]>
Commit | Line | Data |
---|---|---|
489ef36c | 1 | //----------------------------------------------------------------------------- |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
abb21530 | 8 | // Routines to support ISO 14443B. This includes both the reader software and |
9 | // the `fake tag' modes. | |
489ef36c | 10 | //----------------------------------------------------------------------------- |
6fc68747 | 11 | #include "iso14443b.h" |
489ef36c | 12 | |
cef590d9 | 13 | #define RECEIVE_SAMPLES_TIMEOUT 20000 |
a62bf3af | 14 | #define ISO14443B_DMA_BUFFER_SIZE 256 |
489ef36c | 15 | |
6fc68747 | 16 | // the block number for the ISO14443-4 PCB (used with APDUs) |
a62bf3af | 17 | static uint8_t pcb_blocknum = 0; |
18 | ||
489ef36c | 19 | //============================================================================= |
20 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
21 | // a UART kind of thing that's implemented in software. When we get a | |
22 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
23 | // If it's good, then we can do something appropriate with it, and send | |
24 | // a response. | |
25 | //============================================================================= | |
26 | ||
cef590d9 | 27 | |
28 | //----------------------------------------------------------------------------- | |
29 | // The software UART that receives commands from the reader, and its state | |
30 | // variables. | |
31 | //----------------------------------------------------------------------------- | |
32 | static struct { | |
33 | enum { | |
34 | STATE_UNSYNCD, | |
35 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
36 | STATE_AWAITING_START_BIT, | |
37 | STATE_RECEIVING_DATA | |
38 | } state; | |
39 | uint16_t shiftReg; | |
40 | int bitCnt; | |
41 | int byteCnt; | |
42 | int byteCntMax; | |
43 | int posCnt; | |
44 | uint8_t *output; | |
45 | } Uart; | |
46 | ||
47 | static void UartReset() | |
48 | { | |
49 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
50 | Uart.state = STATE_UNSYNCD; | |
51 | Uart.byteCnt = 0; | |
52 | Uart.bitCnt = 0; | |
53 | Uart.posCnt = 0; | |
54 | memset(Uart.output, 0x00, MAX_FRAME_SIZE); | |
55 | } | |
56 | ||
57 | static void UartInit(uint8_t *data) | |
58 | { | |
59 | Uart.output = data; | |
60 | UartReset(); | |
61 | } | |
62 | ||
63 | ||
64 | static struct { | |
65 | enum { | |
66 | DEMOD_UNSYNCD, | |
67 | DEMOD_PHASE_REF_TRAINING, | |
68 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
69 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
70 | DEMOD_AWAITING_START_BIT, | |
71 | DEMOD_RECEIVING_DATA | |
72 | } state; | |
73 | int bitCount; | |
74 | int posCount; | |
75 | int thisBit; | |
76 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
77 | int metric; | |
78 | int metricN; | |
79 | */ | |
80 | uint16_t shiftReg; | |
81 | uint8_t *output; | |
82 | int len; | |
83 | int sumI; | |
84 | int sumQ; | |
85 | } Demod; | |
86 | ||
87 | static void DemodReset() | |
88 | { | |
89 | // Clear out the state of the "UART" that receives from the tag. | |
90 | Demod.len = 0; | |
91 | Demod.state = DEMOD_UNSYNCD; | |
92 | Demod.posCount = 0; | |
93 | Demod.sumI = 0; | |
94 | Demod.sumQ = 0; | |
95 | Demod.bitCount = 0; | |
96 | Demod.thisBit = 0; | |
97 | Demod.shiftReg = 0; | |
6fc68747 | 98 | //memset(Demod.output, 0x00, MAX_FRAME_SIZE); |
cef590d9 | 99 | } |
100 | ||
101 | ||
102 | static void DemodInit(uint8_t *data) | |
103 | { | |
104 | Demod.output = data; | |
105 | DemodReset(); | |
106 | } | |
107 | ||
108 | ||
6fc68747 | 109 | void AppendCrc14443b(uint8_t* data, int len) |
110 | { | |
111 | ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); | |
112 | } | |
113 | ||
489ef36c | 114 | //----------------------------------------------------------------------------- |
115 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
116 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
117 | // them yet, just leaves them ready to send in ToSend[]. | |
118 | //----------------------------------------------------------------------------- | |
119 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) | |
120 | { | |
121 | int i; | |
122 | ||
123 | ToSendReset(); | |
124 | ||
125 | // Transmit a burst of ones, as the initial thing that lets the | |
126 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
127 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
128 | // so I will too. | |
129 | for(i = 0; i < 20; i++) { | |
130 | ToSendStuffBit(1); | |
131 | ToSendStuffBit(1); | |
132 | ToSendStuffBit(1); | |
133 | ToSendStuffBit(1); | |
134 | } | |
135 | ||
136 | // Send SOF. | |
137 | for(i = 0; i < 10; i++) { | |
138 | ToSendStuffBit(0); | |
139 | ToSendStuffBit(0); | |
140 | ToSendStuffBit(0); | |
141 | ToSendStuffBit(0); | |
142 | } | |
143 | for(i = 0; i < 2; i++) { | |
144 | ToSendStuffBit(1); | |
145 | ToSendStuffBit(1); | |
146 | ToSendStuffBit(1); | |
147 | ToSendStuffBit(1); | |
148 | } | |
149 | ||
150 | for(i = 0; i < len; i++) { | |
151 | int j; | |
152 | uint8_t b = cmd[i]; | |
153 | ||
154 | // Start bit | |
155 | ToSendStuffBit(0); | |
156 | ToSendStuffBit(0); | |
157 | ToSendStuffBit(0); | |
158 | ToSendStuffBit(0); | |
159 | ||
160 | // Data bits | |
161 | for(j = 0; j < 8; j++) { | |
162 | if(b & 1) { | |
163 | ToSendStuffBit(1); | |
164 | ToSendStuffBit(1); | |
165 | ToSendStuffBit(1); | |
166 | ToSendStuffBit(1); | |
167 | } else { | |
168 | ToSendStuffBit(0); | |
169 | ToSendStuffBit(0); | |
170 | ToSendStuffBit(0); | |
171 | ToSendStuffBit(0); | |
172 | } | |
173 | b >>= 1; | |
174 | } | |
175 | ||
176 | // Stop bit | |
177 | ToSendStuffBit(1); | |
178 | ToSendStuffBit(1); | |
179 | ToSendStuffBit(1); | |
180 | ToSendStuffBit(1); | |
181 | } | |
182 | ||
abb21530 | 183 | // Send EOF. |
489ef36c | 184 | for(i = 0; i < 10; i++) { |
185 | ToSendStuffBit(0); | |
186 | ToSendStuffBit(0); | |
187 | ToSendStuffBit(0); | |
188 | ToSendStuffBit(0); | |
189 | } | |
5b59bf20 | 190 | for(i = 0; i < 2; i++) { |
489ef36c | 191 | ToSendStuffBit(1); |
192 | ToSendStuffBit(1); | |
193 | ToSendStuffBit(1); | |
194 | ToSendStuffBit(1); | |
195 | } | |
196 | ||
197 | // Convert from last byte pos to length | |
6fc68747 | 198 | ++ToSendMax; |
489ef36c | 199 | } |
200 | ||
cef590d9 | 201 | |
489ef36c | 202 | |
203 | /* Receive & handle a bit coming from the reader. | |
abb21530 | 204 | * |
205 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
206 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
489ef36c | 207 | * |
208 | * LED handling: | |
209 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
210 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
211 | * | |
212 | * Returns: true if we received a EOF | |
213 | * false if we are still waiting for some more | |
214 | */ | |
36f84d47 | 215 | static RAMFUNC int Handle14443bUartBit(uint8_t bit) |
489ef36c | 216 | { |
217 | switch(Uart.state) { | |
218 | case STATE_UNSYNCD: | |
489ef36c | 219 | if(!bit) { |
220 | // we went low, so this could be the beginning | |
221 | // of an SOF | |
222 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
223 | Uart.posCnt = 0; | |
224 | Uart.bitCnt = 0; | |
225 | } | |
226 | break; | |
227 | ||
228 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
229 | Uart.posCnt++; | |
abb21530 | 230 | if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit |
489ef36c | 231 | if(bit) { |
abb21530 | 232 | if(Uart.bitCnt > 9) { |
489ef36c | 233 | // we've seen enough consecutive |
234 | // zeros that it's a valid SOF | |
235 | Uart.posCnt = 0; | |
236 | Uart.byteCnt = 0; | |
237 | Uart.state = STATE_AWAITING_START_BIT; | |
238 | LED_A_ON(); // Indicate we got a valid SOF | |
239 | } else { | |
240 | // didn't stay down long enough | |
241 | // before going high, error | |
36f84d47 | 242 | Uart.state = STATE_UNSYNCD; |
489ef36c | 243 | } |
244 | } else { | |
245 | // do nothing, keep waiting | |
246 | } | |
247 | Uart.bitCnt++; | |
248 | } | |
249 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
abb21530 | 250 | if(Uart.bitCnt > 12) { |
489ef36c | 251 | // Give up if we see too many zeros without |
252 | // a one, too. | |
36f84d47 | 253 | LED_A_OFF(); |
254 | Uart.state = STATE_UNSYNCD; | |
489ef36c | 255 | } |
256 | break; | |
257 | ||
258 | case STATE_AWAITING_START_BIT: | |
259 | Uart.posCnt++; | |
260 | if(bit) { | |
abb21530 | 261 | if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs |
489ef36c | 262 | // stayed high for too long between |
263 | // characters, error | |
36f84d47 | 264 | Uart.state = STATE_UNSYNCD; |
489ef36c | 265 | } |
266 | } else { | |
267 | // falling edge, this starts the data byte | |
268 | Uart.posCnt = 0; | |
269 | Uart.bitCnt = 0; | |
270 | Uart.shiftReg = 0; | |
271 | Uart.state = STATE_RECEIVING_DATA; | |
489ef36c | 272 | } |
273 | break; | |
274 | ||
275 | case STATE_RECEIVING_DATA: | |
276 | Uart.posCnt++; | |
277 | if(Uart.posCnt == 2) { | |
278 | // time to sample a bit | |
279 | Uart.shiftReg >>= 1; | |
280 | if(bit) { | |
281 | Uart.shiftReg |= 0x200; | |
282 | } | |
283 | Uart.bitCnt++; | |
284 | } | |
285 | if(Uart.posCnt >= 4) { | |
286 | Uart.posCnt = 0; | |
287 | } | |
288 | if(Uart.bitCnt == 10) { | |
289 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
290 | { | |
291 | // this is a data byte, with correct | |
292 | // start and stop bits | |
293 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
294 | Uart.byteCnt++; | |
295 | ||
296 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
297 | // Buffer overflowed, give up | |
36f84d47 | 298 | LED_A_OFF(); |
299 | Uart.state = STATE_UNSYNCD; | |
489ef36c | 300 | } else { |
301 | // so get the next byte now | |
302 | Uart.posCnt = 0; | |
303 | Uart.state = STATE_AWAITING_START_BIT; | |
304 | } | |
46734099 | 305 | } else if (Uart.shiftReg == 0x000) { |
489ef36c | 306 | // this is an EOF byte |
307 | LED_A_OFF(); // Finished receiving | |
36f84d47 | 308 | Uart.state = STATE_UNSYNCD; |
22e24700 | 309 | if (Uart.byteCnt != 0) { |
489ef36c | 310 | return TRUE; |
22e24700 | 311 | } |
489ef36c | 312 | } else { |
313 | // this is an error | |
36f84d47 | 314 | LED_A_OFF(); |
46734099 | 315 | Uart.state = STATE_UNSYNCD; |
36f84d47 | 316 | } |
489ef36c | 317 | } |
318 | break; | |
319 | ||
320 | default: | |
36f84d47 | 321 | LED_A_OFF(); |
489ef36c | 322 | Uart.state = STATE_UNSYNCD; |
323 | break; | |
324 | } | |
325 | ||
489ef36c | 326 | return FALSE; |
327 | } | |
328 | ||
329 | //----------------------------------------------------------------------------- | |
330 | // Receive a command (from the reader to us, where we are the simulated tag), | |
331 | // and store it in the given buffer, up to the given maximum length. Keeps | |
332 | // spinning, waiting for a well-framed command, until either we get one | |
333 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). | |
334 | // | |
335 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
336 | // correctly. | |
337 | //----------------------------------------------------------------------------- | |
36f84d47 | 338 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) |
489ef36c | 339 | { |
abb21530 | 340 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen |
489ef36c | 341 | // only, since we are receiving, not transmitting). |
342 | // Signal field is off with the appropriate LED | |
343 | LED_D_OFF(); | |
344 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
345 | ||
489ef36c | 346 | // Now run a `software UART' on the stream of incoming samples. |
36f84d47 | 347 | UartInit(received); |
489ef36c | 348 | |
349 | for(;;) { | |
350 | WDT_HIT(); | |
351 | ||
352 | if(BUTTON_PRESS()) return FALSE; | |
353 | ||
489ef36c | 354 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
355 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
36f84d47 | 356 | for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { |
357 | if(Handle14443bUartBit(b & mask)) { | |
489ef36c | 358 | *len = Uart.byteCnt; |
359 | return TRUE; | |
360 | } | |
361 | } | |
362 | } | |
363 | } | |
36f84d47 | 364 | |
365 | return FALSE; | |
489ef36c | 366 | } |
367 | ||
368 | //----------------------------------------------------------------------------- | |
369 | // Main loop of simulated tag: receive commands from reader, decide what | |
370 | // response to send, and send it. | |
371 | //----------------------------------------------------------------------------- | |
abb21530 | 372 | void SimulateIso14443bTag(void) |
489ef36c | 373 | { |
b10a759f | 374 | // the only commands we understand is WUPB, AFI=0, Select All, N=1: |
6fc68747 | 375 | static const uint8_t cmd1[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; // WUPB |
b10a759f | 376 | // ... and REQB, AFI=0, Normal Request, N=1: |
6fc68747 | 377 | static const uint8_t cmd2[] = { ISO14443B_REQB, 0x00, 0x00, 0x71, 0xFF }; // REQB |
b10a759f | 378 | // ... and HLTB |
6fc68747 | 379 | static const uint8_t cmd3[] = { ISO14443B_HALT, 0xff, 0xff, 0xff, 0xff }; // HLTB |
b10a759f | 380 | // ... and ATTRIB |
6fc68747 | 381 | static const uint8_t cmd4[] = { ISO14443B_ATTRIB, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB |
36f84d47 | 382 | |
383 | // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
abb21530 | 384 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, |
385 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
489ef36c | 386 | static const uint8_t response1[] = { |
387 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, | |
388 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
389 | }; | |
b10a759f | 390 | // response to HLTB and ATTRIB |
391 | static const uint8_t response2[] = {0x00, 0x78, 0xF0}; | |
99cf19d9 | 392 | |
393 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
394 | ||
36f84d47 | 395 | clear_trace(); |
396 | set_tracing(TRUE); | |
397 | ||
398 | const uint8_t *resp; | |
399 | uint8_t *respCode; | |
400 | uint16_t respLen, respCodeLen; | |
17ad0e09 | 401 | |
402 | // allocate command receive buffer | |
cef590d9 | 403 | BigBuf_free(); BigBuf_Clear_ext(false); |
404 | ||
17ad0e09 | 405 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
489ef36c | 406 | |
99cf19d9 | 407 | uint16_t len; |
408 | uint16_t cmdsRecvd = 0; | |
409 | ||
abb21530 | 410 | // prepare the (only one) tag answer: |
489ef36c | 411 | CodeIso14443bAsTag(response1, sizeof(response1)); |
36f84d47 | 412 | uint8_t *resp1Code = BigBuf_malloc(ToSendMax); |
413 | memcpy(resp1Code, ToSend, ToSendMax); | |
414 | uint16_t resp1CodeLen = ToSendMax; | |
489ef36c | 415 | |
b10a759f | 416 | // prepare the (other) tag answer: |
417 | CodeIso14443bAsTag(response2, sizeof(response2)); | |
418 | uint8_t *resp2Code = BigBuf_malloc(ToSendMax); | |
419 | memcpy(resp2Code, ToSend, ToSendMax); | |
420 | uint16_t resp2CodeLen = ToSendMax; | |
421 | ||
489ef36c | 422 | // We need to listen to the high-frequency, peak-detected path. |
423 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
424 | FpgaSetupSsc(); | |
425 | ||
426 | cmdsRecvd = 0; | |
427 | ||
428 | for(;;) { | |
489ef36c | 429 | |
810f5379 | 430 | if (!GetIso14443bCommandFromReader(receivedCmd, &len)) { |
431 | Dbprintf("button pressed, received %d commands", cmdsRecvd); | |
432 | break; | |
489ef36c | 433 | } |
434 | ||
cef590d9 | 435 | if (tracing) |
cef590d9 | 436 | LogTrace(receivedCmd, len, 0, 0, NULL, TRUE); |
437 | ||
489ef36c | 438 | |
36f84d47 | 439 | // Good, look at the command now. |
440 | if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) | |
441 | || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { | |
442 | resp = response1; | |
443 | respLen = sizeof(response1); | |
444 | respCode = resp1Code; | |
445 | respCodeLen = resp1CodeLen; | |
b10a759f | 446 | } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0]) |
447 | || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) { | |
448 | resp = response2; | |
449 | respLen = sizeof(response2); | |
450 | respCode = resp2Code; | |
451 | respCodeLen = resp2CodeLen; | |
489ef36c | 452 | } else { |
453 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
6fc68747 | 454 | |
489ef36c | 455 | // And print whether the CRC fails, just for good measure |
36f84d47 | 456 | uint8_t b1, b2; |
b10a759f | 457 | if (len >= 3){ // if crc exists |
810f5379 | 458 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); |
459 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
460 | // Not so good, try again. | |
461 | DbpString("+++CRC fail"); | |
462 | ||
463 | } else { | |
464 | DbpString("CRC passes"); | |
465 | } | |
b10a759f | 466 | } |
467 | //get rid of compiler warning | |
468 | respCodeLen = 0; | |
469 | resp = response1; | |
470 | respLen = 0; | |
471 | respCode = resp1Code; | |
472 | //don't crash at new command just wait and see if reader will send other new cmds. | |
473 | //break; | |
489ef36c | 474 | } |
475 | ||
6fc68747 | 476 | ++cmdsRecvd; |
489ef36c | 477 | |
6fc68747 | 478 | if(cmdsRecvd > 0xFF) { |
489ef36c | 479 | DbpString("many commands later..."); |
480 | break; | |
481 | } | |
482 | ||
36f84d47 | 483 | if(respCodeLen <= 0) continue; |
489ef36c | 484 | |
485 | // Modulate BPSK | |
486 | // Signal field is off with the appropriate LED | |
487 | LED_D_OFF(); | |
488 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
489 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
490 | FpgaSetupSsc(); | |
491 | ||
492 | // Transmit the response. | |
36f84d47 | 493 | uint16_t i = 0; |
6fc68747 | 494 | volatile uint8_t b; |
cef590d9 | 495 | for(;;) { |
489ef36c | 496 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
cef590d9 | 497 | uint8_t b = respCode[i]; |
498 | ||
499 | AT91C_BASE_SSC->SSC_THR = b; | |
500 | ||
6fc68747 | 501 | ++i; |
502 | if(i > respCodeLen) | |
cef590d9 | 503 | break; |
6fc68747 | 504 | |
cef590d9 | 505 | } |
506 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
6fc68747 | 507 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
cef590d9 | 508 | (void)b; |
489ef36c | 509 | } |
510 | } | |
36f84d47 | 511 | |
cef590d9 | 512 | if (tracing) |
cef590d9 | 513 | LogTrace(resp, respLen, 0, 0, NULL, FALSE); |
489ef36c | 514 | } |
515 | } | |
516 | ||
517 | //============================================================================= | |
518 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
519 | // appropriately, and then send them to the tag. We then listen for the | |
520 | // tag's response, which we leave in the buffer to be demodulated on the | |
521 | // PC side. | |
522 | //============================================================================= | |
523 | ||
489ef36c | 524 | /* |
525 | * Handles reception of a bit from the tag | |
526 | * | |
abb21530 | 527 | * This function is called 2 times per bit (every 4 subcarrier cycles). |
528 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
529 | * | |
489ef36c | 530 | * LED handling: |
531 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
532 | * LED C -> OFF once we have received EOF or are unsynced | |
533 | * | |
534 | * Returns: true if we received a EOF | |
535 | * false if we are still waiting for some more | |
536 | * | |
537 | */ | |
cef590d9 | 538 | #ifndef SUBCARRIER_DETECT_THRESHOLD |
539 | # define SUBCARRIER_DETECT_THRESHOLD 6 | |
540 | #endif | |
541 | ||
abb21530 | 542 | static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq) |
489ef36c | 543 | { |
5b59bf20 | 544 | int v = 0; |
51d4f6f1 | 545 | // The soft decision on the bit uses an estimate of just the |
546 | // quadrant of the reference angle, not the exact angle. | |
489ef36c | 547 | #define MAKE_SOFT_DECISION() { \ |
5b59bf20 | 548 | if(Demod.sumI > 0) { \ |
549 | v = ci; \ | |
550 | } else { \ | |
551 | v = -ci; \ | |
552 | } \ | |
489ef36c | 553 | if(Demod.sumQ > 0) { \ |
554 | v += cq; \ | |
555 | } else { \ | |
556 | v -= cq; \ | |
557 | } \ | |
558 | } | |
559 | ||
cef590d9 | 560 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq) |
561 | /* #define CHECK_FOR_SUBCARRIER() { \ | |
562 | v = ci; \ | |
563 | if(v < 0) v = -v; \ | |
564 | if(cq > 0) { \ | |
565 | v += cq; \ | |
566 | } else { \ | |
567 | v -= cq; \ | |
568 | } \ | |
569 | } | |
570 | */ | |
abb21530 | 571 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) |
572 | #define CHECK_FOR_SUBCARRIER() { \ | |
cef590d9 | 573 | if(ci < 0) { \ |
574 | if(cq < 0) { /* ci < 0, cq < 0 */ \ | |
575 | if (cq < ci) { \ | |
576 | v = -cq - (ci >> 1); \ | |
577 | } else { \ | |
578 | v = -ci - (cq >> 1); \ | |
579 | } \ | |
580 | } else { /* ci < 0, cq >= 0 */ \ | |
581 | if (cq < -ci) { \ | |
582 | v = -ci + (cq >> 1); \ | |
583 | } else { \ | |
584 | v = cq - (ci >> 1); \ | |
585 | } \ | |
586 | } \ | |
587 | } else { \ | |
588 | if(cq < 0) { /* ci >= 0, cq < 0 */ \ | |
589 | if (-cq < ci) { \ | |
590 | v = ci - (cq >> 1); \ | |
591 | } else { \ | |
592 | v = -cq + (ci >> 1); \ | |
593 | } \ | |
594 | } else { /* ci >= 0, cq >= 0 */ \ | |
595 | if (cq < ci) { \ | |
596 | v = ci + (cq >> 1); \ | |
597 | } else { \ | |
598 | v = cq + (ci >> 1); \ | |
599 | } \ | |
600 | } \ | |
601 | } \ | |
602 | } | |
db25599d | 603 | |
6fc68747 | 604 | //note: couldn't we just use MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2) from common.h - marshmellow |
605 | #define CHECK_FOR_SUBCARRIER_duo() { \ | |
606 | v = MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2); \ | |
607 | } | |
db25599d | 608 | |
489ef36c | 609 | switch(Demod.state) { |
610 | case DEMOD_UNSYNCD: | |
cef590d9 | 611 | |
abb21530 | 612 | CHECK_FOR_SUBCARRIER(); |
cef590d9 | 613 | |
614 | // subcarrier detected | |
615 | if(v > SUBCARRIER_DETECT_THRESHOLD) { | |
489ef36c | 616 | Demod.state = DEMOD_PHASE_REF_TRAINING; |
abb21530 | 617 | Demod.sumI = ci; |
618 | Demod.sumQ = cq; | |
619 | Demod.posCount = 1; | |
489ef36c | 620 | } |
621 | break; | |
622 | ||
623 | case DEMOD_PHASE_REF_TRAINING: | |
5b59bf20 | 624 | if(Demod.posCount < 8) { |
cef590d9 | 625 | |
abb21530 | 626 | CHECK_FOR_SUBCARRIER(); |
cef590d9 | 627 | |
abb21530 | 628 | if (v > SUBCARRIER_DETECT_THRESHOLD) { |
629 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
630 | // note: synchronization time > 80 1/fs | |
b10a759f | 631 | Demod.sumI += ci; |
632 | Demod.sumQ += cq; | |
cef590d9 | 633 | ++Demod.posCount; |
634 | } else { | |
635 | // subcarrier lost | |
b10a759f | 636 | Demod.state = DEMOD_UNSYNCD; |
abb21530 | 637 | } |
489ef36c | 638 | } else { |
b10a759f | 639 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; |
489ef36c | 640 | } |
489ef36c | 641 | break; |
642 | ||
643 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
cef590d9 | 644 | |
489ef36c | 645 | MAKE_SOFT_DECISION(); |
cef590d9 | 646 | |
db25599d | 647 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); |
cef590d9 | 648 | if(v < 0) { // logic '0' detected |
489ef36c | 649 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; |
abb21530 | 650 | Demod.posCount = 0; // start of SOF sequence |
489ef36c | 651 | } else { |
cef590d9 | 652 | // maximum length of TR1 = 200 1/fs |
653 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
489ef36c | 654 | } |
cef590d9 | 655 | ++Demod.posCount; |
489ef36c | 656 | break; |
657 | ||
658 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
cef590d9 | 659 | ++Demod.posCount; |
660 | ||
489ef36c | 661 | MAKE_SOFT_DECISION(); |
cef590d9 | 662 | |
489ef36c | 663 | if(v > 0) { |
cef590d9 | 664 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges |
665 | if(Demod.posCount < 9*2) { | |
489ef36c | 666 | Demod.state = DEMOD_UNSYNCD; |
667 | } else { | |
a62bf3af | 668 | LED_C_ON(); // Got SOF |
489ef36c | 669 | Demod.state = DEMOD_AWAITING_START_BIT; |
670 | Demod.posCount = 0; | |
671 | Demod.len = 0; | |
489ef36c | 672 | } |
673 | } else { | |
cef590d9 | 674 | // low phase of SOF too long (> 12 etu) |
675 | if (Demod.posCount > 12*2) { | |
489ef36c | 676 | Demod.state = DEMOD_UNSYNCD; |
47286d89 | 677 | LED_C_OFF(); |
489ef36c | 678 | } |
679 | } | |
489ef36c | 680 | break; |
681 | ||
682 | case DEMOD_AWAITING_START_BIT: | |
cef590d9 | 683 | ++Demod.posCount; |
684 | ||
489ef36c | 685 | MAKE_SOFT_DECISION(); |
cef590d9 | 686 | |
687 | if (v > 0) { | |
abb21530 | 688 | if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs |
489ef36c | 689 | Demod.state = DEMOD_UNSYNCD; |
47286d89 | 690 | LED_C_OFF(); |
489ef36c | 691 | } |
abb21530 | 692 | } else { // start bit detected |
489ef36c | 693 | Demod.bitCount = 0; |
abb21530 | 694 | Demod.posCount = 1; // this was the first half |
489ef36c | 695 | Demod.thisBit = v; |
696 | Demod.shiftReg = 0; | |
697 | Demod.state = DEMOD_RECEIVING_DATA; | |
698 | } | |
699 | break; | |
700 | ||
701 | case DEMOD_RECEIVING_DATA: | |
cef590d9 | 702 | |
489ef36c | 703 | MAKE_SOFT_DECISION(); |
cef590d9 | 704 | |
705 | if (Demod.posCount == 0) { | |
706 | // first half of bit | |
489ef36c | 707 | Demod.thisBit = v; |
708 | Demod.posCount = 1; | |
cef590d9 | 709 | } else { |
710 | // second half of bit | |
489ef36c | 711 | Demod.thisBit += v; |
489ef36c | 712 | Demod.shiftReg >>= 1; |
489ef36c | 713 | |
cef590d9 | 714 | // logic '1' |
715 | if(Demod.thisBit > 0) Demod.shiftReg |= 0x200; | |
716 | ||
717 | ++Demod.bitCount; | |
718 | ||
489ef36c | 719 | if(Demod.bitCount == 10) { |
cef590d9 | 720 | |
489ef36c | 721 | uint16_t s = Demod.shiftReg; |
cef590d9 | 722 | |
723 | // stop bit == '1', start bit == '0' | |
724 | if((s & 0x200) && !(s & 0x001)) { | |
489ef36c | 725 | uint8_t b = (s >> 1); |
726 | Demod.output[Demod.len] = b; | |
cef590d9 | 727 | ++Demod.len; |
489ef36c | 728 | Demod.state = DEMOD_AWAITING_START_BIT; |
489ef36c | 729 | } else { |
730 | Demod.state = DEMOD_UNSYNCD; | |
47286d89 | 731 | LED_C_OFF(); |
cef590d9 | 732 | |
733 | // This is EOF (start, stop and all data bits == '0' | |
734 | if(s == 0) return TRUE; | |
489ef36c | 735 | } |
736 | } | |
737 | Demod.posCount = 0; | |
738 | } | |
739 | break; | |
740 | ||
741 | default: | |
742 | Demod.state = DEMOD_UNSYNCD; | |
47286d89 | 743 | LED_C_OFF(); |
489ef36c | 744 | break; |
745 | } | |
489ef36c | 746 | return FALSE; |
747 | } | |
748 | ||
749 | ||
489ef36c | 750 | /* |
751 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
489ef36c | 752 | * quiet: set to 'TRUE' to disable debug output |
753 | */ | |
abb21530 | 754 | static void GetSamplesFor14443bDemod(int n, bool quiet) |
489ef36c | 755 | { |
756 | int max = 0; | |
abb21530 | 757 | bool gotFrame = FALSE; |
489ef36c | 758 | int lastRxCounter, ci, cq, samples = 0; |
759 | ||
760 | // Allocate memory from BigBuf for some buffers | |
761 | // free all previous allocations first | |
6fc68747 | 762 | ///BigBuf_free(); |
b10a759f | 763 | |
489ef36c | 764 | // The response (tag -> reader) that we're receiving. |
489ef36c | 765 | // Set up the demodulator for tag -> reader responses. |
6fc68747 | 766 | // this init, can take some time to execute, memset |
db25599d | 767 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); |
b10a759f | 768 | |
769 | // The DMA buffer, used to stream samples from the FPGA | |
770 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
489ef36c | 771 | |
cef590d9 | 772 | // And put the FPGA in the appropriate mode |
773 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
774 | ||
db25599d | 775 | // Setup and start DMA. |
776 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
777 | ||
489ef36c | 778 | int8_t *upTo = dmaBuf; |
705bfa10 | 779 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; |
489ef36c | 780 | |
781 | // Signal field is ON with the appropriate LED: | |
abb21530 | 782 | LED_D_ON(); |
489ef36c | 783 | for(;;) { |
784 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
785 | if(behindBy > max) max = behindBy; | |
786 | ||
705bfa10 | 787 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) { |
489ef36c | 788 | ci = upTo[0]; |
789 | cq = upTo[1]; | |
790 | upTo += 2; | |
705bfa10 | 791 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { |
489ef36c | 792 | upTo = dmaBuf; |
793 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
705bfa10 | 794 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; |
489ef36c | 795 | } |
796 | lastRxCounter -= 2; | |
cef590d9 | 797 | |
798 | if(lastRxCounter <= 0) | |
799 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; | |
489ef36c | 800 | |
801 | samples += 2; | |
802 | ||
6fc68747 | 803 | // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103 |
804 | // can we double this? | |
805 | gotFrame = Handle14443bSamplesDemod(ci<<2 , cq<<2); | |
db25599d | 806 | if ( gotFrame ) |
51d4f6f1 | 807 | break; |
489ef36c | 808 | } |
809 | ||
6fc68747 | 810 | if(samples > n || gotFrame) |
489ef36c | 811 | break; |
489ef36c | 812 | } |
abb21530 | 813 | |
cef590d9 | 814 | //disable |
489ef36c | 815 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
abb21530 | 816 | |
ff3e0744 | 817 | if (!quiet) { |
cef590d9 | 818 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %s, Demod.state = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", |
b10a759f | 819 | max, |
820 | samples, | |
ff3e0744 | 821 | (gotFrame) ? "true" : "false", |
cef590d9 | 822 | Demod.state, |
b10a759f | 823 | Demod.len, |
824 | Demod.sumI, | |
825 | Demod.sumQ | |
826 | ); | |
827 | } | |
828 | ||
6fc68747 | 829 | if (tracing > 0) |
830 | LogTrace(Demod.output, Demod.len, samples, samples, NULL, FALSE); | |
489ef36c | 831 | } |
832 | ||
833 | ||
489ef36c | 834 | //----------------------------------------------------------------------------- |
835 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
836 | //----------------------------------------------------------------------------- | |
abb21530 | 837 | static void TransmitFor14443b(void) |
489ef36c | 838 | { |
839 | int c; | |
cef590d9 | 840 | volatile uint32_t r; |
489ef36c | 841 | FpgaSetupSsc(); |
a62bf3af | 842 | |
cef590d9 | 843 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) |
489ef36c | 844 | AT91C_BASE_SSC->SSC_THR = 0xff; |
489ef36c | 845 | |
846 | // Signal field is ON with the appropriate Red LED | |
847 | LED_D_ON(); | |
848 | // Signal we are transmitting with the Green LED | |
849 | LED_B_ON(); | |
abb21530 | 850 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
b10a759f | 851 | |
489ef36c | 852 | for(c = 0; c < 10;) { |
853 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
854 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
cef590d9 | 855 | ++c; |
489ef36c | 856 | } |
857 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
cef590d9 | 858 | r = AT91C_BASE_SSC->SSC_RHR; |
489ef36c | 859 | (void)r; |
860 | } | |
861 | WDT_HIT(); | |
862 | } | |
863 | ||
864 | c = 0; | |
865 | for(;;) { | |
866 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
867 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
cef590d9 | 868 | ++c; |
869 | if(c >= ToSendMax) | |
489ef36c | 870 | break; |
489ef36c | 871 | } |
872 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
cef590d9 | 873 | r = AT91C_BASE_SSC->SSC_RHR; |
489ef36c | 874 | (void)r; |
875 | } | |
876 | WDT_HIT(); | |
877 | } | |
878 | LED_B_OFF(); // Finished sending | |
879 | } | |
880 | ||
881 | ||
882 | //----------------------------------------------------------------------------- | |
883 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
abb21530 | 884 | // so that it is ready to transmit to the tag using TransmitFor14443b(). |
489ef36c | 885 | //----------------------------------------------------------------------------- |
886 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) | |
887 | { | |
888 | int i, j; | |
889 | uint8_t b; | |
890 | ||
891 | ToSendReset(); | |
892 | ||
893 | // Establish initial reference level | |
6fc68747 | 894 | for(i = 0; i < 40; ++i) |
489ef36c | 895 | ToSendStuffBit(1); |
cef590d9 | 896 | |
489ef36c | 897 | // Send SOF |
6fc68747 | 898 | for(i = 0; i < 10; ++i) |
489ef36c | 899 | ToSendStuffBit(0); |
489ef36c | 900 | |
6fc68747 | 901 | for(i = 0; i < len; ++i) { |
489ef36c | 902 | // Stop bits/EGT |
903 | ToSendStuffBit(1); | |
904 | ToSendStuffBit(1); | |
905 | // Start bit | |
906 | ToSendStuffBit(0); | |
907 | // Data bits | |
908 | b = cmd[i]; | |
6fc68747 | 909 | for(j = 0; j < 8; ++j) { |
cef590d9 | 910 | if(b & 1) |
489ef36c | 911 | ToSendStuffBit(1); |
cef590d9 | 912 | else |
489ef36c | 913 | ToSendStuffBit(0); |
cef590d9 | 914 | |
489ef36c | 915 | b >>= 1; |
916 | } | |
917 | } | |
918 | // Send EOF | |
919 | ToSendStuffBit(1); | |
6fc68747 | 920 | for(i = 0; i < 10; ++i) |
489ef36c | 921 | ToSendStuffBit(0); |
cef590d9 | 922 | |
6fc68747 | 923 | for(i = 0; i < 8; ++i) |
489ef36c | 924 | ToSendStuffBit(1); |
cef590d9 | 925 | |
489ef36c | 926 | |
927 | // And then a little more, to make sure that the last character makes | |
928 | // it out before we switch to rx mode. | |
6fc68747 | 929 | for(i = 0; i < 24; ++i) |
489ef36c | 930 | ToSendStuffBit(1); |
489ef36c | 931 | |
932 | // Convert from last character reference to length | |
cef590d9 | 933 | ++ToSendMax; |
489ef36c | 934 | } |
935 | ||
936 | ||
489ef36c | 937 | /** |
938 | Convenience function to encode, transmit and trace iso 14443b comms | |
939 | **/ | |
940 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) | |
941 | { | |
942 | CodeIso14443bAsReader(cmd, len); | |
abb21530 | 943 | TransmitFor14443b(); |
6fc68747 | 944 | |
945 | if(trigger) LED_A_ON(); | |
946 | ||
947 | if (tracing) LogTrace(cmd, len, 0, 0, NULL, TRUE); | |
489ef36c | 948 | } |
949 | ||
a62bf3af | 950 | /* Sends an APDU to the tag |
951 | * TODO: check CRC and preamble | |
952 | */ | |
6fc68747 | 953 | uint8_t iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) |
a62bf3af | 954 | { |
6fc68747 | 955 | uint8_t crc[2] = {0x00, 0x00}; |
a62bf3af | 956 | uint8_t message_frame[message_length + 4]; |
957 | // PCB | |
958 | message_frame[0] = 0x0A | pcb_blocknum; | |
959 | pcb_blocknum ^= 1; | |
960 | // CID | |
961 | message_frame[1] = 0; | |
962 | // INF | |
963 | memcpy(message_frame + 2, message, message_length); | |
964 | // EDC (CRC) | |
965 | ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]); | |
966 | // send | |
967 | CodeAndTransmit14443bAsReader(message_frame, message_length + 4); | |
968 | // get response | |
cef590d9 | 969 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
a62bf3af | 970 | if(Demod.len < 3) |
a62bf3af | 971 | return 0; |
cef590d9 | 972 | |
6fc68747 | 973 | // VALIDATE CRC |
974 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
975 | if ( crc[0] != Demod.output[Demod.len-2] || crc[1] != Demod.output[Demod.len-1] ) | |
976 | return 0; | |
977 | ||
a62bf3af | 978 | // copy response contents |
979 | if(response != NULL) | |
a62bf3af | 980 | memcpy(response, Demod.output, Demod.len); |
cef590d9 | 981 | |
a62bf3af | 982 | return Demod.len; |
983 | } | |
984 | ||
6fc68747 | 985 | /** |
986 | * SRx Initialise. | |
987 | */ | |
988 | uint8_t iso14443b_select_srx_card(iso14b_card_select_t *card ) | |
989 | { | |
990 | // INITIATE command: wake up the tag using the INITIATE | |
991 | static const uint8_t init_srx[] = { ISO14443B_INITIATE, 0x00, 0x97, 0x5b }; | |
992 | // SELECT command (with space for CRC) | |
993 | uint8_t select_srx[] = { ISO14443B_SELECT, 0x00, 0x00, 0x00}; | |
994 | // temp to calc crc. | |
995 | uint8_t crc[2] = {0x00, 0x00}; | |
996 | ||
997 | CodeAndTransmit14443bAsReader(init_srx, sizeof(init_srx)); | |
998 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
999 | ||
1000 | if (Demod.len == 0) return 2; | |
1001 | ||
1002 | // Randomly generated Chip ID | |
1003 | if (card) card->chipid = Demod.output[0]; | |
1004 | ||
1005 | select_srx[1] = Demod.output[0]; | |
1006 | ||
1007 | ComputeCrc14443(CRC_14443_B, select_srx, 2, &select_srx[2], &select_srx[3]); | |
1008 | CodeAndTransmit14443bAsReader(select_srx, sizeof(select_srx)); | |
1009 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1010 | ||
1011 | if (Demod.len != 3) return 2; | |
1012 | ||
1013 | // Check the CRC of the answer: | |
1014 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2 , &crc[0], &crc[1]); | |
1015 | if(crc[0] != Demod.output[1] || crc[1] != Demod.output[2]) return 3; | |
1016 | ||
1017 | // Check response from the tag: should be the same UID as the command we just sent: | |
1018 | if (select_srx[1] != Demod.output[0]) return 1; | |
1019 | ||
1020 | // First get the tag's UID: | |
1021 | select_srx[0] = ISO14443B_GET_UID; | |
1022 | ||
1023 | ComputeCrc14443(CRC_14443_B, select_srx, 1 , &select_srx[1], &select_srx[2]); | |
1024 | CodeAndTransmit14443bAsReader(select_srx, 3); // Only first three bytes for this one | |
1025 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1026 | ||
1027 | if (Demod.len != 10) return 2; | |
1028 | ||
1029 | // The check the CRC of the answer | |
1030 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
1031 | if(crc[0] != Demod.output[8] || crc[1] != Demod.output[9]) return 3; | |
1032 | ||
1033 | if (card) { | |
1034 | card->uidlen = 8; | |
1035 | memcpy(card->uid, Demod.output, 8); | |
1036 | } | |
1037 | ||
1038 | return 0; | |
1039 | } | |
a62bf3af | 1040 | /* Perform the ISO 14443 B Card Selection procedure |
1041 | * Currently does NOT do any collision handling. | |
1042 | * It expects 0-1 cards in the device's range. | |
1043 | * TODO: Support multiple cards (perform anticollision) | |
1044 | * TODO: Verify CRC checksums | |
1045 | */ | |
6fc68747 | 1046 | uint8_t iso14443b_select_card(iso14b_card_select_t *card ) |
a62bf3af | 1047 | { |
1048 | // WUPB command (including CRC) | |
1049 | // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state | |
6fc68747 | 1050 | static const uint8_t wupb[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; |
a62bf3af | 1051 | // ATTRIB command (with space for CRC) |
6fc68747 | 1052 | uint8_t attrib[] = { ISO14443B_ATTRIB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00}; |
a62bf3af | 1053 | |
6fc68747 | 1054 | // temp to calc crc. |
1055 | uint8_t crc[2] = {0x00, 0x00}; | |
1056 | ||
a62bf3af | 1057 | // first, wake up the tag |
1058 | CodeAndTransmit14443bAsReader(wupb, sizeof(wupb)); | |
1059 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
6fc68747 | 1060 | |
a62bf3af | 1061 | // ATQB too short? |
6fc68747 | 1062 | if (Demod.len < 14) return 2; |
1063 | ||
1064 | // VALIDATE CRC | |
1065 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
1066 | if ( crc[0] != Demod.output[12] || crc[1] != Demod.output[13] ) | |
1067 | return 3; | |
1068 | ||
1069 | if (card) { | |
1070 | card->uidlen = 4; | |
1071 | memcpy(card->uid, Demod.output+1, 4); | |
1072 | memcpy(card->atqb, Demod.output+5, 7); | |
1073 | } | |
a62bf3af | 1074 | |
a62bf3af | 1075 | // copy the PUPI to ATTRIB |
1076 | memcpy(attrib + 1, Demod.output + 1, 4); | |
6fc68747 | 1077 | |
1078 | // copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into ATTRIB (Param 3) | |
a62bf3af | 1079 | attrib[7] = Demod.output[10] & 0x0F; |
1080 | ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10); | |
6fc68747 | 1081 | |
a62bf3af | 1082 | CodeAndTransmit14443bAsReader(attrib, sizeof(attrib)); |
1083 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
6fc68747 | 1084 | |
a62bf3af | 1085 | // Answer to ATTRIB too short? |
6fc68747 | 1086 | if(Demod.len < 3) return 2; |
1087 | ||
1088 | // VALIDATE CRC | |
1089 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
1090 | if ( crc[0] != Demod.output[1] || crc[1] != Demod.output[2] ) | |
1091 | return 3; | |
1092 | ||
1093 | // CID | |
1094 | if (card) card->cid = Demod.output[0]; | |
cef590d9 | 1095 | |
a62bf3af | 1096 | // reset PCB block number |
1097 | pcb_blocknum = 0; | |
6fc68747 | 1098 | return 0; |
a62bf3af | 1099 | } |
1100 | ||
1101 | // Set up ISO 14443 Type B communication (similar to iso14443a_setup) | |
1102 | void iso14443b_setup() { | |
db25599d | 1103 | |
a62bf3af | 1104 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
cef590d9 | 1105 | |
1106 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1107 | DemodReset(); | |
1108 | UartReset(); | |
ff3e0744 | 1109 | |
a62bf3af | 1110 | // Set up the synchronous serial port |
1111 | FpgaSetupSsc(); | |
cef590d9 | 1112 | |
a62bf3af | 1113 | // connect Demodulated Signal to ADC: |
1114 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1115 | ||
1116 | // Signal field is on with the appropriate LED | |
1117 | LED_D_ON(); | |
1118 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
6fc68747 | 1119 | SpinDelay(400); |
a62bf3af | 1120 | |
1121 | // Start the timer | |
ff3e0744 | 1122 | StartCountSspClk(); |
a62bf3af | 1123 | } |
489ef36c | 1124 | |
1125 | //----------------------------------------------------------------------------- | |
abb21530 | 1126 | // Read a SRI512 ISO 14443B tag. |
489ef36c | 1127 | // |
1128 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
1129 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
1130 | // we have a single tag in the field. | |
1131 | // | |
1132 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
1133 | //----------------------------------------------------------------------------- | |
6fc68747 | 1134 | void ReadSTMemoryIso14443b(uint8_t numofblocks) |
489ef36c | 1135 | { |
17ad0e09 | 1136 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
489ef36c | 1137 | clear_trace(); |
1138 | set_tracing(TRUE); | |
1139 | ||
1140 | uint8_t i = 0x00; | |
1141 | ||
489ef36c | 1142 | // Make sure that we start from off, since the tags are stateful; |
1143 | // confusing things will happen if we don't reset them between reads. | |
1144 | LED_D_OFF(); | |
1145 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
99cf19d9 | 1146 | SpinDelay(200); |
1147 | ||
489ef36c | 1148 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1149 | FpgaSetupSsc(); | |
1150 | ||
1151 | // Now give it time to spin up. | |
1152 | // Signal field is on with the appropriate LED | |
1153 | LED_D_ON(); | |
22e24700 | 1154 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
6fc68747 | 1155 | SpinDelay(300); |
489ef36c | 1156 | |
1157 | // First command: wake up the tag using the INITIATE command | |
6fc68747 | 1158 | uint8_t cmd1[] = {ISO14443B_INITIATE, 0x00, 0x97, 0x5b}; |
489ef36c | 1159 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); |
abb21530 | 1160 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
489ef36c | 1161 | |
1162 | if (Demod.len == 0) { | |
22e24700 | 1163 | DbpString("No response from tag"); |
5ee53a0e | 1164 | set_tracing(FALSE); |
22e24700 | 1165 | return; |
489ef36c | 1166 | } else { |
705bfa10 | 1167 | Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x", |
1168 | Demod.output[0], Demod.output[1], Demod.output[2]); | |
489ef36c | 1169 | } |
705bfa10 | 1170 | |
489ef36c | 1171 | // There is a response, SELECT the uid |
1172 | DbpString("Now SELECT tag:"); | |
6fc68747 | 1173 | cmd1[0] = ISO14443B_SELECT; // 0x0E is SELECT |
489ef36c | 1174 | cmd1[1] = Demod.output[0]; |
1175 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1176 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
abb21530 | 1177 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
489ef36c | 1178 | if (Demod.len != 3) { |
22e24700 | 1179 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); |
5ee53a0e | 1180 | set_tracing(FALSE); |
22e24700 | 1181 | return; |
489ef36c | 1182 | } |
1183 | // Check the CRC of the answer: | |
1184 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
1185 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
22e24700 | 1186 | DbpString("CRC Error reading select response."); |
5ee53a0e | 1187 | set_tracing(FALSE); |
22e24700 | 1188 | return; |
489ef36c | 1189 | } |
1190 | // Check response from the tag: should be the same UID as the command we just sent: | |
1191 | if (cmd1[1] != Demod.output[0]) { | |
22e24700 | 1192 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); |
5ee53a0e | 1193 | set_tracing(FALSE); |
22e24700 | 1194 | return; |
489ef36c | 1195 | } |
705bfa10 | 1196 | |
489ef36c | 1197 | // Tag is now selected, |
1198 | // First get the tag's UID: | |
6fc68747 | 1199 | cmd1[0] = ISO14443B_GET_UID; |
489ef36c | 1200 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); |
1201 | CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one | |
abb21530 | 1202 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
489ef36c | 1203 | if (Demod.len != 10) { |
22e24700 | 1204 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); |
5ee53a0e | 1205 | set_tracing(FALSE); |
22e24700 | 1206 | return; |
489ef36c | 1207 | } |
1208 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1209 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
51d4f6f1 | 1210 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { |
22e24700 | 1211 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
705bfa10 | 1212 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); |
489ef36c | 1213 | // Do not return;, let's go on... (we should retry, maybe ?) |
1214 | } | |
1215 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
705bfa10 | 1216 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], |
1217 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
489ef36c | 1218 | |
1219 | // Now loop to read all 16 blocks, address from 0 to last block | |
6fc68747 | 1220 | Dbprintf("Tag memory dump, block 0 to %d", numofblocks); |
489ef36c | 1221 | cmd1[0] = 0x08; |
1222 | i = 0x00; | |
6fc68747 | 1223 | ++numofblocks; |
1224 | ||
489ef36c | 1225 | for (;;) { |
6fc68747 | 1226 | if (i == numofblocks) { |
489ef36c | 1227 | DbpString("System area block (0xff):"); |
1228 | i = 0xff; | |
1229 | } | |
1230 | cmd1[1] = i; | |
1231 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1232 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
abb21530 | 1233 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
6fc68747 | 1234 | |
489ef36c | 1235 | if (Demod.len != 6) { // Check if we got an answer from the tag |
6fc68747 | 1236 | DbpString("Expected 6 bytes from tag, got less..."); |
1237 | return; | |
489ef36c | 1238 | } |
1239 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1240 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
1241 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { | |
132a0217 | 1242 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
705bfa10 | 1243 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); |
489ef36c | 1244 | // Do not return;, let's go on... (we should retry, maybe ?) |
1245 | } | |
1246 | // Now print out the memory location: | |
22e24700 | 1247 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, |
705bfa10 | 1248 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], |
17ad0e09 | 1249 | (Demod.output[4]<<8)+Demod.output[5]); |
6fc68747 | 1250 | |
1251 | if (i == 0xff) break; | |
1252 | ++i; | |
489ef36c | 1253 | } |
5ee53a0e | 1254 | |
1255 | set_tracing(FALSE); | |
489ef36c | 1256 | } |
1257 | ||
489ef36c | 1258 | //============================================================================= |
1259 | // Finally, the `sniffer' combines elements from both the reader and | |
1260 | // simulated tag, to show both sides of the conversation. | |
1261 | //============================================================================= | |
1262 | ||
1263 | //----------------------------------------------------------------------------- | |
1264 | // Record the sequence of commands sent by the reader to the tag, with | |
1265 | // triggering so that we start recording at the point that the tag is moved | |
1266 | // near the reader. | |
1267 | //----------------------------------------------------------------------------- | |
1268 | /* | |
1269 | * Memory usage for this function, (within BigBuf) | |
47286d89 | 1270 | * Last Received command (reader->tag) - MAX_FRAME_SIZE |
1271 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
705bfa10 | 1272 | * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE |
47286d89 | 1273 | * Demodulated samples received - all the rest |
489ef36c | 1274 | */ |
abb21530 | 1275 | void RAMFUNC SnoopIso14443b(void) |
489ef36c | 1276 | { |
1277 | // We won't start recording the frames that we acquire until we trigger; | |
1278 | // a good trigger condition to get started is probably when we see a | |
1279 | // response from the tag. | |
47286d89 | 1280 | int triggered = TRUE; // TODO: set and evaluate trigger condition |
489ef36c | 1281 | |
1282 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
cef590d9 | 1283 | BigBuf_free(); BigBuf_Clear_ext(false); |
489ef36c | 1284 | |
1285 | clear_trace(); | |
1286 | set_tracing(TRUE); | |
1287 | ||
1288 | // The DMA buffer, used to stream samples from the FPGA | |
705bfa10 | 1289 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); |
489ef36c | 1290 | int lastRxCounter; |
1291 | int8_t *upTo; | |
1292 | int ci, cq; | |
1293 | int maxBehindBy = 0; | |
1294 | ||
1295 | // Count of samples received so far, so that we can include timing | |
1296 | // information in the trace buffer. | |
1297 | int samples = 0; | |
1298 | ||
1299 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1300 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1301 | ||
1302 | // Print some debug information about the buffer sizes | |
1303 | Dbprintf("Snooping buffers initialized:"); | |
1304 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1305 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); | |
1306 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
705bfa10 | 1307 | Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE); |
489ef36c | 1308 | |
abb21530 | 1309 | // Signal field is off, no reader signal, no tag signal |
1310 | LEDsoff(); | |
489ef36c | 1311 | |
1312 | // And put the FPGA in the appropriate mode | |
22e24700 | 1313 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); |
489ef36c | 1314 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1315 | ||
1316 | // Setup for the DMA. | |
1317 | FpgaSetupSsc(); | |
1318 | upTo = dmaBuf; | |
705bfa10 | 1319 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; |
1320 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
5b95953d | 1321 | |
f53020e7 | 1322 | bool TagIsActive = FALSE; |
1323 | bool ReaderIsActive = FALSE; | |
489ef36c | 1324 | |
1325 | // And now we loop, receiving samples. | |
1326 | for(;;) { | |
1327 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
705bfa10 | 1328 | (ISO14443B_DMA_BUFFER_SIZE-1); |
abb21530 | 1329 | |
6fc68747 | 1330 | if(behindBy > maxBehindBy) maxBehindBy = behindBy; |
489ef36c | 1331 | if(behindBy < 2) continue; |
1332 | ||
1333 | ci = upTo[0]; | |
1334 | cq = upTo[1]; | |
1335 | upTo += 2; | |
1336 | lastRxCounter -= 2; | |
705bfa10 | 1337 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { |
489ef36c | 1338 | upTo = dmaBuf; |
705bfa10 | 1339 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; |
489ef36c | 1340 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; |
705bfa10 | 1341 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; |
51d4f6f1 | 1342 | WDT_HIT(); |
705bfa10 | 1343 | if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not? |
132a0217 | 1344 | Dbprintf("blew circular buffer! behindBy=%d", behindBy); |
51d4f6f1 | 1345 | break; |
abb21530 | 1346 | } |
810f5379 | 1347 | |
abb21530 | 1348 | if(!tracing) { |
810f5379 | 1349 | DbpString("Trace full"); |
abb21530 | 1350 | break; |
1351 | } | |
810f5379 | 1352 | |
abb21530 | 1353 | if(BUTTON_PRESS()) { |
1354 | DbpString("cancelled"); | |
1355 | break; | |
1356 | } | |
489ef36c | 1357 | } |
1358 | ||
1359 | samples += 2; | |
1360 | ||
47286d89 | 1361 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending |
810f5379 | 1362 | if (Handle14443bUartBit(ci & 0x01)) { |
6fc68747 | 1363 | |
1364 | if(triggered && tracing) | |
cef590d9 | 1365 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, TRUE); |
6fc68747 | 1366 | |
810f5379 | 1367 | /* And ready to receive another command. */ |
1368 | UartReset(); | |
1369 | /* And also reset the demod code, which might have been */ | |
1370 | /* false-triggered by the commands from the reader. */ | |
1371 | DemodReset(); | |
489ef36c | 1372 | } |
6fc68747 | 1373 | |
810f5379 | 1374 | if (Handle14443bUartBit(cq & 0x01)) { |
6fc68747 | 1375 | if(triggered && tracing) |
cef590d9 | 1376 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, TRUE); |
6fc68747 | 1377 | |
810f5379 | 1378 | /* And ready to receive another command. */ |
1379 | UartReset(); | |
1380 | /* And also reset the demod code, which might have been */ | |
1381 | /* false-triggered by the commands from the reader. */ | |
1382 | DemodReset(); | |
6fc68747 | 1383 | } |
36f84d47 | 1384 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); |
47286d89 | 1385 | } |
489ef36c | 1386 | |
47286d89 | 1387 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
d8af608f | 1388 | // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103 |
cef590d9 | 1389 | if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) { |
489ef36c | 1390 | |
810f5379 | 1391 | //Use samples as a time measurement |
cef590d9 | 1392 | if(tracing) |
cef590d9 | 1393 | LogTrace(Demod.output, Demod.len, samples, samples, NULL, FALSE); |
489ef36c | 1394 | |
810f5379 | 1395 | triggered = TRUE; |
1396 | ||
1397 | // And ready to receive another response. | |
1398 | DemodReset(); | |
1399 | } | |
22e24700 | 1400 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); |
47286d89 | 1401 | } |
489ef36c | 1402 | } |
abb21530 | 1403 | |
489ef36c | 1404 | FpgaDisableSscDma(); |
abb21530 | 1405 | LEDsoff(); |
810f5379 | 1406 | |
489ef36c | 1407 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
1408 | DbpString("Snoop statistics:"); | |
1409 | Dbprintf(" Max behind by: %i", maxBehindBy); | |
1410 | Dbprintf(" Uart State: %x", Uart.state); | |
1411 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1412 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
1413 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); | |
810f5379 | 1414 | set_tracing(FALSE); |
489ef36c | 1415 | } |
1416 | ||
6fc68747 | 1417 | void iso14b_set_trigger(bool enable) { |
1418 | trigger = enable; | |
1419 | } | |
489ef36c | 1420 | |
1421 | /* | |
1422 | * Send raw command to tag ISO14443B | |
1423 | * @Input | |
6fc68747 | 1424 | * param flags enum ISO14B_COMMAND. (mifare.h) |
1425 | * len len of buffer data | |
1426 | * data buffer with bytes to send | |
489ef36c | 1427 | * |
1428 | * @Output | |
1429 | * none | |
1430 | * | |
1431 | */ | |
6fc68747 | 1432 | void SendRawCommand14443B_Ex(UsbCommand *c) |
489ef36c | 1433 | { |
6fc68747 | 1434 | iso14b_command_t param = c->arg[0]; |
1435 | size_t len = c->arg[1] & 0xffff; | |
1436 | uint8_t *cmd = c->d.asBytes; | |
1437 | uint8_t status = 0; | |
1438 | uint32_t sendlen = sizeof(iso14b_card_select_t); | |
1439 | uint8_t buf[USB_CMD_DATA_SIZE] = {0x00}; | |
1440 | ||
1441 | if (MF_DBGLEVEL > 3) Dbprintf("param, %04x", param ); | |
b10a759f | 1442 | |
6fc68747 | 1443 | // turn on trigger (LED_A) |
1444 | if (param & ISO14B_REQUEST_TRIGGER) | |
1445 | iso14b_set_trigger(TRUE); | |
1446 | ||
1447 | if (param & ISO14B_CONNECT) { | |
1448 | // Make sure that we start from off, since the tags are stateful; | |
1449 | // confusing things will happen if we don't reset them between reads. | |
1450 | LED_D_OFF(); | |
1451 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1452 | SpinDelay(200); | |
cef590d9 | 1453 | clear_trace(); |
6fc68747 | 1454 | iso14443b_setup(); |
99cf19d9 | 1455 | } |
6fc68747 | 1456 | |
1457 | set_tracing(TRUE); | |
489ef36c | 1458 | |
6fc68747 | 1459 | if ( param & ISO14B_SELECT_STD) { |
1460 | iso14b_card_select_t *card = (iso14b_card_select_t*)buf; | |
1461 | status = iso14443b_select_card(card); | |
1462 | cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen); | |
1463 | // 0: OK 2: attrib fail, 3:crc fail, | |
1464 | if ( status > 0 ) return; | |
1465 | } | |
1466 | ||
1467 | if ( param & ISO14B_SELECT_SR) { | |
1468 | iso14b_card_select_t *card = (iso14b_card_select_t*)buf; | |
1469 | status = iso14443b_select_srx_card(card); | |
1470 | cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen); | |
1471 | // 0: OK 2: attrib fail, 3:crc fail, | |
1472 | if ( status > 0 ) return; | |
1473 | } | |
1474 | ||
1475 | if (param & ISO14B_APDU) { | |
1476 | status = iso14443b_apdu(cmd, len, buf); | |
1477 | cmd_send(CMD_ACK, status, status, 0, buf, status); | |
489ef36c | 1478 | } |
abb21530 | 1479 | |
6fc68747 | 1480 | if (param & ISO14B_RAW) { |
1481 | if(param & ISO14B_APPEND_CRC) { | |
1482 | AppendCrc14443b(cmd, len); | |
1483 | len += 2; | |
1484 | } | |
1485 | ||
1486 | CodeAndTransmit14443bAsReader(cmd, len); | |
1487 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1488 | ||
1489 | sendlen = MIN(Demod.len, USB_CMD_DATA_SIZE); | |
1490 | status = (Demod.len > 0) ? 0 : 1; | |
1491 | cmd_send(CMD_ACK, status, sendlen, 0, Demod.output, sendlen); | |
1492 | } | |
1493 | ||
1494 | // turn off trigger (LED_A) | |
1495 | if (param & ISO14B_REQUEST_TRIGGER) | |
1496 | iso14a_set_trigger(FALSE); | |
1497 | ||
1498 | // turn off antenna et al | |
1499 | // we don't send a HALT command. | |
1500 | if ( param & ISO14B_DISCONNECT) { | |
1501 | if (MF_DBGLEVEL > 3) Dbprintf("disconnect"); | |
489ef36c | 1502 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
b10a759f | 1503 | FpgaDisableSscDma(); |
5ee53a0e | 1504 | set_tracing(FALSE); |
6fc68747 | 1505 | LEDsoff(); |
489ef36c | 1506 | } |
6fc68747 | 1507 | } |