, pos); | |
94 | ||
95 | /* as a shortcut, name values a and b */ | |
96 | uint16_t a = data[pos]; | |
97 | uint16_t b = data[nextpos]; | |
98 | ||
99 | /* check if b > 1.5*a */ | |
100 | a += a/2; | |
101 | if (b > a) { | |
102 | ||
103 | /* reached a step, found a cluster */ | |
104 | mean /= count; | |
105 | cluster[cindex++] = (uint16_t)mean; | |
106 | ||
107 | /* stop processing since max cluster values is reached */ | |
108 | if (cindex == max) | |
109 | return max; | |
110 | ||
111 | /* reset mean value */ | |
112 | mean = 0; | |
113 | count = 0; | |
114 | } | |
115 | ||
116 | /* add value to mean */ | |
117 | mean += b; | |
118 | count++; | |
119 | ||
120 | /* advance position */ | |
121 | pos = nextpos; | |
122 | } | |
123 | ||
124 | /* if there are some values left in mean, this is the last cluster */ | |
125 | if (count > 0) { | |
126 | mean /= count; | |
127 | cluster[cindex++] = (uint16_t)mean; | |
128 | } | |
129 | ||
130 | return cindex; | |
131 | } | |
132 | ||
133 | /* get cluster index belonging to data */ | |
134 | uint8_t ir_min_cluster(uint16_t data, uint16_t cluster[], uint8_t len) | |
135 | { | |
136 | uint8_t min = 0; | |
137 | uint16_t diff = 0xffff; | |
138 | ||
139 | /* iterate over possible clusters */ | |
140 | for (uint8_t i = 0; i < len; i++) { | |
141 | uint16_t curdiff; | |
142 | ||
143 | /* get positive difference */ | |
144 | if (data < cluster[i]) | |
145 | curdiff = cluster[i] - data; | |
146 | else | |
147 | curdiff = data - cluster[i]; | |
148 | ||
149 | /* if difference is lower, remember this cluster */ | |
150 | if (curdiff < diff) { | |
151 | diff = curdiff; | |
152 | min = i; | |
153 | } else | |
154 | /* stop here, since difference is larger than for the last cluster | |
155 | * (cluster[] is ordered ascending */ | |
156 | break; | |
157 | } | |
158 | ||
159 | return min; | |
160 | } |