]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
CHG: Missing some headers
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
a126332a 1 //-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
15c4dc5a 18#include "iso14443crc.h"
534983d7 19#include "iso14443a.h"
20f9a2a1
M
20#include "crapto1.h"
21#include "mifareutil.h"
3000dc4e 22#include "BigBuf.h"
534983d7 23static uint32_t iso14a_timeout;
1e262141 24int rsamples = 0;
1e262141 25uint8_t trigger = 0;
b0127e65 26// the block number for the ISO14443-4 PCB
27static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 28
7bc95e2e 29//
30// ISO14443 timing:
31//
32// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33#define REQUEST_GUARD_TIME (7000/16 + 1)
34// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36// bool LastCommandWasRequest = FALSE;
37
38//
39// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40//
d714d3ef 41// When the PM acts as reader and is receiving tag data, it takes
42// 3 ticks delay in the AD converter
43// 16 ticks until the modulation detector completes and sets curbit
44// 8 ticks until bit_to_arm is assigned from curbit
45// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 46// 4*16 ticks until we measure the time
47// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 48#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 49
50// When the PM acts as a reader and is sending, it takes
51// 4*16 ticks until we can write data to the sending hold register
52// 8*16 ticks until the SHR is transferred to the Sending Shift Register
53// 8 ticks until the first transfer starts
54// 8 ticks later the FPGA samples the data
55// 1 tick to assign mod_sig_coil
56#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58// When the PM acts as tag and is receiving it takes
d714d3ef 59// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 60// 3 ticks for the A/D conversion,
61// 8 ticks on average until the start of the SSC transfer,
62// 8 ticks until the SSC samples the first data
63// 7*16 ticks to complete the transfer from FPGA to ARM
64// 8 ticks until the next ssp_clk rising edge
d714d3ef 65// 4*16 ticks until we measure the time
7bc95e2e 66// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 67#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 68
69// The FPGA will report its internal sending delay in
70uint16_t FpgaSendQueueDelay;
71// the 5 first bits are the number of bits buffered in mod_sig_buf
72// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75// When the PM acts as tag and is sending, it takes
d714d3ef 76// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 77// 8*16 ticks until the SHR is transferred to the Sending Shift Register
78// 8 ticks until the first transfer starts
79// 8 ticks later the FPGA samples the data
80// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81// + 1 tick to assign mod_sig_coil
d714d3ef 82#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 83
84// When the PM acts as sniffer and is receiving tag data, it takes
85// 3 ticks A/D conversion
d714d3ef 86// 14 ticks to complete the modulation detection
87// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 88// + the delays in transferring data - which is the same for
89// sniffing reader and tag data and therefore not relevant
d714d3ef 90#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 91
d714d3ef 92// When the PM acts as sniffer and is receiving reader data, it takes
93// 2 ticks delay in analogue RF receiver (for the falling edge of the
94// start bit, which marks the start of the communication)
7bc95e2e 95// 3 ticks A/D conversion
d714d3ef 96// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 97// + the delays in transferring data - which is the same for
98// sniffing reader and tag data and therefore not relevant
d714d3ef 99#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 100
101//variables used for timing purposes:
102//these are in ssp_clk cycles:
6a1f2d82 103static uint32_t NextTransferTime;
104static uint32_t LastTimeProxToAirStart;
105static uint32_t LastProxToAirDuration;
7bc95e2e 106
107
108
8f51ddb0 109// CARD TO READER - manchester
72934aa3 110// Sequence D: 11110000 modulation with subcarrier during first half
111// Sequence E: 00001111 modulation with subcarrier during second half
112// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 113// READER TO CARD - miller
72934aa3 114// Sequence X: 00001100 drop after half a period
115// Sequence Y: 00000000 no drop
116// Sequence Z: 11000000 drop at start
117#define SEC_D 0xf0
118#define SEC_E 0x0f
119#define SEC_F 0x00
120#define SEC_X 0x0c
121#define SEC_Y 0x00
122#define SEC_Z 0xc0
15c4dc5a 123
1e262141 124const uint8_t OddByteParity[256] = {
15c4dc5a 125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141};
142
19a700a8 143
902cb3c0 144void iso14a_set_trigger(bool enable) {
534983d7 145 trigger = enable;
146}
147
d19929cb 148
b0127e65 149void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
19a700a8 151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
b0127e65 152}
8556b852 153
19a700a8 154
155void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174}
175
176
15c4dc5a 177//-----------------------------------------------------------------------------
178// Generate the parity value for a byte sequence
e30c654b 179//
15c4dc5a 180//-----------------------------------------------------------------------------
20f9a2a1
M
181byte_t oddparity (const byte_t bt)
182{
5f6d6c90 183 return OddByteParity[bt];
20f9a2a1
M
184}
185
6a1f2d82 186void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 187{
6a1f2d82 188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
5f6d6c90 203 }
6a1f2d82 204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
15c4dc5a 208}
209
534983d7 210void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 211{
5f6d6c90 212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 213}
214
0ec548dc 215void AppendCrc14443b(uint8_t* data, int len)
216{
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218}
219
220
7bc95e2e 221//=============================================================================
222// ISO 14443 Type A - Miller decoder
223//=============================================================================
224// Basics:
225// This decoder is used when the PM3 acts as a tag.
226// The reader will generate "pauses" by temporarily switching of the field.
227// At the PM3 antenna we will therefore measure a modulated antenna voltage.
228// The FPGA does a comparison with a threshold and would deliver e.g.:
229// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230// The Miller decoder needs to identify the following sequences:
231// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234// Note 1: the bitstream may start at any time. We therefore need to sync.
235// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 236//-----------------------------------------------------------------------------
b62a5a84 237static tUart Uart;
15c4dc5a 238
d7aa3739 239// Lookup-Table to decide if 4 raw bits are a modulation.
0ec548dc 240// We accept the following:
241// 0001 - a 3 tick wide pause
242// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243// 0111 - a 2 tick wide pause shifted left
244// 1001 - a 2 tick wide pause shifted right
d7aa3739 245const bool Mod_Miller_LUT[] = {
0ec548dc 246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
d7aa3739 248};
0ec548dc 249#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
d7aa3739 251
7bc95e2e 252void UartReset()
15c4dc5a 253{
7bc95e2e 254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
6a1f2d82 257 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 259 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 260 Uart.startTime = 0;
261 Uart.endTime = 0;
46c65fed 262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
7bc95e2e 266}
15c4dc5a 267
6a1f2d82 268void UartInit(uint8_t *data, uint8_t *parity)
269{
270 Uart.output = data;
271 Uart.parity = parity;
0ec548dc 272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
6a1f2d82 273 UartReset();
274}
d714d3ef 275
7bc95e2e 276// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278{
15c4dc5a 279
0ec548dc 280 Uart.fourBits = (Uart.fourBits << 8) | bit;
7bc95e2e 281
0c8d25eb 282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
3fe4ff4f 283
0ec548dc 284 Uart.syncBit = 9999; // not set
46c65fed 285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
0ec548dc 290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
46c65fed 291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
0ec548dc 293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
46c65fed 294 //
295#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
0ec548dc 298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
7bc95e2e 308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
d7aa3739 310 Uart.endTime = Uart.startTime;
7bc95e2e 311 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 312 }
313
7bc95e2e 314 } else {
15c4dc5a 315
0ec548dc 316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
d7aa3739 318 UartReset();
d7aa3739 319 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
7bc95e2e 322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
6a1f2d82 333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
15c4dc5a 337 }
7bc95e2e 338 }
d7aa3739 339 }
340 } else {
0ec548dc 341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
6a1f2d82 352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
7bc95e2e 356 }
d7aa3739 357 } else { // no modulation in both halves - Sequence Y
7bc95e2e 358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 359 Uart.state = STATE_UNSYNCD;
6a1f2d82 360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 372 }
373 if (Uart.len) {
6a1f2d82 374 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 375 } else {
0c8d25eb 376 UartReset(); // Nothing received - start over
7bc95e2e 377 }
15c4dc5a 378 }
7bc95e2e 379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
7bc95e2e 381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
6a1f2d82 391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
15c4dc5a 395 }
396 }
d7aa3739 397 }
15c4dc5a 398 }
7bc95e2e 399
400 }
15c4dc5a 401
7bc95e2e 402 return FALSE; // not finished yet, need more data
15c4dc5a 403}
404
7bc95e2e 405
406
15c4dc5a 407//=============================================================================
e691fc45 408// ISO 14443 Type A - Manchester decoder
15c4dc5a 409//=============================================================================
e691fc45 410// Basics:
7bc95e2e 411// This decoder is used when the PM3 acts as a reader.
e691fc45 412// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415// The Manchester decoder needs to identify the following sequences:
416// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418// 8 ticks unmodulated: Sequence F = end of communication
419// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 420// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 421// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 422static tDemod Demod;
15c4dc5a 423
d7aa3739 424// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 425// We accept three or four "1" in any position
7bc95e2e 426const bool Mod_Manchester_LUT[] = {
d7aa3739 427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 429};
430
431#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 433
2f2d9fc5 434
7bc95e2e 435void DemodReset()
e691fc45 436{
7bc95e2e 437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
6a1f2d82 439 Demod.parityLen = 0;
7bc95e2e 440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
46c65fed 447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
e691fc45 452}
15c4dc5a 453
6a1f2d82 454void DemodInit(uint8_t *data, uint8_t *parity)
455{
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459}
460
7bc95e2e 461// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 463{
7bc95e2e 464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 466
7bc95e2e 467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 485 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
e691fc45 489 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 490 }
7bc95e2e 491 }
15c4dc5a 492
7bc95e2e 493 } else {
15c4dc5a 494
7bc95e2e 495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
7bc95e2e 501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 505 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
6a1f2d82 509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
15c4dc5a 513 }
7bc95e2e 514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 517 Demod.bitCount++;
7bc95e2e 518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 521 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
6a1f2d82 525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
15c4dc5a 529 }
7bc95e2e 530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 531 } else { // no modulation in both halves - End of communication
6a1f2d82 532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 542 }
543 if (Demod.len) {
d7aa3739 544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
e691fc45 547 }
15c4dc5a 548 }
7bc95e2e 549 }
e691fc45 550 }
e691fc45 551 return FALSE; // not finished yet, need more data
15c4dc5a 552}
553
554//=============================================================================
555// Finally, a `sniffer' for ISO 14443 Type A
556// Both sides of communication!
557//=============================================================================
558
559//-----------------------------------------------------------------------------
560// Record the sequence of commands sent by the reader to the tag, with
561// triggering so that we start recording at the point that the tag is moved
562// near the reader.
563//-----------------------------------------------------------------------------
d26849d4 564void RAMFUNC SniffIso14443a(uint8_t param) {
5cd9ec01
M
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
5cd9ec01 568 LEDsoff();
5cd9ec01 569
99cf19d9 570 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
7bc95e2e 571
f71f4deb 572 // Allocate memory from BigBuf for some buffers
573 // free all previous allocations first
574 BigBuf_free();
7838f4be 575
576 // init trace buffer
577 clear_trace();
578 set_tracing(TRUE);
579
5cd9ec01 580 // The command (reader -> tag) that we're receiving.
f71f4deb 581 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
582 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
6a1f2d82 583
5cd9ec01 584 // The response (tag -> reader) that we're receiving.
f71f4deb 585 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
586 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
5cd9ec01
M
587
588 // The DMA buffer, used to stream samples from the FPGA
f71f4deb 589 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
590
7bc95e2e 591 uint8_t *data = dmaBuf;
592 uint8_t previous_data = 0;
5cd9ec01
M
593 int maxDataLen = 0;
594 int dataLen = 0;
7bc95e2e 595 bool TagIsActive = FALSE;
596 bool ReaderIsActive = FALSE;
597
5cd9ec01 598 // Set up the demodulator for tag -> reader responses.
6a1f2d82 599 DemodInit(receivedResponse, receivedResponsePar);
600
5cd9ec01 601 // Set up the demodulator for the reader -> tag commands
6a1f2d82 602 UartInit(receivedCmd, receivedCmdPar);
603
7bc95e2e 604 // Setup and start DMA.
5cd9ec01 605 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 606
99cf19d9 607 // We won't start recording the frames that we acquire until we trigger;
608 // a good trigger condition to get started is probably when we see a
609 // response from the tag.
610 // triggered == FALSE -- to wait first for card
611 bool triggered = !(param & 0x03);
612
5cd9ec01 613 // And now we loop, receiving samples.
7bc95e2e 614 for(uint32_t rsamples = 0; TRUE; ) {
615
5cd9ec01
M
616 if(BUTTON_PRESS()) {
617 DbpString("cancelled by button");
7bc95e2e 618 break;
5cd9ec01 619 }
15c4dc5a 620
5cd9ec01
M
621 LED_A_ON();
622 WDT_HIT();
15c4dc5a 623
5cd9ec01
M
624 int register readBufDataP = data - dmaBuf;
625 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
626 if (readBufDataP <= dmaBufDataP){
627 dataLen = dmaBufDataP - readBufDataP;
628 } else {
7bc95e2e 629 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
630 }
631 // test for length of buffer
632 if(dataLen > maxDataLen) {
633 maxDataLen = dataLen;
f71f4deb 634 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
7bc95e2e 635 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
636 break;
5cd9ec01
M
637 }
638 }
639 if(dataLen < 1) continue;
640
641 // primary buffer was stopped( <-- we lost data!
642 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
643 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
644 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 645 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
646 }
647 // secondary buffer sets as primary, secondary buffer was stopped
648 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
649 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
650 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
651 }
652
653 LED_A_OFF();
7bc95e2e 654
655 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 656
7bc95e2e 657 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
658 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
659 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
660 LED_C_ON();
5cd9ec01 661
7bc95e2e 662 // check - if there is a short 7bit request from reader
663 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 664
7bc95e2e 665 if(triggered) {
6a1f2d82 666 if (!LogTrace(receivedCmd,
667 Uart.len,
668 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
669 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.parity,
671 TRUE)) break;
7bc95e2e 672 }
673 /* And ready to receive another command. */
674 UartReset();
675 /* And also reset the demod code, which might have been */
676 /* false-triggered by the commands from the reader. */
677 DemodReset();
678 LED_B_OFF();
679 }
680 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 681 }
3be2a5ae 682
7bc95e2e 683 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
684 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
685 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
686 LED_B_ON();
5cd9ec01 687
6a1f2d82 688 if (!LogTrace(receivedResponse,
689 Demod.len,
690 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
691 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
692 Demod.parity,
693 FALSE)) break;
5cd9ec01 694
7bc95e2e 695 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 696
7bc95e2e 697 // And ready to receive another response.
698 DemodReset();
0ec548dc 699 // And reset the Miller decoder including itS (now outdated) input buffer
700 UartInit(receivedCmd, receivedCmdPar);
701
7bc95e2e 702 LED_C_OFF();
703 }
704 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
705 }
5cd9ec01
M
706 }
707
7bc95e2e 708 previous_data = *data;
709 rsamples++;
5cd9ec01 710 data++;
d714d3ef 711 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
712 data = dmaBuf;
713 }
714 } // main cycle
715
7bc95e2e 716 FpgaDisableSscDma();
7838f4be 717 LEDsoff();
718
7bc95e2e 719 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
3000dc4e 720 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
5ee53a0e 721
722 set_tracing(FALSE);
15c4dc5a 723}
724
15c4dc5a 725//-----------------------------------------------------------------------------
726// Prepare tag messages
727//-----------------------------------------------------------------------------
6a1f2d82 728static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 729{
8f51ddb0 730 ToSendReset();
15c4dc5a 731
732 // Correction bit, might be removed when not needed
733 ToSendStuffBit(0);
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(1); // 1
738 ToSendStuffBit(0);
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
8f51ddb0 741
15c4dc5a 742 // Send startbit
72934aa3 743 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 744 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 745
6a1f2d82 746 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 747 uint8_t b = cmd[i];
15c4dc5a 748
749 // Data bits
6a1f2d82 750 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 751 if(b & 1) {
72934aa3 752 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 753 } else {
72934aa3 754 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
755 }
756 b >>= 1;
757 }
15c4dc5a 758
0014cb46 759 // Get the parity bit
6a1f2d82 760 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 761 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 762 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 763 } else {
72934aa3 764 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 765 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 766 }
8f51ddb0 767 }
15c4dc5a 768
8f51ddb0
M
769 // Send stopbit
770 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 771
8f51ddb0
M
772 // Convert from last byte pos to length
773 ToSendMax++;
8f51ddb0
M
774}
775
6a1f2d82 776static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
777{
778 uint8_t par[MAX_PARITY_SIZE];
779
780 GetParity(cmd, len, par);
781 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 782}
783
15c4dc5a 784
8f51ddb0
M
785static void Code4bitAnswerAsTag(uint8_t cmd)
786{
787 int i;
788
5f6d6c90 789 ToSendReset();
8f51ddb0
M
790
791 // Correction bit, might be removed when not needed
792 ToSendStuffBit(0);
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(1); // 1
797 ToSendStuffBit(0);
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800
801 // Send startbit
802 ToSend[++ToSendMax] = SEC_D;
803
804 uint8_t b = cmd;
805 for(i = 0; i < 4; i++) {
806 if(b & 1) {
807 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 808 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
809 } else {
810 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 811 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
812 }
813 b >>= 1;
814 }
815
816 // Send stopbit
817 ToSend[++ToSendMax] = SEC_F;
818
5f6d6c90 819 // Convert from last byte pos to length
820 ToSendMax++;
15c4dc5a 821}
822
823//-----------------------------------------------------------------------------
824// Wait for commands from reader
825// Stop when button is pressed
826// Or return TRUE when command is captured
827//-----------------------------------------------------------------------------
6a1f2d82 828static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 829{
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
833 LED_D_OFF();
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
835
836 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 837 UartInit(received, parity);
7bc95e2e 838
839 // clear RXRDY:
840 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 841
842 for(;;) {
843 WDT_HIT();
844
845 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 846
15c4dc5a 847 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 848 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
849 if(MillerDecoding(b, 0)) {
850 *len = Uart.len;
15c4dc5a 851 return TRUE;
852 }
7bc95e2e 853 }
15c4dc5a 854 }
855}
28afbd2b 856
6a1f2d82 857static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 858int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 859int EmSend4bit(uint8_t resp);
6a1f2d82 860int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
861int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
862int EmSendCmd(uint8_t *resp, uint16_t respLen);
863int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
864bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
865 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 866
117d9ec2 867static uint8_t* free_buffer_pointer;
ce02f6f9 868
869typedef struct {
870 uint8_t* response;
871 size_t response_n;
872 uint8_t* modulation;
873 size_t modulation_n;
7bc95e2e 874 uint32_t ProxToAirDuration;
ce02f6f9 875} tag_response_info_t;
876
ce02f6f9 877bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 878 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 879 // This will need the following byte array for a modulation sequence
880 // 144 data bits (18 * 8)
881 // 18 parity bits
882 // 2 Start and stop
883 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
884 // 1 just for the case
885 // ----------- +
886 // 166 bytes, since every bit that needs to be send costs us a byte
887 //
f71f4deb 888
889
ce02f6f9 890 // Prepare the tag modulation bits from the message
891 CodeIso14443aAsTag(response_info->response,response_info->response_n);
892
893 // Make sure we do not exceed the free buffer space
894 if (ToSendMax > max_buffer_size) {
895 Dbprintf("Out of memory, when modulating bits for tag answer:");
896 Dbhexdump(response_info->response_n,response_info->response,false);
897 return false;
898 }
899
900 // Copy the byte array, used for this modulation to the buffer position
901 memcpy(response_info->modulation,ToSend,ToSendMax);
902
7bc95e2e 903 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 904 response_info->modulation_n = ToSendMax;
7bc95e2e 905 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 906
907 return true;
908}
909
f71f4deb 910
911// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
912// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
913// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
914// -> need 273 bytes buffer
c9216a92 915// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
916// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
917#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
f71f4deb 918
ce02f6f9 919bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
920 // Retrieve and store the current buffer index
921 response_info->modulation = free_buffer_pointer;
922
923 // Determine the maximum size we can use from our buffer
f71f4deb 924 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
ce02f6f9 925
926 // Forward the prepare tag modulation function to the inner function
f71f4deb 927 if (prepare_tag_modulation(response_info, max_buffer_size)) {
ce02f6f9 928 // Update the free buffer offset
929 free_buffer_pointer += ToSendMax;
930 return true;
931 } else {
932 return false;
933 }
934}
935
15c4dc5a 936//-----------------------------------------------------------------------------
937// Main loop of simulated tag: receive commands from reader, decide what
938// response to send, and send it.
939//-----------------------------------------------------------------------------
0db6ed9a 940void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
15c4dc5a 941{
a126332a 942 uint32_t counters[] = {0,0,0};
d26849d4 943 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
944 // This can be used in a reader-only attack.
945 // (it can also be retrieved via 'hf 14a list', but hey...
946 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
947 uint8_t ar_nr_collected = 0;
948
81cd0474 949 uint8_t sak;
32719adf 950
951 // PACK response to PWD AUTH for EV1/NTAG
e98572a1 952 uint8_t response8[4] = {0,0,0,0};
32719adf 953
81cd0474 954 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
e98572a1 955 uint8_t response1[2] = {0,0};
81cd0474 956
957 switch (tagType) {
958 case 1: { // MIFARE Classic
959 // Says: I am Mifare 1k - original line
960 response1[0] = 0x04;
961 response1[1] = 0x00;
962 sak = 0x08;
963 } break;
964 case 2: { // MIFARE Ultralight
965 // Says: I am a stupid memory tag, no crypto
32719adf 966 response1[0] = 0x44;
81cd0474 967 response1[1] = 0x00;
968 sak = 0x00;
969 } break;
970 case 3: { // MIFARE DESFire
971 // Says: I am a DESFire tag, ph33r me
972 response1[0] = 0x04;
973 response1[1] = 0x03;
974 sak = 0x20;
975 } break;
976 case 4: { // ISO/IEC 14443-4
977 // Says: I am a javacard (JCOP)
978 response1[0] = 0x04;
979 response1[1] = 0x00;
980 sak = 0x28;
981 } break;
3fe4ff4f 982 case 5: { // MIFARE TNP3XXX
983 // Says: I am a toy
984 response1[0] = 0x01;
985 response1[1] = 0x0f;
986 sak = 0x01;
d26849d4 987 } break;
988 case 6: { // MIFARE Mini
989 // Says: I am a Mifare Mini, 320b
990 response1[0] = 0x44;
991 response1[1] = 0x00;
992 sak = 0x09;
993 } break;
32719adf 994 case 7: { // NTAG?
995 // Says: I am a NTAG,
996 response1[0] = 0x44;
997 response1[1] = 0x00;
998 sak = 0x00;
999 // PACK
1000 response8[0] = 0x80;
1001 response8[1] = 0x80;
1002 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
1003 } break;
81cd0474 1004 default: {
1005 Dbprintf("Error: unkown tagtype (%d)",tagType);
1006 return;
1007 } break;
1008 }
1009
1010 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 1011 uint8_t response2[5] = {0x00};
81cd0474 1012
1013 // Check if the uid uses the (optional) part
c8b6da22 1014 uint8_t response2a[5] = {0x00};
1015
d26849d4 1016 if (flags & FLAG_7B_UID_IN_DATA) {
81cd0474 1017 response2[0] = 0x88;
d26849d4 1018 response2[1] = data[0];
1019 response2[2] = data[1];
1020 response2[3] = data[2];
1021
1022 response2a[0] = data[3];
1023 response2a[1] = data[4];
1024 response2a[2] = data[5];
c3c241f3 1025 response2a[3] = data[6]; //??
81cd0474 1026 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1027
1028 // Configure the ATQA and SAK accordingly
1029 response1[0] |= 0x40;
1030 sak |= 0x04;
1031 } else {
d26849d4 1032 memcpy(response2, data, 4);
1033 //num_to_bytes(uid_1st,4,response2);
81cd0474 1034 // Configure the ATQA and SAK accordingly
1035 response1[0] &= 0xBF;
1036 sak &= 0xFB;
1037 }
1038
1039 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1040 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1041
1042 // Prepare the mandatory SAK (for 4 and 7 byte UID)
c8b6da22 1043 uint8_t response3[3] = {0x00};
81cd0474 1044 response3[0] = sak;
1045 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1046
1047 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 1048 uint8_t response3a[3] = {0x00};
81cd0474 1049 response3a[0] = sak & 0xFB;
1050 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1051
0de8e387 1052 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
6a1f2d82 1053 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1054 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1055 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1056 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1057 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1058 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1059
32719adf 1060 // Prepare GET_VERSION (different for EV-1 / NTAG)
1061 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1062 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1063
c9216a92 1064 // Prepare CHK_TEARING
1065 uint8_t response9[] = {0xBD,0x90,0x3f};
1066
1067 #define TAG_RESPONSE_COUNT 10
7bc95e2e 1068 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1069 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1070 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1071 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1072 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1073 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1074 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1075 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
32719adf 1076 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1077 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
c9216a92 1078 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
7bc95e2e 1079 };
1080
1081 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1082 // Such a response is less time critical, so we can prepare them on the fly
1083 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1084 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1085 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1086 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1087 tag_response_info_t dynamic_response_info = {
1088 .response = dynamic_response_buffer,
1089 .response_n = 0,
1090 .modulation = dynamic_modulation_buffer,
1091 .modulation_n = 0
1092 };
ce02f6f9 1093
99cf19d9 1094 // We need to listen to the high-frequency, peak-detected path.
1095 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1096
f71f4deb 1097 BigBuf_free_keep_EM();
1098
1099 // allocate buffers:
1100 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1101 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1102 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1103
1104 // clear trace
3000dc4e
MHS
1105 clear_trace();
1106 set_tracing(TRUE);
f71f4deb 1107
7bc95e2e 1108 // Prepare the responses of the anticollision phase
ce02f6f9 1109 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1110 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1111 prepare_allocated_tag_modulation(&responses[i]);
1112 }
15c4dc5a 1113
7bc95e2e 1114 int len = 0;
15c4dc5a 1115
1116 // To control where we are in the protocol
1117 int order = 0;
1118 int lastorder;
1119
1120 // Just to allow some checks
1121 int happened = 0;
1122 int happened2 = 0;
81cd0474 1123 int cmdsRecvd = 0;
15c4dc5a 1124
254b70a4 1125 cmdsRecvd = 0;
7bc95e2e 1126 tag_response_info_t* p_response;
15c4dc5a 1127
254b70a4 1128 LED_A_ON();
1129 for(;;) {
7bc95e2e 1130 // Clean receive command buffer
1131
6a1f2d82 1132 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1133 DbpString("Button press");
254b70a4 1134 break;
1135 }
7bc95e2e 1136
1137 p_response = NULL;
1138
254b70a4 1139 // Okay, look at the command now.
1140 lastorder = order;
1141 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1142 p_response = &responses[0]; order = 1;
254b70a4 1143 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1144 p_response = &responses[0]; order = 6;
254b70a4 1145 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1146 p_response = &responses[1]; order = 2;
6a1f2d82 1147 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1148 p_response = &responses[2]; order = 20;
254b70a4 1149 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1150 p_response = &responses[3]; order = 3;
254b70a4 1151 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1152 p_response = &responses[4]; order = 30;
254b70a4 1153 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
32719adf 1154 uint8_t block = receivedCmd[1];
1155 if ( tagType == 7 ) {
0de8e387 1156 uint16_t start = 4 * block;
32719adf 1157
0de8e387 1158 /*if ( block < 4 ) {
32719adf 1159 //NTAG 215
32719adf 1160 uint8_t blockdata[50] = {
1161 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1162 data[3],data[4],data[5],data[6],
1163 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1164 0xe1,0x10,0x12,0x00,
1165 0x03,0x00,0xfe,0x00,
1166 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1167 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1168 0x00,0x00,0x00,0x00,
1169 0x00,0x00};
c9216a92 1170 AppendCrc14443a(blockdata+start, 16);
5e428463 1171 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
0de8e387 1172 } else {*/
5e428463 1173 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1174 emlGetMemBt( emdata, start, 16);
1175 AppendCrc14443a(emdata, 16);
1176 EmSendCmdEx(emdata, sizeof(emdata), false);
0de8e387 1177 //}
32719adf 1178 p_response = NULL;
1179
1180 } else {
1181 EmSendCmdEx(data+(4*block),16,false);
1182 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1183 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1184 p_response = NULL;
1185 }
a126332a 1186 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read)
5e428463 1187
1188 uint8_t emdata[MAX_FRAME_SIZE];
1189 int start = receivedCmd[1] * 4;
ce3d6bd2 1190 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
5e428463 1191 emlGetMemBt( emdata, start, len);
1192 AppendCrc14443a(emdata, len);
1193 EmSendCmdEx(emdata, len+2, false);
1194 p_response = NULL;
1195
839a53ae 1196 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1197 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1198 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1199 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1200 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1201 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1202 0x00,0x00};
5e428463 1203 AppendCrc14443a(data, sizeof(data)-2);
ce3d6bd2 1204 EmSendCmdEx(data,sizeof(data),false);
839a53ae 1205 p_response = NULL;
a126332a 1206 } else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
e9a92fe2 1207 uint8_t index = receivedCmd[1];
a126332a 1208 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
e9a92fe2 1209 if ( counters[index] > 0) {
1210 num_to_bytes(counters[index], 3, data);
1211 AppendCrc14443a(data, sizeof(data)-2);
1212 }
a126332a 1213 EmSendCmdEx(data,sizeof(data),false);
1214 p_response = NULL;
1215 } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
ce3d6bd2 1216 // number of counter
a126332a 1217 uint8_t counter = receivedCmd[1];
1218 uint32_t val = bytes_to_num(receivedCmd+2,4);
1219 counters[counter] = val;
1220
ce3d6bd2 1221 // send ACK
1222 uint8_t ack[] = {0x0a};
1223 EmSendCmdEx(ack,sizeof(ack),false);
1224 p_response = NULL;
1225
c9216a92 1226 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1227 p_response = &responses[9];
254b70a4 1228 } else if(receivedCmd[0] == 0x50) { // Received a HALT
3fe4ff4f 1229
7bc95e2e 1230 if (tracing) {
6a1f2d82 1231 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1232 }
1233 p_response = NULL;
254b70a4 1234 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
32719adf 1235
1236 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1237 p_response = &responses[7];
1238 } else {
1239 p_response = &responses[5]; order = 7;
1240 }
254b70a4 1241 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1242 if (tagType == 1 || tagType == 2) { // RATS not supported
1243 EmSend4bit(CARD_NACK_NA);
1244 p_response = NULL;
1245 } else {
1246 p_response = &responses[6]; order = 70;
1247 }
6a1f2d82 1248 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1249 if (tracing) {
6a1f2d82 1250 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1251 }
d26849d4 1252 uint32_t nonce = bytes_to_num(response5,4);
7bc95e2e 1253 uint32_t nr = bytes_to_num(receivedCmd,4);
1254 uint32_t ar = bytes_to_num(receivedCmd+4,4);
d26849d4 1255 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1256
1257 if(flags & FLAG_NR_AR_ATTACK )
1258 {
1259 if(ar_nr_collected < 2){
1260 // Avoid duplicates... probably not necessary, nr should vary.
1261 //if(ar_nr_responses[3] != nr){
1262 ar_nr_responses[ar_nr_collected*5] = 0;
1263 ar_nr_responses[ar_nr_collected*5+1] = 0;
1264 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1265 ar_nr_responses[ar_nr_collected*5+3] = nr;
1266 ar_nr_responses[ar_nr_collected*5+4] = ar;
1267 ar_nr_collected++;
1268 //}
1269 }
1270
1271 if(ar_nr_collected > 1 ) {
1272
1273 if (MF_DBGLEVEL >= 2) {
1274 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1275 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1276 ar_nr_responses[0], // UID1
1277 ar_nr_responses[1], // UID2
1278 ar_nr_responses[2], // NT
1279 ar_nr_responses[3], // AR1
1280 ar_nr_responses[4], // NR1
1281 ar_nr_responses[8], // AR2
1282 ar_nr_responses[9] // NR2
1283 );
7838f4be 1284 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
1285 ar_nr_responses[0], // UID1
1286 ar_nr_responses[1], // UID2
1287 ar_nr_responses[2], // NT1
1288 ar_nr_responses[3], // AR1
1289 ar_nr_responses[4], // NR1
1290 ar_nr_responses[7], // NT2
1291 ar_nr_responses[8], // AR2
1292 ar_nr_responses[9] // NR2
1293 );
d26849d4 1294 }
1295 uint8_t len = ar_nr_collected*5*4;
1296 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1297 ar_nr_collected = 0;
1298 memset(ar_nr_responses, 0x00, len);
d26849d4 1299 }
1300 }
32719adf 1301 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1302 {
1303
1304 }
1305 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1306 {
1307 if ( tagType == 7 ) {
1308 p_response = &responses[8]; // PACK response
ce3d6bd2 1309 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
e98572a1 1310
1311 if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
32719adf 1312 }
1313 }
1314 else {
7bc95e2e 1315 // Check for ISO 14443A-4 compliant commands, look at left nibble
1316 switch (receivedCmd[0]) {
7838f4be 1317 case 0x02:
1318 case 0x03: { // IBlock (command no CID)
1319 dynamic_response_info.response[0] = receivedCmd[0];
1320 dynamic_response_info.response[1] = 0x90;
1321 dynamic_response_info.response[2] = 0x00;
1322 dynamic_response_info.response_n = 3;
1323 } break;
7bc95e2e 1324 case 0x0B:
7838f4be 1325 case 0x0A: { // IBlock (command CID)
7bc95e2e 1326 dynamic_response_info.response[0] = receivedCmd[0];
1327 dynamic_response_info.response[1] = 0x00;
1328 dynamic_response_info.response[2] = 0x90;
1329 dynamic_response_info.response[3] = 0x00;
1330 dynamic_response_info.response_n = 4;
1331 } break;
1332
1333 case 0x1A:
1334 case 0x1B: { // Chaining command
1335 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1336 dynamic_response_info.response_n = 2;
1337 } break;
1338
1339 case 0xaa:
1340 case 0xbb: {
1341 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1342 dynamic_response_info.response_n = 2;
1343 } break;
1344
7838f4be 1345 case 0xBA: { // ping / pong
1346 dynamic_response_info.response[0] = 0xAB;
1347 dynamic_response_info.response[1] = 0x00;
1348 dynamic_response_info.response_n = 2;
7bc95e2e 1349 } break;
1350
1351 case 0xCA:
1352 case 0xC2: { // Readers sends deselect command
7838f4be 1353 dynamic_response_info.response[0] = 0xCA;
1354 dynamic_response_info.response[1] = 0x00;
1355 dynamic_response_info.response_n = 2;
7bc95e2e 1356 } break;
1357
1358 default: {
1359 // Never seen this command before
1360 if (tracing) {
6a1f2d82 1361 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1362 }
1363 Dbprintf("Received unknown command (len=%d):",len);
1364 Dbhexdump(len,receivedCmd,false);
1365 // Do not respond
1366 dynamic_response_info.response_n = 0;
1367 } break;
1368 }
ce02f6f9 1369
7bc95e2e 1370 if (dynamic_response_info.response_n > 0) {
1371 // Copy the CID from the reader query
1372 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1373
7bc95e2e 1374 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1375 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1376 dynamic_response_info.response_n += 2;
ce02f6f9 1377
7bc95e2e 1378 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1379 Dbprintf("Error preparing tag response");
1380 if (tracing) {
6a1f2d82 1381 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1382 }
1383 break;
1384 }
1385 p_response = &dynamic_response_info;
1386 }
81cd0474 1387 }
15c4dc5a 1388
1389 // Count number of wakeups received after a halt
1390 if(order == 6 && lastorder == 5) { happened++; }
1391
1392 // Count number of other messages after a halt
1393 if(order != 6 && lastorder == 5) { happened2++; }
1394
15c4dc5a 1395 if(cmdsRecvd > 999) {
1396 DbpString("1000 commands later...");
254b70a4 1397 break;
15c4dc5a 1398 }
ce02f6f9 1399 cmdsRecvd++;
1400
1401 if (p_response != NULL) {
7bc95e2e 1402 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1403 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1404 uint8_t par[MAX_PARITY_SIZE];
1405 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1406
7bc95e2e 1407 EmLogTrace(Uart.output,
1408 Uart.len,
1409 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1410 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1411 Uart.parity,
7bc95e2e 1412 p_response->response,
1413 p_response->response_n,
1414 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1415 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1416 par);
7bc95e2e 1417 }
1418
1419 if (!tracing) {
1420 Dbprintf("Trace Full. Simulation stopped.");
1421 break;
1422 }
1423 }
15c4dc5a 1424
d26849d4 1425 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
5ee53a0e 1426 set_tracing(FALSE);
f71f4deb 1427 BigBuf_free_keep_EM();
c9216a92 1428 LED_A_OFF();
1429
0de8e387 1430 if (MF_DBGLEVEL >= 4){
5ee53a0e 1431 Dbprintf("-[ Wake ups after halt [%d]", happened);
1432 Dbprintf("-[ Messages after halt [%d]", happened2);
1433 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
0de8e387 1434 }
15c4dc5a 1435}
1436
9492e0b0 1437
1438// prepare a delayed transfer. This simply shifts ToSend[] by a number
1439// of bits specified in the delay parameter.
1440void PrepareDelayedTransfer(uint16_t delay)
1441{
1442 uint8_t bitmask = 0;
1443 uint8_t bits_to_shift = 0;
1444 uint8_t bits_shifted = 0;
2285d9dd 1445
9492e0b0 1446 delay &= 0x07;
1447 if (delay) {
1448 for (uint16_t i = 0; i < delay; i++) {
1449 bitmask |= (0x01 << i);
1450 }
7bc95e2e 1451 ToSend[ToSendMax++] = 0x00;
9492e0b0 1452 for (uint16_t i = 0; i < ToSendMax; i++) {
1453 bits_to_shift = ToSend[i] & bitmask;
1454 ToSend[i] = ToSend[i] >> delay;
1455 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1456 bits_shifted = bits_to_shift;
1457 }
1458 }
1459}
1460
7bc95e2e 1461
1462//-------------------------------------------------------------------------------------
15c4dc5a 1463// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1464// Parameter timing:
7bc95e2e 1465// if NULL: transfer at next possible time, taking into account
1466// request guard time and frame delay time
1467// if == 0: transfer immediately and return time of transfer
9492e0b0 1468// if != 0: delay transfer until time specified
7bc95e2e 1469//-------------------------------------------------------------------------------------
6a1f2d82 1470static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1471{
7bc95e2e 1472
9492e0b0 1473 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1474
7bc95e2e 1475 uint32_t ThisTransferTime = 0;
e30c654b 1476
9492e0b0 1477 if (timing) {
1478 if(*timing == 0) { // Measure time
7bc95e2e 1479 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1480 } else {
1481 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1482 }
7bc95e2e 1483 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1484 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1485 LastTimeProxToAirStart = *timing;
1486 } else {
1487 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1488 while(GetCountSspClk() < ThisTransferTime);
1489 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1490 }
1491
7bc95e2e 1492 // clear TXRDY
1493 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1494
7bc95e2e 1495 uint16_t c = 0;
9492e0b0 1496 for(;;) {
1497 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1498 AT91C_BASE_SSC->SSC_THR = cmd[c];
1499 c++;
1500 if(c >= len) {
1501 break;
1502 }
1503 }
1504 }
7bc95e2e 1505
1506 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1507}
1508
7bc95e2e 1509
15c4dc5a 1510//-----------------------------------------------------------------------------
195af472 1511// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1512//-----------------------------------------------------------------------------
6a1f2d82 1513void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1514{
7bc95e2e 1515 int i, j;
1516 int last;
1517 uint8_t b;
e30c654b 1518
7bc95e2e 1519 ToSendReset();
e30c654b 1520
7bc95e2e 1521 // Start of Communication (Seq. Z)
1522 ToSend[++ToSendMax] = SEC_Z;
1523 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1524 last = 0;
1525
1526 size_t bytecount = nbytes(bits);
1527 // Generate send structure for the data bits
1528 for (i = 0; i < bytecount; i++) {
1529 // Get the current byte to send
1530 b = cmd[i];
1531 size_t bitsleft = MIN((bits-(i*8)),8);
1532
1533 for (j = 0; j < bitsleft; j++) {
1534 if (b & 1) {
1535 // Sequence X
1536 ToSend[++ToSendMax] = SEC_X;
1537 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1538 last = 1;
1539 } else {
1540 if (last == 0) {
1541 // Sequence Z
1542 ToSend[++ToSendMax] = SEC_Z;
1543 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1544 } else {
1545 // Sequence Y
1546 ToSend[++ToSendMax] = SEC_Y;
1547 last = 0;
1548 }
1549 }
1550 b >>= 1;
1551 }
1552
6a1f2d82 1553 // Only transmit parity bit if we transmitted a complete byte
0ec548dc 1554 if (j == 8 && parity != NULL) {
7bc95e2e 1555 // Get the parity bit
6a1f2d82 1556 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1557 // Sequence X
1558 ToSend[++ToSendMax] = SEC_X;
1559 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1560 last = 1;
1561 } else {
1562 if (last == 0) {
1563 // Sequence Z
1564 ToSend[++ToSendMax] = SEC_Z;
1565 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1566 } else {
1567 // Sequence Y
1568 ToSend[++ToSendMax] = SEC_Y;
1569 last = 0;
1570 }
1571 }
1572 }
1573 }
e30c654b 1574
7bc95e2e 1575 // End of Communication: Logic 0 followed by Sequence Y
1576 if (last == 0) {
1577 // Sequence Z
1578 ToSend[++ToSendMax] = SEC_Z;
1579 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1580 } else {
1581 // Sequence Y
1582 ToSend[++ToSendMax] = SEC_Y;
1583 last = 0;
1584 }
1585 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1586
7bc95e2e 1587 // Convert to length of command:
1588 ToSendMax++;
15c4dc5a 1589}
1590
195af472 1591//-----------------------------------------------------------------------------
1592// Prepare reader command to send to FPGA
1593//-----------------------------------------------------------------------------
6a1f2d82 1594void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1595{
6a1f2d82 1596 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1597}
1598
0c8d25eb 1599
9ca155ba
M
1600//-----------------------------------------------------------------------------
1601// Wait for commands from reader
1602// Stop when button is pressed (return 1) or field was gone (return 2)
1603// Or return 0 when command is captured
1604//-----------------------------------------------------------------------------
6a1f2d82 1605static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1606{
1607 *len = 0;
1608
1609 uint32_t timer = 0, vtime = 0;
1610 int analogCnt = 0;
1611 int analogAVG = 0;
1612
1613 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1614 // only, since we are receiving, not transmitting).
1615 // Signal field is off with the appropriate LED
1616 LED_D_OFF();
1617 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1618
1619 // Set ADC to read field strength
1620 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1621 AT91C_BASE_ADC->ADC_MR =
0c8d25eb 1622 ADC_MODE_PRESCALE(63) |
1623 ADC_MODE_STARTUP_TIME(1) |
1624 ADC_MODE_SAMPLE_HOLD_TIME(15);
9ca155ba
M
1625 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1626 // start ADC
1627 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1628
1629 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1630 UartInit(received, parity);
7bc95e2e 1631
1632 // Clear RXRDY:
1633 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1634
9ca155ba
M
1635 for(;;) {
1636 WDT_HIT();
1637
1638 if (BUTTON_PRESS()) return 1;
1639
1640 // test if the field exists
1641 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1642 analogCnt++;
1643 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1644 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1645 if (analogCnt >= 32) {
0c8d25eb 1646 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
9ca155ba
M
1647 vtime = GetTickCount();
1648 if (!timer) timer = vtime;
1649 // 50ms no field --> card to idle state
1650 if (vtime - timer > 50) return 2;
1651 } else
1652 if (timer) timer = 0;
1653 analogCnt = 0;
1654 analogAVG = 0;
1655 }
1656 }
7bc95e2e 1657
9ca155ba 1658 // receive and test the miller decoding
7bc95e2e 1659 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1660 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1661 if(MillerDecoding(b, 0)) {
1662 *len = Uart.len;
9ca155ba
M
1663 return 0;
1664 }
7bc95e2e 1665 }
1666
9ca155ba
M
1667 }
1668}
1669
9ca155ba 1670
6a1f2d82 1671static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1672{
1673 uint8_t b;
1674 uint16_t i = 0;
1675 uint32_t ThisTransferTime;
1676
9ca155ba
M
1677 // Modulate Manchester
1678 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1679
1680 // include correction bit if necessary
1681 if (Uart.parityBits & 0x01) {
1682 correctionNeeded = TRUE;
1683 }
1684 if(correctionNeeded) {
9ca155ba
M
1685 // 1236, so correction bit needed
1686 i = 0;
7bc95e2e 1687 } else {
1688 i = 1;
9ca155ba 1689 }
7bc95e2e 1690
d714d3ef 1691 // clear receiving shift register and holding register
7bc95e2e 1692 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1693 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1694 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1695 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1696
7bc95e2e 1697 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1698 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1699 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1700 if (AT91C_BASE_SSC->SSC_RHR) break;
1701 }
1702
1703 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1704
1705 // Clear TXRDY:
1706 AT91C_BASE_SSC->SSC_THR = SEC_F;
1707
9ca155ba 1708 // send cycle
bb42a03e 1709 for(; i < respLen; ) {
9ca155ba 1710 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1711 AT91C_BASE_SSC->SSC_THR = resp[i++];
1712 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1713 }
7bc95e2e 1714
17ad0e09 1715 if(BUTTON_PRESS()) break;
9ca155ba
M
1716 }
1717
7bc95e2e 1718 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
0c8d25eb 1719 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1720 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
7bc95e2e 1721 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1722 AT91C_BASE_SSC->SSC_THR = SEC_F;
1723 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1724 i++;
1725 }
1726 }
0c8d25eb 1727
7bc95e2e 1728 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1729
9ca155ba
M
1730 return 0;
1731}
1732
7bc95e2e 1733int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1734 Code4bitAnswerAsTag(resp);
0a39986e 1735 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1736 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1737 uint8_t par[1];
1738 GetParity(&resp, 1, par);
7bc95e2e 1739 EmLogTrace(Uart.output,
1740 Uart.len,
1741 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1742 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1743 Uart.parity,
7bc95e2e 1744 &resp,
1745 1,
1746 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1747 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1748 par);
0a39986e 1749 return res;
9ca155ba
M
1750}
1751
8f51ddb0 1752int EmSend4bit(uint8_t resp){
7bc95e2e 1753 return EmSend4bitEx(resp, false);
8f51ddb0
M
1754}
1755
6a1f2d82 1756int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1757 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1758 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1759 // do the tracing for the previous reader request and this tag answer:
1760 EmLogTrace(Uart.output,
1761 Uart.len,
1762 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1763 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1764 Uart.parity,
7bc95e2e 1765 resp,
1766 respLen,
1767 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1768 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1769 par);
8f51ddb0
M
1770 return res;
1771}
1772
6a1f2d82 1773int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1774 uint8_t par[MAX_PARITY_SIZE];
1775 GetParity(resp, respLen, par);
1776 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1777}
1778
6a1f2d82 1779int EmSendCmd(uint8_t *resp, uint16_t respLen){
1780 uint8_t par[MAX_PARITY_SIZE];
1781 GetParity(resp, respLen, par);
1782 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1783}
1784
6a1f2d82 1785int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1786 return EmSendCmdExPar(resp, respLen, false, par);
1787}
1788
6a1f2d82 1789bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1790 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1791{
1792 if (tracing) {
1793 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1794 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1795 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1796 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1797 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1798 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1799 reader_EndTime = tag_StartTime - exact_fdt;
1800 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1801 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1802 return FALSE;
6a1f2d82 1803 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1804 } else {
1805 return TRUE;
1806 }
9ca155ba
M
1807}
1808
15c4dc5a 1809//-----------------------------------------------------------------------------
1810// Wait a certain time for tag response
1811// If a response is captured return TRUE
e691fc45 1812// If it takes too long return FALSE
15c4dc5a 1813//-----------------------------------------------------------------------------
6a1f2d82 1814static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1815{
46c65fed 1816 uint32_t c = 0x00;
e691fc45 1817
15c4dc5a 1818 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1819 // only, since we are receiving, not transmitting).
1820 // Signal field is on with the appropriate LED
1821 LED_D_ON();
1822 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1823
534983d7 1824 // Now get the answer from the card
6a1f2d82 1825 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1826
7bc95e2e 1827 // clear RXRDY:
1828 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1829
15c4dc5a 1830 for(;;) {
534983d7 1831 WDT_HIT();
15c4dc5a 1832
534983d7 1833 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1834 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1835 if(ManchesterDecoding(b, offset, 0)) {
1836 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1837 return TRUE;
19a700a8 1838 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
7bc95e2e 1839 return FALSE;
15c4dc5a 1840 }
534983d7 1841 }
1842 }
15c4dc5a 1843}
1844
6a1f2d82 1845void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1846{
6a1f2d82 1847 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1848
7bc95e2e 1849 // Send command to tag
1850 TransmitFor14443a(ToSend, ToSendMax, timing);
1851 if(trigger)
1852 LED_A_ON();
dfc3c505 1853
7bc95e2e 1854 // Log reader command in trace buffer
1855 if (tracing) {
6a1f2d82 1856 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1857 }
15c4dc5a 1858}
1859
6a1f2d82 1860void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1861{
6a1f2d82 1862 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1863}
15c4dc5a 1864
6a1f2d82 1865void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1866{
1867 // Generate parity and redirect
6a1f2d82 1868 uint8_t par[MAX_PARITY_SIZE];
1869 GetParity(frame, len/8, par);
1870 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1871}
1872
6a1f2d82 1873void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1874{
1875 // Generate parity and redirect
6a1f2d82 1876 uint8_t par[MAX_PARITY_SIZE];
1877 GetParity(frame, len, par);
1878 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1879}
1880
6a1f2d82 1881int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1882{
6a1f2d82 1883 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1884 if (tracing) {
6a1f2d82 1885 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1886 }
e691fc45 1887 return Demod.len;
1888}
1889
6a1f2d82 1890int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1891{
6a1f2d82 1892 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1893 if (tracing) {
6a1f2d82 1894 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1895 }
e691fc45 1896 return Demod.len;
f89c7050
M
1897}
1898
e691fc45 1899/* performs iso14443a anticollision procedure
534983d7 1900 * fills the uid pointer unless NULL
1901 * fills resp_data unless NULL */
6a1f2d82 1902int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1903 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1904 uint8_t sel_all[] = { 0x93,0x20 };
1905 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1906 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
f71f4deb 1907 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1908 uint8_t resp_par[MAX_PARITY_SIZE];
6a1f2d82 1909 byte_t uid_resp[4];
1910 size_t uid_resp_len;
1911
1912 uint8_t sak = 0x04; // cascade uid
1913 int cascade_level = 0;
1914 int len;
1915
1916 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1917 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1918
6a1f2d82 1919 // Receive the ATQA
1920 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1921
1922 if(p_hi14a_card) {
1923 memcpy(p_hi14a_card->atqa, resp, 2);
1924 p_hi14a_card->uidlen = 0;
1925 memset(p_hi14a_card->uid,0,10);
1926 }
5f6d6c90 1927
6a1f2d82 1928 // clear uid
1929 if (uid_ptr) {
1930 memset(uid_ptr,0,10);
1931 }
79a73ab2 1932
0ec548dc 1933 // check for proprietary anticollision:
1934 if ((resp[0] & 0x1F) == 0) {
1935 return 3;
1936 }
1937
6a1f2d82 1938 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1939 // which case we need to make a cascade 2 request and select - this is a long UID
1940 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1941 for(; sak & 0x04; cascade_level++) {
1942 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1943 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1944
1945 // SELECT_ALL
1946 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1947 if (!ReaderReceive(resp, resp_par)) return 0;
1948
1949 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1950 memset(uid_resp, 0, 4);
1951 uint16_t uid_resp_bits = 0;
1952 uint16_t collision_answer_offset = 0;
1953 // anti-collision-loop:
1954 while (Demod.collisionPos) {
1955 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1956 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1957 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
758f1fd1 1958 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1959 }
1960 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1961 uid_resp_bits++;
1962 // construct anticollosion command:
1963 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1964 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1965 sel_uid[2+i] = uid_resp[i];
1966 }
1967 collision_answer_offset = uid_resp_bits%8;
1968 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1969 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1970 }
6a1f2d82 1971 // finally, add the last bits and BCC of the UID
1972 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1973 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1974 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1975 }
e691fc45 1976
6a1f2d82 1977 } else { // no collision, use the response to SELECT_ALL as current uid
1978 memcpy(uid_resp, resp, 4);
1979 }
1980 uid_resp_len = 4;
5f6d6c90 1981
6a1f2d82 1982 // calculate crypto UID. Always use last 4 Bytes.
1983 if(cuid_ptr) {
1984 *cuid_ptr = bytes_to_num(uid_resp, 4);
1985 }
e30c654b 1986
6a1f2d82 1987 // Construct SELECT UID command
1988 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1989 memcpy(sel_uid+2, uid_resp, 4); // the UID
1990 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1991 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1992 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1993
1994 // Receive the SAK
1995 if (!ReaderReceive(resp, resp_par)) return 0;
1996 sak = resp[0];
1997
52ab55ab 1998 // Test if more parts of the uid are coming
6a1f2d82 1999 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
2000 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
2001 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 2002 uid_resp[0] = uid_resp[1];
2003 uid_resp[1] = uid_resp[2];
2004 uid_resp[2] = uid_resp[3];
2005
2006 uid_resp_len = 3;
2007 }
5f6d6c90 2008
6a1f2d82 2009 if(uid_ptr) {
2010 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
2011 }
5f6d6c90 2012
6a1f2d82 2013 if(p_hi14a_card) {
2014 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
2015 p_hi14a_card->uidlen += uid_resp_len;
2016 }
2017 }
79a73ab2 2018
6a1f2d82 2019 if(p_hi14a_card) {
2020 p_hi14a_card->sak = sak;
2021 p_hi14a_card->ats_len = 0;
2022 }
534983d7 2023
3fe4ff4f 2024 // non iso14443a compliant tag
2025 if( (sak & 0x20) == 0) return 2;
534983d7 2026
6a1f2d82 2027 // Request for answer to select
2028 AppendCrc14443a(rats, 2);
2029 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 2030
6a1f2d82 2031 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 2032
3fe4ff4f 2033
6a1f2d82 2034 if(p_hi14a_card) {
2035 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2036 p_hi14a_card->ats_len = len;
2037 }
5f6d6c90 2038
6a1f2d82 2039 // reset the PCB block number
2040 iso14_pcb_blocknum = 0;
19a700a8 2041
2042 // set default timeout based on ATS
2043 iso14a_set_ATS_timeout(resp);
2044
6a1f2d82 2045 return 1;
7e758047 2046}
15c4dc5a 2047
7bc95e2e 2048void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 2049 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 2050 // Set up the synchronous serial port
2051 FpgaSetupSsc();
7bc95e2e 2052 // connect Demodulated Signal to ADC:
7e758047 2053 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 2054
7e758047 2055 // Signal field is on with the appropriate LED
7bc95e2e 2056 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2057 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2058 LED_D_ON();
2059 } else {
2060 LED_D_OFF();
2061 }
2062 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 2063
7bc95e2e 2064 // Start the timer
2065 StartCountSspClk();
2066
2067 DemodReset();
2068 UartReset();
2069 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
46c65fed 2070 iso14a_set_timeout(10*106); // 10ms default
7e758047 2071}
15c4dc5a 2072
6a1f2d82 2073int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2074 uint8_t parity[MAX_PARITY_SIZE];
534983d7 2075 uint8_t real_cmd[cmd_len+4];
2076 real_cmd[0] = 0x0a; //I-Block
b0127e65 2077 // put block number into the PCB
2078 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 2079 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2080 memcpy(real_cmd+2, cmd, cmd_len);
2081 AppendCrc14443a(real_cmd,cmd_len+2);
2082
9492e0b0 2083 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 2084 size_t len = ReaderReceive(data, parity);
2085 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 2086 if (!len)
2087 return 0; //DATA LINK ERROR
2088 // if we received an I- or R(ACK)-Block with a block number equal to the
2089 // current block number, toggle the current block number
2090 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2091 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2092 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2093 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2094 {
2095 iso14_pcb_blocknum ^= 1;
2096 }
2097
534983d7 2098 return len;
2099}
2100
7e758047 2101//-----------------------------------------------------------------------------
2102// Read an ISO 14443a tag. Send out commands and store answers.
2103//
2104//-----------------------------------------------------------------------------
7bc95e2e 2105void ReaderIso14443a(UsbCommand *c)
7e758047 2106{
534983d7 2107 iso14a_command_t param = c->arg[0];
7bc95e2e 2108 uint8_t *cmd = c->d.asBytes;
04bc1c66 2109 size_t len = c->arg[1] & 0xffff;
2110 size_t lenbits = c->arg[1] >> 16;
2111 uint32_t timeout = c->arg[2];
9492e0b0 2112 uint32_t arg0 = 0;
2113 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 2114 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 2115
5f6d6c90 2116 if(param & ISO14A_CONNECT) {
3000dc4e 2117 clear_trace();
5f6d6c90 2118 }
e691fc45 2119
3000dc4e 2120 set_tracing(TRUE);
e30c654b 2121
79a73ab2 2122 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 2123 iso14a_set_trigger(TRUE);
9492e0b0 2124 }
15c4dc5a 2125
534983d7 2126 if(param & ISO14A_CONNECT) {
7bc95e2e 2127 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 2128 if(!(param & ISO14A_NO_SELECT)) {
2129 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2130 arg0 = iso14443a_select_card(NULL,card,NULL);
2131 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2132 }
534983d7 2133 }
e30c654b 2134
534983d7 2135 if(param & ISO14A_SET_TIMEOUT) {
04bc1c66 2136 iso14a_set_timeout(timeout);
534983d7 2137 }
e30c654b 2138
534983d7 2139 if(param & ISO14A_APDU) {
902cb3c0 2140 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 2141 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2142 }
e30c654b 2143
534983d7 2144 if(param & ISO14A_RAW) {
2145 if(param & ISO14A_APPEND_CRC) {
0ec548dc 2146 if(param & ISO14A_TOPAZMODE) {
2147 AppendCrc14443b(cmd,len);
2148 } else {
d26849d4 2149 AppendCrc14443a(cmd,len);
0ec548dc 2150 }
534983d7 2151 len += 2;
c7324bef 2152 if (lenbits) lenbits += 16;
15c4dc5a 2153 }
0ec548dc 2154 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2155 if(param & ISO14A_TOPAZMODE) {
2156 int bits_to_send = lenbits;
2157 uint16_t i = 0;
2158 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2159 bits_to_send -= 7;
2160 while (bits_to_send > 0) {
2161 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2162 bits_to_send -= 8;
2163 }
2164 } else {
6a1f2d82 2165 GetParity(cmd, lenbits/8, par);
0ec548dc 2166 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2167 }
2168 } else { // want to send complete bytes only
2169 if(param & ISO14A_TOPAZMODE) {
2170 uint16_t i = 0;
2171 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2172 while (i < len) {
2173 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2174 }
5f6d6c90 2175 } else {
0ec548dc 2176 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2177 }
5f6d6c90 2178 }
6a1f2d82 2179 arg0 = ReaderReceive(buf, par);
9492e0b0 2180 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2181 }
15c4dc5a 2182
79a73ab2 2183 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 2184 iso14a_set_trigger(FALSE);
9492e0b0 2185 }
15c4dc5a 2186
79a73ab2 2187 if(param & ISO14A_NO_DISCONNECT) {
534983d7 2188 return;
9492e0b0 2189 }
15c4dc5a 2190
15c4dc5a 2191 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
5ee53a0e 2192 set_tracing(FALSE);
15c4dc5a 2193 LEDsoff();
15c4dc5a 2194}
b0127e65 2195
1c611bbd 2196
1c611bbd 2197// Determine the distance between two nonces.
2198// Assume that the difference is small, but we don't know which is first.
2199// Therefore try in alternating directions.
2200int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2201
c830303d 2202 uint16_t i;
2203 uint32_t nttmp1, nttmp2;
2204
1c611bbd 2205 if (nt1 == nt2) return 0;
2206
c830303d 2207 nttmp1 = nt1;
2208 nttmp2 = nt2;
1c611bbd 2209
0de8e387 2210 for (i = 1; i < 0xFFFF; i++) {
1c611bbd 2211 nttmp1 = prng_successor(nttmp1, 1);
2212 if (nttmp1 == nt2) return i;
2213 nttmp2 = prng_successor(nttmp2, 1);
2214 if (nttmp2 == nt1) return -i;
2215 }
2216
2217 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 2218}
2219
e772353f 2220
1c611bbd 2221//-----------------------------------------------------------------------------
2222// Recover several bits of the cypher stream. This implements (first stages of)
2223// the algorithm described in "The Dark Side of Security by Obscurity and
2224// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2225// (article by Nicolas T. Courtois, 2009)
2226//-----------------------------------------------------------------------------
c830303d 2227void ReaderMifare(bool first_try)
2228{
2229 // Mifare AUTH
2230 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2231 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2232 static uint8_t mf_nr_ar3;
2233
2234 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2235 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2236
99cf19d9 2237 if (first_try) {
2238 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2239 }
2240
f71f4deb 2241 // free eventually allocated BigBuf memory. We want all for tracing.
2242 BigBuf_free();
2243
3000dc4e
MHS
2244 clear_trace();
2245 set_tracing(TRUE);
e772353f 2246
1c611bbd 2247 byte_t nt_diff = 0;
6a1f2d82 2248 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2249 static byte_t par_low = 0;
2250 bool led_on = TRUE;
c830303d 2251 uint8_t uid[10] ={0};
2252 uint32_t cuid;
e772353f 2253
6a1f2d82 2254 uint32_t nt = 0;
2ed270a8 2255 uint32_t previous_nt = 0;
1c611bbd 2256 static uint32_t nt_attacked = 0;
3fe4ff4f 2257 byte_t par_list[8] = {0x00};
2258 byte_t ks_list[8] = {0x00};
e772353f 2259
0de8e387 2260 #define PRNG_SEQUENCE_LENGTH (1 << 16);
d26849d4 2261 static uint32_t sync_time = 0;
3bc7b13d 2262 static int32_t sync_cycles = 0;
1c611bbd 2263 int catch_up_cycles = 0;
2264 int last_catch_up = 0;
3bc7b13d 2265 uint16_t elapsed_prng_sequences;
1c611bbd 2266 uint16_t consecutive_resyncs = 0;
2267 int isOK = 0;
e772353f 2268
1c611bbd 2269 if (first_try) {
1c611bbd 2270 mf_nr_ar3 = 0;
7bc95e2e 2271 sync_time = GetCountSspClk() & 0xfffffff8;
0de8e387 2272 sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1c611bbd 2273 nt_attacked = 0;
6a1f2d82 2274 par[0] = 0;
1c611bbd 2275 }
2276 else {
2277 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2278 mf_nr_ar3++;
2279 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2280 par[0] = par_low;
1c611bbd 2281 }
e30c654b 2282
15c4dc5a 2283 LED_A_ON();
2284 LED_B_OFF();
2285 LED_C_OFF();
c830303d 2286
2287
3bc7b13d 2288 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2289 #define MAX_SYNC_TRIES 32
2290 #define NUM_DEBUG_INFOS 8 // per strategy
2291 #define MAX_STRATEGY 3
0de8e387 2292 uint16_t unexpected_random = 0;
2293 uint16_t sync_tries = 0;
2294 int16_t debug_info_nr = -1;
3bc7b13d 2295 uint16_t strategy = 0;
2296 int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
2297 uint32_t select_time;
2298 uint32_t halt_time;
7bc95e2e 2299
1c611bbd 2300 for(uint16_t i = 0; TRUE; i++) {
2301
c830303d 2302 LED_C_ON();
1c611bbd 2303 WDT_HIT();
e30c654b 2304
1c611bbd 2305 // Test if the action was cancelled
c830303d 2306 if(BUTTON_PRESS()) {
2307 isOK = -1;
1c611bbd 2308 break;
2309 }
2310
3bc7b13d 2311 if (strategy == 2) {
2312 // test with additional hlt command
2313 halt_time = 0;
2314 int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
2315 if (len && MF_DBGLEVEL >= 3) {
2316 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
2317 }
2318 }
2319
2320 if (strategy == 3) {
2321 // test with FPGA power off/on
2322 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2323 SpinDelay(200);
2324 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2325 SpinDelay(100);
2326 }
2327
c830303d 2328 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2329 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2330 continue;
2331 }
3bc7b13d 2332 select_time = GetCountSspClk();
1c611bbd 2333
3bc7b13d 2334 elapsed_prng_sequences = 1;
0de8e387 2335 if (debug_info_nr == -1) {
2336 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2337 catch_up_cycles = 0;
1c611bbd 2338
0de8e387 2339 // if we missed the sync time already, advance to the next nonce repeat
2340 while(GetCountSspClk() > sync_time) {
3bc7b13d 2341 elapsed_prng_sequences++;
0de8e387 2342 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2343 }
e30c654b 2344
0de8e387 2345 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2346 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2347 } else {
3bc7b13d 2348 // collect some information on tag nonces for debugging:
2349 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2350 if (strategy == 0) {
2351 // nonce distances at fixed time after card select:
2352 sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
2353 } else if (strategy == 1) {
2354 // nonce distances at fixed time between authentications:
2355 sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
2356 } else if (strategy == 2) {
2357 // nonce distances at fixed time after halt:
2358 sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
2359 } else {
2360 // nonce_distances at fixed time after power on
2361 sync_time = DEBUG_FIXED_SYNC_CYCLES;
2362 }
2363 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
0de8e387 2364 }
f89c7050 2365
1c611bbd 2366 // Receive the (4 Byte) "random" nonce
6a1f2d82 2367 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2368 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2369 continue;
2370 }
2371
1c611bbd 2372 previous_nt = nt;
2373 nt = bytes_to_num(receivedAnswer, 4);
2374
2375 // Transmit reader nonce with fake par
9492e0b0 2376 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2377
2378 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2379 int nt_distance = dist_nt(previous_nt, nt);
2380 if (nt_distance == 0) {
2381 nt_attacked = nt;
0de8e387 2382 } else {
c830303d 2383 if (nt_distance == -99999) { // invalid nonce received
0de8e387 2384 unexpected_random++;
3bc7b13d 2385 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
c830303d 2386 isOK = -3; // Card has an unpredictable PRNG. Give up
2387 break;
2388 } else {
2389 continue; // continue trying...
2390 }
1c611bbd 2391 }
0de8e387 2392 if (++sync_tries > MAX_SYNC_TRIES) {
3bc7b13d 2393 if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
0de8e387 2394 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2395 break;
2396 } else { // continue for a while, just to collect some debug info
3bc7b13d 2397 debug_info[strategy][debug_info_nr] = nt_distance;
2398 debug_info_nr++;
2399 if (debug_info_nr == NUM_DEBUG_INFOS) {
2400 strategy++;
2401 debug_info_nr = 0;
2402 }
0de8e387 2403 continue;
2404 }
2405 }
3bc7b13d 2406 sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
0de8e387 2407 if (sync_cycles <= 0) {
2408 sync_cycles += PRNG_SEQUENCE_LENGTH;
2409 }
2410 if (MF_DBGLEVEL >= 3) {
3bc7b13d 2411 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
0de8e387 2412 }
1c611bbd 2413 continue;
2414 }
2415 }
2416
2417 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2418 catch_up_cycles = -dist_nt(nt_attacked, nt);
c830303d 2419 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
1c611bbd 2420 catch_up_cycles = 0;
2421 continue;
2422 }
3bc7b13d 2423 catch_up_cycles /= elapsed_prng_sequences;
1c611bbd 2424 if (catch_up_cycles == last_catch_up) {
2425 consecutive_resyncs++;
2426 }
2427 else {
2428 last_catch_up = catch_up_cycles;
2429 consecutive_resyncs = 0;
2430 }
2431 if (consecutive_resyncs < 3) {
9492e0b0 2432 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2433 }
2434 else {
2435 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2436 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
3bc7b13d 2437 last_catch_up = 0;
2438 catch_up_cycles = 0;
2439 consecutive_resyncs = 0;
1c611bbd 2440 }
2441 continue;
2442 }
2443
2444 consecutive_resyncs = 0;
2445
2446 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
3bc7b13d 2447 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2448 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2449
3bc7b13d 2450 if (nt_diff == 0) {
6a1f2d82 2451 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2452 }
2453
2454 led_on = !led_on;
2455 if(led_on) LED_B_ON(); else LED_B_OFF();
2456
6a1f2d82 2457 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2458 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2459
2460 // Test if the information is complete
2461 if (nt_diff == 0x07) {
2462 isOK = 1;
2463 break;
2464 }
2465
2466 nt_diff = (nt_diff + 1) & 0x07;
2467 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2468 par[0] = par_low;
1c611bbd 2469 } else {
2470 if (nt_diff == 0 && first_try)
2471 {
6a1f2d82 2472 par[0]++;
c830303d 2473 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2474 isOK = -2;
2475 break;
2476 }
1c611bbd 2477 } else {
6a1f2d82 2478 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2479 }
2480 }
2481 }
2482
c830303d 2483
1c611bbd 2484 mf_nr_ar[3] &= 0x1F;
2485
0de8e387 2486 if (isOK == -4) {
2487 if (MF_DBGLEVEL >= 3) {
3bc7b13d 2488 for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
2489 for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
2490 Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
2491 }
0de8e387 2492 }
2493 }
2494 }
d26849d4 2495
0de8e387 2496 byte_t buf[28];
1c611bbd 2497 memcpy(buf + 0, uid, 4);
2498 num_to_bytes(nt, 4, buf + 4);
2499 memcpy(buf + 8, par_list, 8);
2500 memcpy(buf + 16, ks_list, 8);
2501 memcpy(buf + 24, mf_nr_ar, 4);
2502
2503 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2504
99cf19d9 2505 // Thats it...
1c611bbd 2506 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2507 LEDsoff();
99cf19d9 2508
2509 set_tracing(FALSE);
20f9a2a1 2510}
1c611bbd 2511
0de8e387 2512/**
d2f487af 2513 *MIFARE 1K simulate.
2514 *
2515 *@param flags :
2516 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2517 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2518 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2519 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2520 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2521 */
2522void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2523{
50193c1e 2524 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2525 int _7BUID = 0;
9ca155ba 2526 int vHf = 0; // in mV
8f51ddb0 2527 int res;
0a39986e
M
2528 uint32_t selTimer = 0;
2529 uint32_t authTimer = 0;
6a1f2d82 2530 uint16_t len = 0;
8f51ddb0 2531 uint8_t cardWRBL = 0;
9ca155ba
M
2532 uint8_t cardAUTHSC = 0;
2533 uint8_t cardAUTHKEY = 0xff; // no authentication
c3c241f3 2534// uint32_t cardRr = 0;
9ca155ba 2535 uint32_t cuid = 0;
d2f487af 2536 //uint32_t rn_enc = 0;
51969283 2537 uint32_t ans = 0;
0014cb46
M
2538 uint32_t cardINTREG = 0;
2539 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2540 struct Crypto1State mpcs = {0, 0};
2541 struct Crypto1State *pcs;
2542 pcs = &mpcs;
d2f487af 2543 uint32_t numReads = 0;//Counts numer of times reader read a block
f71f4deb 2544 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2545 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2546 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2547 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
9ca155ba 2548
d2f487af 2549 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2550 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2551 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
94422fa2 2552 uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2553 //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
d2f487af 2554 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2555
2d2f7d19 2556 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
d2f487af 2557 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2558
d2f487af 2559 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2560 // This can be used in a reader-only attack.
2561 // (it can also be retrieved via 'hf 14a list', but hey...
c3c241f3 2562 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
d2f487af 2563 uint8_t ar_nr_collected = 0;
0014cb46 2564
7bc95e2e 2565 // Authenticate response - nonce
51969283 2566 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2567
d2f487af 2568 //-- Determine the UID
2569 // Can be set from emulator memory, incoming data
2570 // and can be 7 or 4 bytes long
7bc95e2e 2571 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2572 {
2573 // 4B uid comes from data-portion of packet
2574 memcpy(rUIDBCC1,datain,4);
8556b852 2575 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2576
7bc95e2e 2577 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2578 // 7B uid comes from data-portion of packet
2579 memcpy(&rUIDBCC1[1],datain,3);
2580 memcpy(rUIDBCC2, datain+3, 4);
2581 _7BUID = true;
7bc95e2e 2582 } else {
d2f487af 2583 // get UID from emul memory
2584 emlGetMemBt(receivedCmd, 7, 1);
2585 _7BUID = !(receivedCmd[0] == 0x00);
2586 if (!_7BUID) { // ---------- 4BUID
2587 emlGetMemBt(rUIDBCC1, 0, 4);
2588 } else { // ---------- 7BUID
2589 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2590 emlGetMemBt(rUIDBCC2, 3, 4);
2591 }
2592 }
7bc95e2e 2593
c3c241f3 2594 // save uid.
2595 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2596 if ( _7BUID )
2597 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2598
d2f487af 2599 /*
2600 * Regardless of what method was used to set the UID, set fifth byte and modify
2601 * the ATQA for 4 or 7-byte UID
2602 */
d2f487af 2603 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2604 if (_7BUID) {
d2f487af 2605 rATQA[0] = 0x44;
8556b852 2606 rUIDBCC1[0] = 0x88;
d26849d4 2607 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852
M
2608 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2609 }
2610
d2f487af 2611 if (MF_DBGLEVEL >= 1) {
2612 if (!_7BUID) {
b03c0f2d 2613 Dbprintf("4B UID: %02x%02x%02x%02x",
2614 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2615 } else {
b03c0f2d 2616 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2617 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2618 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2619 }
2620 }
7bc95e2e 2621
99cf19d9 2622 // We need to listen to the high-frequency, peak-detected path.
2623 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2624
2625 // free eventually allocated BigBuf memory but keep Emulator Memory
2626 BigBuf_free_keep_EM();
2627
2628 // clear trace
2629 clear_trace();
2630 set_tracing(TRUE);
2631
2632
7bc95e2e 2633 bool finished = FALSE;
d2f487af 2634 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2635 WDT_HIT();
9ca155ba
M
2636
2637 // find reader field
9ca155ba 2638 if (cardSTATE == MFEMUL_NOFIELD) {
0c8d25eb 2639 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
9ca155ba 2640 if (vHf > MF_MINFIELDV) {
0014cb46 2641 cardSTATE_TO_IDLE();
9ca155ba
M
2642 LED_A_ON();
2643 }
2644 }
d2f487af 2645 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2646
d2f487af 2647 //Now, get data
6a1f2d82 2648 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2649 if (res == 2) { //Field is off!
2650 cardSTATE = MFEMUL_NOFIELD;
2651 LEDsoff();
2652 continue;
7bc95e2e 2653 } else if (res == 1) {
2654 break; //return value 1 means button press
2655 }
2656
d2f487af 2657 // REQ or WUP request in ANY state and WUP in HALTED state
2658 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2659 selTimer = GetTickCount();
2660 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2661 cardSTATE = MFEMUL_SELECT1;
2662
2663 // init crypto block
2664 LED_B_OFF();
2665 LED_C_OFF();
2666 crypto1_destroy(pcs);
2667 cardAUTHKEY = 0xff;
2668 continue;
0a39986e 2669 }
7bc95e2e 2670
50193c1e 2671 switch (cardSTATE) {
d2f487af 2672 case MFEMUL_NOFIELD:
2673 case MFEMUL_HALTED:
50193c1e 2674 case MFEMUL_IDLE:{
6a1f2d82 2675 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2676 break;
2677 }
2678 case MFEMUL_SELECT1:{
9ca155ba
M
2679 // select all
2680 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2681 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2682 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2683 break;
9ca155ba
M
2684 }
2685
d2f487af 2686 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2687 {
2688 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2689 }
9ca155ba 2690 // select card
0a39986e
M
2691 if (len == 9 &&
2692 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2693 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2694 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2695 if (!_7BUID) {
2696 cardSTATE = MFEMUL_WORK;
0014cb46
M
2697 LED_B_ON();
2698 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2699 break;
8556b852
M
2700 } else {
2701 cardSTATE = MFEMUL_SELECT2;
8556b852 2702 }
9ca155ba 2703 }
50193c1e
M
2704 break;
2705 }
d2f487af 2706 case MFEMUL_AUTH1:{
2707 if( len != 8)
2708 {
2709 cardSTATE_TO_IDLE();
6a1f2d82 2710 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2711 break;
2712 }
0c8d25eb 2713
d2f487af 2714 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2715 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2716
2717 //Collect AR/NR
46cd801c 2718 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2719 if(ar_nr_collected < 2){
273b57a7 2720 if(ar_nr_responses[2] != ar)
2721 {// Avoid duplicates... probably not necessary, ar should vary.
c3c241f3 2722 //ar_nr_responses[ar_nr_collected*5] = 0;
2723 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2724 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2725 ar_nr_responses[ar_nr_collected*5+3] = nr;
2726 ar_nr_responses[ar_nr_collected*5+4] = ar;
273b57a7 2727 ar_nr_collected++;
12d708fe 2728 }
2729 // Interactive mode flag, means we need to send ACK
2730 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2731 {
2732 finished = true;
46cd801c 2733 }
d2f487af 2734 }
2735
2736 // --- crypto
c3c241f3 2737 //crypto1_word(pcs, ar , 1);
2738 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2739
2740 //test if auth OK
2741 //if (cardRr != prng_successor(nonce, 64)){
2742
2743 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2744 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2745 // cardRr, prng_successor(nonce, 64));
7bc95e2e 2746 // Shouldn't we respond anything here?
d2f487af 2747 // Right now, we don't nack or anything, which causes the
2748 // reader to do a WUPA after a while. /Martin
b03c0f2d 2749 // -- which is the correct response. /piwi
c3c241f3 2750 //cardSTATE_TO_IDLE();
2751 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2752 //break;
2753 //}
d2f487af 2754
2755 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2756
2757 num_to_bytes(ans, 4, rAUTH_AT);
2758 // --- crypto
2759 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2760 LED_C_ON();
2761 cardSTATE = MFEMUL_WORK;
b03c0f2d 2762 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2763 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2764 GetTickCount() - authTimer);
d2f487af 2765 break;
2766 }
50193c1e 2767 case MFEMUL_SELECT2:{
7bc95e2e 2768 if (!len) {
6a1f2d82 2769 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2770 break;
2771 }
8556b852 2772 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2773 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2774 break;
2775 }
9ca155ba 2776
8556b852
M
2777 // select 2 card
2778 if (len == 9 &&
2779 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2780 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2781 cuid = bytes_to_num(rUIDBCC2, 4);
2782 cardSTATE = MFEMUL_WORK;
2783 LED_B_ON();
0014cb46 2784 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2785 break;
2786 }
0014cb46
M
2787
2788 // i guess there is a command). go into the work state.
7bc95e2e 2789 if (len != 4) {
6a1f2d82 2790 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2791 break;
2792 }
0014cb46 2793 cardSTATE = MFEMUL_WORK;
d2f487af 2794 //goto lbWORK;
2795 //intentional fall-through to the next case-stmt
50193c1e 2796 }
51969283 2797
7bc95e2e 2798 case MFEMUL_WORK:{
2799 if (len == 0) {
6a1f2d82 2800 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2801 break;
2802 }
2803
d2f487af 2804 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2805
7bc95e2e 2806 if(encrypted_data) {
51969283
M
2807 // decrypt seqence
2808 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2809 }
7bc95e2e 2810
d2f487af 2811 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2812 authTimer = GetTickCount();
2813 cardAUTHSC = receivedCmd[1] / 4; // received block num
2814 cardAUTHKEY = receivedCmd[0] - 0x60;
2815 crypto1_destroy(pcs);//Added by martin
2816 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2817
d2f487af 2818 if (!encrypted_data) { // first authentication
b03c0f2d 2819 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2820
d2f487af 2821 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2822 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2823 } else { // nested authentication
b03c0f2d 2824 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2825 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2826 num_to_bytes(ans, 4, rAUTH_AT);
2827 }
0c8d25eb 2828
d2f487af 2829 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2830 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2831 cardSTATE = MFEMUL_AUTH1;
2832 break;
51969283 2833 }
7bc95e2e 2834
8f51ddb0
M
2835 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2836 // BUT... ACK --> NACK
2837 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2838 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2839 break;
2840 }
2841
2842 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2843 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2844 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2845 break;
0a39986e
M
2846 }
2847
7bc95e2e 2848 if(len != 4) {
6a1f2d82 2849 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2850 break;
2851 }
d2f487af 2852
2853 if(receivedCmd[0] == 0x30 // read block
2854 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2855 || receivedCmd[0] == 0xC0 // inc
2856 || receivedCmd[0] == 0xC1 // dec
2857 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2858 || receivedCmd[0] == 0xB0) { // transfer
2859 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2860 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2861 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2862 break;
2863 }
2864
7bc95e2e 2865 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2866 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2867 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2868 break;
2869 }
d2f487af 2870 }
2871 // read block
2872 if (receivedCmd[0] == 0x30) {
b03c0f2d 2873 if (MF_DBGLEVEL >= 4) {
d2f487af 2874 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2875 }
8f51ddb0
M
2876 emlGetMem(response, receivedCmd[1], 1);
2877 AppendCrc14443a(response, 16);
6a1f2d82 2878 mf_crypto1_encrypt(pcs, response, 18, response_par);
2879 EmSendCmdPar(response, 18, response_par);
d2f487af 2880 numReads++;
12d708fe 2881 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
d2f487af 2882 Dbprintf("%d reads done, exiting", numReads);
2883 finished = true;
2884 }
0a39986e
M
2885 break;
2886 }
0a39986e 2887 // write block
d2f487af 2888 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2889 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2890 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2891 cardSTATE = MFEMUL_WRITEBL2;
2892 cardWRBL = receivedCmd[1];
0a39986e 2893 break;
7bc95e2e 2894 }
0014cb46 2895 // increment, decrement, restore
d2f487af 2896 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2897 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2898 if (emlCheckValBl(receivedCmd[1])) {
c3c241f3 2899 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2900 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2901 break;
2902 }
2903 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2904 if (receivedCmd[0] == 0xC1)
2905 cardSTATE = MFEMUL_INTREG_INC;
2906 if (receivedCmd[0] == 0xC0)
2907 cardSTATE = MFEMUL_INTREG_DEC;
2908 if (receivedCmd[0] == 0xC2)
2909 cardSTATE = MFEMUL_INTREG_REST;
2910 cardWRBL = receivedCmd[1];
0014cb46
M
2911 break;
2912 }
0014cb46 2913 // transfer
d2f487af 2914 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2915 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2916 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2917 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2918 else
2919 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2920 break;
2921 }
9ca155ba 2922 // halt
d2f487af 2923 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2924 LED_B_OFF();
0a39986e 2925 LED_C_OFF();
0014cb46
M
2926 cardSTATE = MFEMUL_HALTED;
2927 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2928 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2929 break;
9ca155ba 2930 }
d2f487af 2931 // RATS
2932 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2933 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2934 break;
2935 }
d2f487af 2936 // command not allowed
2937 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2938 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2939 break;
8f51ddb0
M
2940 }
2941 case MFEMUL_WRITEBL2:{
2942 if (len == 18){
2943 mf_crypto1_decrypt(pcs, receivedCmd, len);
2944 emlSetMem(receivedCmd, cardWRBL, 1);
2945 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2946 cardSTATE = MFEMUL_WORK;
51969283 2947 } else {
0014cb46 2948 cardSTATE_TO_IDLE();
6a1f2d82 2949 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2950 }
8f51ddb0 2951 break;
50193c1e 2952 }
0014cb46
M
2953
2954 case MFEMUL_INTREG_INC:{
2955 mf_crypto1_decrypt(pcs, receivedCmd, len);
2956 memcpy(&ans, receivedCmd, 4);
2957 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2958 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2959 cardSTATE_TO_IDLE();
2960 break;
7bc95e2e 2961 }
6a1f2d82 2962 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2963 cardINTREG = cardINTREG + ans;
2964 cardSTATE = MFEMUL_WORK;
2965 break;
2966 }
2967 case MFEMUL_INTREG_DEC:{
2968 mf_crypto1_decrypt(pcs, receivedCmd, len);
2969 memcpy(&ans, receivedCmd, 4);
2970 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2971 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2972 cardSTATE_TO_IDLE();
2973 break;
2974 }
6a1f2d82 2975 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2976 cardINTREG = cardINTREG - ans;
2977 cardSTATE = MFEMUL_WORK;
2978 break;
2979 }
2980 case MFEMUL_INTREG_REST:{
2981 mf_crypto1_decrypt(pcs, receivedCmd, len);
2982 memcpy(&ans, receivedCmd, 4);
2983 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2984 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2985 cardSTATE_TO_IDLE();
2986 break;
2987 }
6a1f2d82 2988 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2989 cardSTATE = MFEMUL_WORK;
2990 break;
2991 }
50193c1e 2992 }
50193c1e
M
2993 }
2994
9ca155ba
M
2995 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2996 LEDsoff();
2997
d2f487af 2998 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2999 {
3000 //May just aswell send the collected ar_nr in the response aswell
c3c241f3 3001 uint8_t len = ar_nr_collected*5*4;
3002 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
d2f487af 3003 }
d714d3ef 3004
12d708fe 3005 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
d2f487af 3006 {
12d708fe 3007 if(ar_nr_collected > 1 ) {
d2f487af 3008 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
c3c241f3 3009 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
3010 ar_nr_responses[0], // UID1
3011 ar_nr_responses[1], // UID2
3012 ar_nr_responses[2], // NT
3013 ar_nr_responses[3], // AR1
3014 ar_nr_responses[4], // NR1
3015 ar_nr_responses[8], // AR2
3016 ar_nr_responses[9] // NR2
d2f487af 3017 );
7838f4be 3018 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
3019 ar_nr_responses[0], // UID1
3020 ar_nr_responses[1], // UID2
3021 ar_nr_responses[2], // NT1
3022 ar_nr_responses[3], // AR1
3023 ar_nr_responses[4], // NR1
3024 ar_nr_responses[7], // NT2
3025 ar_nr_responses[8], // AR2
3026 ar_nr_responses[9] // NR2
3027 );
7bc95e2e 3028 } else {
d2f487af 3029 Dbprintf("Failed to obtain two AR/NR pairs!");
12d708fe 3030 if(ar_nr_collected > 0 ) {
c3c241f3 3031 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
3032 ar_nr_responses[0], // UID1
3033 ar_nr_responses[1], // UID2
3034 ar_nr_responses[2], // NT
3035 ar_nr_responses[3], // AR1
3036 ar_nr_responses[4] // NR1
d2f487af 3037 );
3038 }
3039 }
3040 }
c3c241f3 3041 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
5ee53a0e 3042
3043 set_tracing(FALSE);
15c4dc5a 3044}
b62a5a84 3045
d2f487af 3046
b62a5a84
M
3047//-----------------------------------------------------------------------------
3048// MIFARE sniffer.
3049//
3050//-----------------------------------------------------------------------------
5cd9ec01
M
3051void RAMFUNC SniffMifare(uint8_t param) {
3052 // param:
3053 // bit 0 - trigger from first card answer
3054 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
3055
3056 // C(red) A(yellow) B(green)
b62a5a84
M
3057 LEDsoff();
3058 // init trace buffer
3000dc4e
MHS
3059 clear_trace();
3060 set_tracing(TRUE);
b62a5a84 3061
b62a5a84
M
3062 // The command (reader -> tag) that we're receiving.
3063 // The length of a received command will in most cases be no more than 18 bytes.
3064 // So 32 should be enough!
f71f4deb 3065 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
3066 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 3067 // The response (tag -> reader) that we're receiving.
f71f4deb 3068 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
3069 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 3070
99cf19d9 3071 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
3072
3073 // free eventually allocated BigBuf memory
3074 BigBuf_free();
f71f4deb 3075 // allocate the DMA buffer, used to stream samples from the FPGA
3076 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
7bc95e2e 3077 uint8_t *data = dmaBuf;
3078 uint8_t previous_data = 0;
5cd9ec01
M
3079 int maxDataLen = 0;
3080 int dataLen = 0;
7bc95e2e 3081 bool ReaderIsActive = FALSE;
3082 bool TagIsActive = FALSE;
3083
b62a5a84 3084 // Set up the demodulator for tag -> reader responses.
6a1f2d82 3085 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
3086
3087 // Set up the demodulator for the reader -> tag commands
6a1f2d82 3088 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
3089
3090 // Setup for the DMA.
7bc95e2e 3091 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 3092
b62a5a84 3093 LED_D_OFF();
39864b0b
M
3094
3095 // init sniffer
3096 MfSniffInit();
b62a5a84 3097
b62a5a84 3098 // And now we loop, receiving samples.
7bc95e2e 3099 for(uint32_t sniffCounter = 0; TRUE; ) {
3100
5cd9ec01
M
3101 if(BUTTON_PRESS()) {
3102 DbpString("cancelled by button");
7bc95e2e 3103 break;
5cd9ec01
M
3104 }
3105
b62a5a84
M
3106 LED_A_ON();
3107 WDT_HIT();
39864b0b 3108
7bc95e2e 3109 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
3110 // check if a transaction is completed (timeout after 2000ms).
3111 // if yes, stop the DMA transfer and send what we have so far to the client
3112 if (MfSniffSend(2000)) {
3113 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3114 sniffCounter = 0;
3115 data = dmaBuf;
3116 maxDataLen = 0;
3117 ReaderIsActive = FALSE;
3118 TagIsActive = FALSE;
3119 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 3120 }
39864b0b 3121 }
7bc95e2e 3122
3123 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3124 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3125 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
3126 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3127 } else {
3128 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
3129 }
3130 // test for length of buffer
7bc95e2e 3131 if(dataLen > maxDataLen) { // we are more behind than ever...
3132 maxDataLen = dataLen;
f71f4deb 3133 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
5cd9ec01 3134 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 3135 break;
b62a5a84
M
3136 }
3137 }
5cd9ec01 3138 if(dataLen < 1) continue;
b62a5a84 3139
7bc95e2e 3140 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
3141 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3142 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3143 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 3144 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
3145 }
3146 // secondary buffer sets as primary, secondary buffer was stopped
3147 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3148 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
3149 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3150 }
5cd9ec01
M
3151
3152 LED_A_OFF();
b62a5a84 3153
7bc95e2e 3154 if (sniffCounter & 0x01) {
b62a5a84 3155
7bc95e2e 3156 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3157 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3158 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3159 LED_C_INV();
6a1f2d82 3160 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 3161
7bc95e2e 3162 /* And ready to receive another command. */
2d2f7d19 3163 UartReset();
7bc95e2e 3164
3165 /* And also reset the demod code */
3166 DemodReset();
3167 }
3168 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3169 }
3170
3171 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3172 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3173 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3174 LED_C_INV();
b62a5a84 3175
6a1f2d82 3176 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 3177
7bc95e2e 3178 // And ready to receive another response.
3179 DemodReset();
46c65fed 3180
0ec548dc 3181 // And reset the Miller decoder including its (now outdated) input buffer
3182 UartInit(receivedCmd, receivedCmdPar);
7838f4be 3183 // why not UartReset?
7bc95e2e 3184 }
3185 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3186 }
b62a5a84
M
3187 }
3188
7bc95e2e 3189 previous_data = *data;
3190 sniffCounter++;
5cd9ec01 3191 data++;
d714d3ef 3192 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 3193 data = dmaBuf;
b62a5a84 3194 }
7bc95e2e 3195
b62a5a84
M
3196 } // main cycle
3197
55acbb2a 3198 FpgaDisableSscDma();
39864b0b 3199 MfSniffEnd();
b62a5a84 3200 LEDsoff();
7838f4be 3201 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
5ee53a0e 3202 set_tracing(FALSE);
3803d529 3203}
Impressum, Datenschutz