]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
CHG: "hf 14 sim t 7" ie NTAG simulation, now reads the emulator memory for read...
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
15c4dc5a 18#include "iso14443crc.h"
534983d7 19#include "iso14443a.h"
20f9a2a1
M
20#include "crapto1.h"
21#include "mifareutil.h"
3000dc4e 22#include "BigBuf.h"
534983d7 23static uint32_t iso14a_timeout;
1e262141 24int rsamples = 0;
1e262141 25uint8_t trigger = 0;
b0127e65 26// the block number for the ISO14443-4 PCB
27static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 28
7bc95e2e 29//
30// ISO14443 timing:
31//
32// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33#define REQUEST_GUARD_TIME (7000/16 + 1)
34// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36// bool LastCommandWasRequest = FALSE;
37
38//
39// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40//
d714d3ef 41// When the PM acts as reader and is receiving tag data, it takes
42// 3 ticks delay in the AD converter
43// 16 ticks until the modulation detector completes and sets curbit
44// 8 ticks until bit_to_arm is assigned from curbit
45// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 46// 4*16 ticks until we measure the time
47// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 48#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 49
50// When the PM acts as a reader and is sending, it takes
51// 4*16 ticks until we can write data to the sending hold register
52// 8*16 ticks until the SHR is transferred to the Sending Shift Register
53// 8 ticks until the first transfer starts
54// 8 ticks later the FPGA samples the data
55// 1 tick to assign mod_sig_coil
56#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58// When the PM acts as tag and is receiving it takes
d714d3ef 59// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 60// 3 ticks for the A/D conversion,
61// 8 ticks on average until the start of the SSC transfer,
62// 8 ticks until the SSC samples the first data
63// 7*16 ticks to complete the transfer from FPGA to ARM
64// 8 ticks until the next ssp_clk rising edge
d714d3ef 65// 4*16 ticks until we measure the time
7bc95e2e 66// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 67#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 68
69// The FPGA will report its internal sending delay in
70uint16_t FpgaSendQueueDelay;
71// the 5 first bits are the number of bits buffered in mod_sig_buf
72// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75// When the PM acts as tag and is sending, it takes
d714d3ef 76// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 77// 8*16 ticks until the SHR is transferred to the Sending Shift Register
78// 8 ticks until the first transfer starts
79// 8 ticks later the FPGA samples the data
80// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81// + 1 tick to assign mod_sig_coil
d714d3ef 82#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 83
84// When the PM acts as sniffer and is receiving tag data, it takes
85// 3 ticks A/D conversion
d714d3ef 86// 14 ticks to complete the modulation detection
87// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 88// + the delays in transferring data - which is the same for
89// sniffing reader and tag data and therefore not relevant
d714d3ef 90#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 91
d714d3ef 92// When the PM acts as sniffer and is receiving reader data, it takes
93// 2 ticks delay in analogue RF receiver (for the falling edge of the
94// start bit, which marks the start of the communication)
7bc95e2e 95// 3 ticks A/D conversion
d714d3ef 96// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 97// + the delays in transferring data - which is the same for
98// sniffing reader and tag data and therefore not relevant
d714d3ef 99#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 100
101//variables used for timing purposes:
102//these are in ssp_clk cycles:
6a1f2d82 103static uint32_t NextTransferTime;
104static uint32_t LastTimeProxToAirStart;
105static uint32_t LastProxToAirDuration;
7bc95e2e 106
107
108
8f51ddb0 109// CARD TO READER - manchester
72934aa3 110// Sequence D: 11110000 modulation with subcarrier during first half
111// Sequence E: 00001111 modulation with subcarrier during second half
112// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 113// READER TO CARD - miller
72934aa3 114// Sequence X: 00001100 drop after half a period
115// Sequence Y: 00000000 no drop
116// Sequence Z: 11000000 drop at start
117#define SEC_D 0xf0
118#define SEC_E 0x0f
119#define SEC_F 0x00
120#define SEC_X 0x0c
121#define SEC_Y 0x00
122#define SEC_Z 0xc0
15c4dc5a 123
1e262141 124const uint8_t OddByteParity[256] = {
15c4dc5a 125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141};
142
19a700a8 143
902cb3c0 144void iso14a_set_trigger(bool enable) {
534983d7 145 trigger = enable;
146}
147
d19929cb 148
b0127e65 149void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
19a700a8 151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
b0127e65 152}
8556b852 153
19a700a8 154
155void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174}
175
176
15c4dc5a 177//-----------------------------------------------------------------------------
178// Generate the parity value for a byte sequence
e30c654b 179//
15c4dc5a 180//-----------------------------------------------------------------------------
20f9a2a1
M
181byte_t oddparity (const byte_t bt)
182{
5f6d6c90 183 return OddByteParity[bt];
20f9a2a1
M
184}
185
6a1f2d82 186void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 187{
6a1f2d82 188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
5f6d6c90 203 }
6a1f2d82 204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
15c4dc5a 208}
209
534983d7 210void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 211{
5f6d6c90 212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 213}
214
0ec548dc 215void AppendCrc14443b(uint8_t* data, int len)
216{
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218}
219
220
7bc95e2e 221//=============================================================================
222// ISO 14443 Type A - Miller decoder
223//=============================================================================
224// Basics:
225// This decoder is used when the PM3 acts as a tag.
226// The reader will generate "pauses" by temporarily switching of the field.
227// At the PM3 antenna we will therefore measure a modulated antenna voltage.
228// The FPGA does a comparison with a threshold and would deliver e.g.:
229// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230// The Miller decoder needs to identify the following sequences:
231// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234// Note 1: the bitstream may start at any time. We therefore need to sync.
235// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 236//-----------------------------------------------------------------------------
b62a5a84 237static tUart Uart;
15c4dc5a 238
d7aa3739 239// Lookup-Table to decide if 4 raw bits are a modulation.
0ec548dc 240// We accept the following:
241// 0001 - a 3 tick wide pause
242// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243// 0111 - a 2 tick wide pause shifted left
244// 1001 - a 2 tick wide pause shifted right
d7aa3739 245const bool Mod_Miller_LUT[] = {
0ec548dc 246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
d7aa3739 248};
0ec548dc 249#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
d7aa3739 251
7bc95e2e 252void UartReset()
15c4dc5a 253{
7bc95e2e 254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
6a1f2d82 257 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 259 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 260 Uart.startTime = 0;
261 Uart.endTime = 0;
46c65fed 262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
7bc95e2e 266}
15c4dc5a 267
6a1f2d82 268void UartInit(uint8_t *data, uint8_t *parity)
269{
270 Uart.output = data;
271 Uart.parity = parity;
0ec548dc 272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
6a1f2d82 273 UartReset();
274}
d714d3ef 275
7bc95e2e 276// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278{
15c4dc5a 279
0ec548dc 280 Uart.fourBits = (Uart.fourBits << 8) | bit;
7bc95e2e 281
0c8d25eb 282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
3fe4ff4f 283
0ec548dc 284 Uart.syncBit = 9999; // not set
46c65fed 285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
0ec548dc 290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
46c65fed 291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
0ec548dc 293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
46c65fed 294 //
295#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
0ec548dc 298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
7bc95e2e 308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
d7aa3739 310 Uart.endTime = Uart.startTime;
7bc95e2e 311 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 312 }
313
7bc95e2e 314 } else {
15c4dc5a 315
0ec548dc 316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
d7aa3739 318 UartReset();
d7aa3739 319 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
7bc95e2e 322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
6a1f2d82 333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
15c4dc5a 337 }
7bc95e2e 338 }
d7aa3739 339 }
340 } else {
0ec548dc 341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
6a1f2d82 352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
7bc95e2e 356 }
d7aa3739 357 } else { // no modulation in both halves - Sequence Y
7bc95e2e 358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 359 Uart.state = STATE_UNSYNCD;
6a1f2d82 360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 372 }
373 if (Uart.len) {
6a1f2d82 374 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 375 } else {
0c8d25eb 376 UartReset(); // Nothing received - start over
7bc95e2e 377 }
15c4dc5a 378 }
7bc95e2e 379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
7bc95e2e 381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
6a1f2d82 391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
15c4dc5a 395 }
396 }
d7aa3739 397 }
15c4dc5a 398 }
7bc95e2e 399
400 }
15c4dc5a 401
7bc95e2e 402 return FALSE; // not finished yet, need more data
15c4dc5a 403}
404
7bc95e2e 405
406
15c4dc5a 407//=============================================================================
e691fc45 408// ISO 14443 Type A - Manchester decoder
15c4dc5a 409//=============================================================================
e691fc45 410// Basics:
7bc95e2e 411// This decoder is used when the PM3 acts as a reader.
e691fc45 412// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415// The Manchester decoder needs to identify the following sequences:
416// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418// 8 ticks unmodulated: Sequence F = end of communication
419// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 420// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 421// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 422static tDemod Demod;
15c4dc5a 423
d7aa3739 424// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 425// We accept three or four "1" in any position
7bc95e2e 426const bool Mod_Manchester_LUT[] = {
d7aa3739 427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 429};
430
431#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 433
2f2d9fc5 434
7bc95e2e 435void DemodReset()
e691fc45 436{
7bc95e2e 437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
6a1f2d82 439 Demod.parityLen = 0;
7bc95e2e 440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
46c65fed 447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
e691fc45 452}
15c4dc5a 453
6a1f2d82 454void DemodInit(uint8_t *data, uint8_t *parity)
455{
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459}
460
7bc95e2e 461// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 463{
7bc95e2e 464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 466
7bc95e2e 467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 485 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
e691fc45 489 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 490 }
7bc95e2e 491 }
15c4dc5a 492
7bc95e2e 493 } else {
15c4dc5a 494
7bc95e2e 495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
7bc95e2e 501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 505 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
6a1f2d82 509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
15c4dc5a 513 }
7bc95e2e 514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 517 Demod.bitCount++;
7bc95e2e 518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 521 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
6a1f2d82 525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
15c4dc5a 529 }
7bc95e2e 530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 531 } else { // no modulation in both halves - End of communication
6a1f2d82 532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 542 }
543 if (Demod.len) {
d7aa3739 544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
e691fc45 547 }
15c4dc5a 548 }
7bc95e2e 549 }
e691fc45 550 }
e691fc45 551 return FALSE; // not finished yet, need more data
15c4dc5a 552}
553
554//=============================================================================
555// Finally, a `sniffer' for ISO 14443 Type A
556// Both sides of communication!
557//=============================================================================
558
559//-----------------------------------------------------------------------------
560// Record the sequence of commands sent by the reader to the tag, with
561// triggering so that we start recording at the point that the tag is moved
562// near the reader.
563//-----------------------------------------------------------------------------
d26849d4 564void RAMFUNC SniffIso14443a(uint8_t param) {
5cd9ec01
M
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
568
569 LEDsoff();
5cd9ec01
M
570
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
7bc95e2e 575 bool triggered = !(param & 0x03);
576
f71f4deb 577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
579 BigBuf_free();
580
5cd9ec01 581 // The command (reader -> tag) that we're receiving.
f71f4deb 582 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
583 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
6a1f2d82 584
5cd9ec01 585 // The response (tag -> reader) that we're receiving.
f71f4deb 586 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
587 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
5cd9ec01
M
588
589 // The DMA buffer, used to stream samples from the FPGA
f71f4deb 590 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
591
592 // init trace buffer
3000dc4e
MHS
593 clear_trace();
594 set_tracing(TRUE);
f71f4deb 595
7bc95e2e 596 uint8_t *data = dmaBuf;
597 uint8_t previous_data = 0;
5cd9ec01
M
598 int maxDataLen = 0;
599 int dataLen = 0;
7bc95e2e 600 bool TagIsActive = FALSE;
601 bool ReaderIsActive = FALSE;
602
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 604
5cd9ec01 605 // Set up the demodulator for tag -> reader responses.
6a1f2d82 606 DemodInit(receivedResponse, receivedResponsePar);
607
5cd9ec01 608 // Set up the demodulator for the reader -> tag commands
6a1f2d82 609 UartInit(receivedCmd, receivedCmdPar);
610
7bc95e2e 611 // Setup and start DMA.
5cd9ec01 612 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 613
5cd9ec01 614 // And now we loop, receiving samples.
7bc95e2e 615 for(uint32_t rsamples = 0; TRUE; ) {
616
5cd9ec01
M
617 if(BUTTON_PRESS()) {
618 DbpString("cancelled by button");
7bc95e2e 619 break;
5cd9ec01 620 }
15c4dc5a 621
5cd9ec01
M
622 LED_A_ON();
623 WDT_HIT();
15c4dc5a 624
5cd9ec01
M
625 int register readBufDataP = data - dmaBuf;
626 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
627 if (readBufDataP <= dmaBufDataP){
628 dataLen = dmaBufDataP - readBufDataP;
629 } else {
7bc95e2e 630 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
631 }
632 // test for length of buffer
633 if(dataLen > maxDataLen) {
634 maxDataLen = dataLen;
f71f4deb 635 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
7bc95e2e 636 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
637 break;
5cd9ec01
M
638 }
639 }
640 if(dataLen < 1) continue;
641
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
644 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
645 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
647 }
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
650 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
651 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
652 }
653
654 LED_A_OFF();
7bc95e2e 655
656 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 657
7bc95e2e 658 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
660 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
661 LED_C_ON();
5cd9ec01 662
7bc95e2e 663 // check - if there is a short 7bit request from reader
664 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 665
7bc95e2e 666 if(triggered) {
6a1f2d82 667 if (!LogTrace(receivedCmd,
668 Uart.len,
669 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
671 Uart.parity,
672 TRUE)) break;
7bc95e2e 673 }
674 /* And ready to receive another command. */
675 UartReset();
2d2f7d19 676 //UartInit(receivedCmd, receivedCmdPar);
7bc95e2e 677 /* And also reset the demod code, which might have been */
678 /* false-triggered by the commands from the reader. */
679 DemodReset();
680 LED_B_OFF();
681 }
682 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 683 }
3be2a5ae 684
7bc95e2e 685 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
686 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
687 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
688 LED_B_ON();
5cd9ec01 689
6a1f2d82 690 if (!LogTrace(receivedResponse,
691 Demod.len,
692 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
693 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
694 Demod.parity,
695 FALSE)) break;
5cd9ec01 696
7bc95e2e 697 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 698
7bc95e2e 699 // And ready to receive another response.
700 DemodReset();
0ec548dc 701 // And reset the Miller decoder including itS (now outdated) input buffer
702 UartInit(receivedCmd, receivedCmdPar);
703
7bc95e2e 704 LED_C_OFF();
705 }
706 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
707 }
5cd9ec01
M
708 }
709
7bc95e2e 710 previous_data = *data;
711 rsamples++;
5cd9ec01 712 data++;
d714d3ef 713 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
714 data = dmaBuf;
715 }
716 } // main cycle
717
718 DbpString("COMMAND FINISHED");
15c4dc5a 719
7bc95e2e 720 FpgaDisableSscDma();
721 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
3000dc4e 722 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
5cd9ec01 723 LEDsoff();
15c4dc5a 724}
725
15c4dc5a 726//-----------------------------------------------------------------------------
727// Prepare tag messages
728//-----------------------------------------------------------------------------
6a1f2d82 729static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 730{
8f51ddb0 731 ToSendReset();
15c4dc5a 732
733 // Correction bit, might be removed when not needed
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(0);
738 ToSendStuffBit(1); // 1
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741 ToSendStuffBit(0);
8f51ddb0 742
15c4dc5a 743 // Send startbit
72934aa3 744 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 745 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 746
6a1f2d82 747 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 748 uint8_t b = cmd[i];
15c4dc5a 749
750 // Data bits
6a1f2d82 751 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 752 if(b & 1) {
72934aa3 753 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 754 } else {
72934aa3 755 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
756 }
757 b >>= 1;
758 }
15c4dc5a 759
0014cb46 760 // Get the parity bit
6a1f2d82 761 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 762 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 763 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 764 } else {
72934aa3 765 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 766 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 767 }
8f51ddb0 768 }
15c4dc5a 769
8f51ddb0
M
770 // Send stopbit
771 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 772
8f51ddb0
M
773 // Convert from last byte pos to length
774 ToSendMax++;
8f51ddb0
M
775}
776
6a1f2d82 777static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
778{
779 uint8_t par[MAX_PARITY_SIZE];
780
781 GetParity(cmd, len, par);
782 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 783}
784
15c4dc5a 785
8f51ddb0
M
786static void Code4bitAnswerAsTag(uint8_t cmd)
787{
788 int i;
789
5f6d6c90 790 ToSendReset();
8f51ddb0
M
791
792 // Correction bit, might be removed when not needed
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(1); // 1
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800 ToSendStuffBit(0);
801
802 // Send startbit
803 ToSend[++ToSendMax] = SEC_D;
804
805 uint8_t b = cmd;
806 for(i = 0; i < 4; i++) {
807 if(b & 1) {
808 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 809 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
810 } else {
811 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 812 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
813 }
814 b >>= 1;
815 }
816
817 // Send stopbit
818 ToSend[++ToSendMax] = SEC_F;
819
5f6d6c90 820 // Convert from last byte pos to length
821 ToSendMax++;
15c4dc5a 822}
823
824//-----------------------------------------------------------------------------
825// Wait for commands from reader
826// Stop when button is pressed
827// Or return TRUE when command is captured
828//-----------------------------------------------------------------------------
6a1f2d82 829static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 830{
831 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
832 // only, since we are receiving, not transmitting).
833 // Signal field is off with the appropriate LED
834 LED_D_OFF();
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
836
837 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 838 UartInit(received, parity);
7bc95e2e 839
840 // clear RXRDY:
841 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 842
843 for(;;) {
844 WDT_HIT();
845
846 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 847
15c4dc5a 848 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 849 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
850 if(MillerDecoding(b, 0)) {
851 *len = Uart.len;
15c4dc5a 852 return TRUE;
853 }
7bc95e2e 854 }
15c4dc5a 855 }
856}
28afbd2b 857
6a1f2d82 858static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 859int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 860int EmSend4bit(uint8_t resp);
6a1f2d82 861int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
862int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
863int EmSendCmd(uint8_t *resp, uint16_t respLen);
864int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
865bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
866 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 867
117d9ec2 868static uint8_t* free_buffer_pointer;
ce02f6f9 869
870typedef struct {
871 uint8_t* response;
872 size_t response_n;
873 uint8_t* modulation;
874 size_t modulation_n;
7bc95e2e 875 uint32_t ProxToAirDuration;
ce02f6f9 876} tag_response_info_t;
877
ce02f6f9 878bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 879 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 880 // This will need the following byte array for a modulation sequence
881 // 144 data bits (18 * 8)
882 // 18 parity bits
883 // 2 Start and stop
884 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
885 // 1 just for the case
886 // ----------- +
887 // 166 bytes, since every bit that needs to be send costs us a byte
888 //
f71f4deb 889
890
ce02f6f9 891 // Prepare the tag modulation bits from the message
892 CodeIso14443aAsTag(response_info->response,response_info->response_n);
893
894 // Make sure we do not exceed the free buffer space
895 if (ToSendMax > max_buffer_size) {
896 Dbprintf("Out of memory, when modulating bits for tag answer:");
897 Dbhexdump(response_info->response_n,response_info->response,false);
898 return false;
899 }
900
901 // Copy the byte array, used for this modulation to the buffer position
902 memcpy(response_info->modulation,ToSend,ToSendMax);
903
7bc95e2e 904 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 905 response_info->modulation_n = ToSendMax;
7bc95e2e 906 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 907
908 return true;
909}
910
f71f4deb 911
912// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
913// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
914// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
915// -> need 273 bytes buffer
c9216a92 916// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
917// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
918#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
f71f4deb 919
ce02f6f9 920bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
921 // Retrieve and store the current buffer index
922 response_info->modulation = free_buffer_pointer;
923
924 // Determine the maximum size we can use from our buffer
f71f4deb 925 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
ce02f6f9 926
927 // Forward the prepare tag modulation function to the inner function
f71f4deb 928 if (prepare_tag_modulation(response_info, max_buffer_size)) {
ce02f6f9 929 // Update the free buffer offset
930 free_buffer_pointer += ToSendMax;
931 return true;
932 } else {
933 return false;
934 }
935}
936
15c4dc5a 937//-----------------------------------------------------------------------------
938// Main loop of simulated tag: receive commands from reader, decide what
939// response to send, and send it.
940//-----------------------------------------------------------------------------
d26849d4 941void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
15c4dc5a 942{
d26849d4 943
944 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
945 // This can be used in a reader-only attack.
946 // (it can also be retrieved via 'hf 14a list', but hey...
947 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
948 uint8_t ar_nr_collected = 0;
949
81cd0474 950 uint8_t sak;
32719adf 951
952 // PACK response to PWD AUTH for EV1/NTAG
953 uint8_t response8[4];
954
81cd0474 955 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
956 uint8_t response1[2];
957
958 switch (tagType) {
959 case 1: { // MIFARE Classic
960 // Says: I am Mifare 1k - original line
961 response1[0] = 0x04;
962 response1[1] = 0x00;
963 sak = 0x08;
964 } break;
965 case 2: { // MIFARE Ultralight
966 // Says: I am a stupid memory tag, no crypto
32719adf 967 response1[0] = 0x44;
81cd0474 968 response1[1] = 0x00;
969 sak = 0x00;
970 } break;
971 case 3: { // MIFARE DESFire
972 // Says: I am a DESFire tag, ph33r me
973 response1[0] = 0x04;
974 response1[1] = 0x03;
975 sak = 0x20;
976 } break;
977 case 4: { // ISO/IEC 14443-4
978 // Says: I am a javacard (JCOP)
979 response1[0] = 0x04;
980 response1[1] = 0x00;
981 sak = 0x28;
982 } break;
3fe4ff4f 983 case 5: { // MIFARE TNP3XXX
984 // Says: I am a toy
985 response1[0] = 0x01;
986 response1[1] = 0x0f;
987 sak = 0x01;
d26849d4 988 } break;
989 case 6: { // MIFARE Mini
990 // Says: I am a Mifare Mini, 320b
991 response1[0] = 0x44;
992 response1[1] = 0x00;
993 sak = 0x09;
994 } break;
32719adf 995 case 7: { // NTAG?
996 // Says: I am a NTAG,
997 response1[0] = 0x44;
998 response1[1] = 0x00;
999 sak = 0x00;
1000 // PACK
1001 response8[0] = 0x80;
1002 response8[1] = 0x80;
1003 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
1004 } break;
81cd0474 1005 default: {
1006 Dbprintf("Error: unkown tagtype (%d)",tagType);
1007 return;
1008 } break;
1009 }
1010
1011 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 1012 uint8_t response2[5] = {0x00};
81cd0474 1013
1014 // Check if the uid uses the (optional) part
c8b6da22 1015 uint8_t response2a[5] = {0x00};
1016
d26849d4 1017 if (flags & FLAG_7B_UID_IN_DATA) {
81cd0474 1018 response2[0] = 0x88;
d26849d4 1019 response2[1] = data[0];
1020 response2[2] = data[1];
1021 response2[3] = data[2];
1022
1023 response2a[0] = data[3];
1024 response2a[1] = data[4];
1025 response2a[2] = data[5];
c3c241f3 1026 response2a[3] = data[6]; //??
81cd0474 1027 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1028
1029 // Configure the ATQA and SAK accordingly
1030 response1[0] |= 0x40;
1031 sak |= 0x04;
1032 } else {
d26849d4 1033 memcpy(response2, data, 4);
1034 //num_to_bytes(uid_1st,4,response2);
81cd0474 1035 // Configure the ATQA and SAK accordingly
1036 response1[0] &= 0xBF;
1037 sak &= 0xFB;
1038 }
1039
1040 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1041 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1042
1043 // Prepare the mandatory SAK (for 4 and 7 byte UID)
c8b6da22 1044 uint8_t response3[3] = {0x00};
81cd0474 1045 response3[0] = sak;
1046 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1047
1048 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 1049 uint8_t response3a[3] = {0x00};
81cd0474 1050 response3a[0] = sak & 0xFB;
1051 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1052
2d2f7d19 1053 uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
6a1f2d82 1054 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1055 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1056 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1057 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1058 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1059 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1060
32719adf 1061 // Prepare GET_VERSION (different for EV-1 / NTAG)
1062 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1063 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1064
c9216a92 1065 // Prepare CHK_TEARING
1066 uint8_t response9[] = {0xBD,0x90,0x3f};
1067
1068 #define TAG_RESPONSE_COUNT 10
7bc95e2e 1069 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1070 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1071 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1072 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1073 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1074 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1075 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1076 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
32719adf 1077 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1078 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
c9216a92 1079 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
7bc95e2e 1080 };
1081
1082 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1083 // Such a response is less time critical, so we can prepare them on the fly
1084 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1085 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1086 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1087 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1088 tag_response_info_t dynamic_response_info = {
1089 .response = dynamic_response_buffer,
1090 .response_n = 0,
1091 .modulation = dynamic_modulation_buffer,
1092 .modulation_n = 0
1093 };
ce02f6f9 1094
f71f4deb 1095 BigBuf_free_keep_EM();
1096
1097 // allocate buffers:
1098 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1099 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1100 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1101
1102 // clear trace
3000dc4e
MHS
1103 clear_trace();
1104 set_tracing(TRUE);
f71f4deb 1105
7bc95e2e 1106 // Prepare the responses of the anticollision phase
ce02f6f9 1107 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1108 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1109 prepare_allocated_tag_modulation(&responses[i]);
1110 }
15c4dc5a 1111
7bc95e2e 1112 int len = 0;
15c4dc5a 1113
1114 // To control where we are in the protocol
1115 int order = 0;
1116 int lastorder;
1117
1118 // Just to allow some checks
1119 int happened = 0;
1120 int happened2 = 0;
81cd0474 1121 int cmdsRecvd = 0;
15c4dc5a 1122
254b70a4 1123 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 1124 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 1125
254b70a4 1126 cmdsRecvd = 0;
7bc95e2e 1127 tag_response_info_t* p_response;
15c4dc5a 1128
254b70a4 1129 LED_A_ON();
1130 for(;;) {
7bc95e2e 1131 // Clean receive command buffer
1132
6a1f2d82 1133 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1134 DbpString("Button press");
254b70a4 1135 break;
1136 }
7bc95e2e 1137
1138 p_response = NULL;
1139
254b70a4 1140 // Okay, look at the command now.
1141 lastorder = order;
1142 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1143 p_response = &responses[0]; order = 1;
254b70a4 1144 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1145 p_response = &responses[0]; order = 6;
254b70a4 1146 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1147 p_response = &responses[1]; order = 2;
6a1f2d82 1148 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1149 p_response = &responses[2]; order = 20;
254b70a4 1150 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1151 p_response = &responses[3]; order = 3;
254b70a4 1152 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1153 p_response = &responses[4]; order = 30;
254b70a4 1154 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
32719adf 1155 uint8_t block = receivedCmd[1];
1156 if ( tagType == 7 ) {
5e428463 1157 uint8_t start = 4 * block;
32719adf 1158
1159 if ( block < 4 ) {
1160 //NTAG 215
32719adf 1161 uint8_t blockdata[50] = {
1162 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1163 data[3],data[4],data[5],data[6],
1164 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1165 0xe1,0x10,0x12,0x00,
1166 0x03,0x00,0xfe,0x00,
1167 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1168 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1169 0x00,0x00,0x00,0x00,
1170 0x00,0x00};
c9216a92 1171 AppendCrc14443a(blockdata+start, 16);
5e428463 1172 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
1173 } else {
1174 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1175 emlGetMemBt( emdata, start, 16);
1176 AppendCrc14443a(emdata, 16);
1177 EmSendCmdEx(emdata, sizeof(emdata), false);
32719adf 1178 }
1179 p_response = NULL;
1180
1181 } else {
1182 EmSendCmdEx(data+(4*block),16,false);
1183 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1184 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1185 p_response = NULL;
1186 }
c9216a92 1187 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
5e428463 1188
1189 uint8_t emdata[MAX_FRAME_SIZE];
1190 int start = receivedCmd[1] * 4;
1191 int len = (receivedCmd[2] - receivedCmd[1]) * 4;
1192 emlGetMemBt( emdata, start, len);
1193 AppendCrc14443a(emdata, len);
1194 EmSendCmdEx(emdata, len+2, false);
1195 p_response = NULL;
1196
839a53ae 1197 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1198 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1199 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1200 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1201 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1202 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1203 0x00,0x00};
5e428463 1204 AppendCrc14443a(data, sizeof(data)-2);
839a53ae 1205 EmSendCmdEx(data,sizeof(data),false);
1206 p_response = NULL;
1207 } else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
c9216a92 1208 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
839a53ae 1209 EmSendCmdEx(data,sizeof(data),false);
c9216a92 1210 p_response = NULL;
1211 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1212 p_response = &responses[9];
254b70a4 1213 } else if(receivedCmd[0] == 0x50) { // Received a HALT
3fe4ff4f 1214
7bc95e2e 1215 if (tracing) {
6a1f2d82 1216 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1217 }
1218 p_response = NULL;
254b70a4 1219 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
32719adf 1220
1221 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1222 p_response = &responses[7];
1223 } else {
1224 p_response = &responses[5]; order = 7;
1225 }
254b70a4 1226 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1227 if (tagType == 1 || tagType == 2) { // RATS not supported
1228 EmSend4bit(CARD_NACK_NA);
1229 p_response = NULL;
1230 } else {
1231 p_response = &responses[6]; order = 70;
1232 }
6a1f2d82 1233 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1234 if (tracing) {
6a1f2d82 1235 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1236 }
d26849d4 1237 uint32_t nonce = bytes_to_num(response5,4);
7bc95e2e 1238 uint32_t nr = bytes_to_num(receivedCmd,4);
1239 uint32_t ar = bytes_to_num(receivedCmd+4,4);
d26849d4 1240 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1241
1242 if(flags & FLAG_NR_AR_ATTACK )
1243 {
1244 if(ar_nr_collected < 2){
1245 // Avoid duplicates... probably not necessary, nr should vary.
1246 //if(ar_nr_responses[3] != nr){
1247 ar_nr_responses[ar_nr_collected*5] = 0;
1248 ar_nr_responses[ar_nr_collected*5+1] = 0;
1249 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1250 ar_nr_responses[ar_nr_collected*5+3] = nr;
1251 ar_nr_responses[ar_nr_collected*5+4] = ar;
1252 ar_nr_collected++;
1253 //}
1254 }
1255
1256 if(ar_nr_collected > 1 ) {
1257
1258 if (MF_DBGLEVEL >= 2) {
1259 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1260 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1261 ar_nr_responses[0], // UID1
1262 ar_nr_responses[1], // UID2
1263 ar_nr_responses[2], // NT
1264 ar_nr_responses[3], // AR1
1265 ar_nr_responses[4], // NR1
1266 ar_nr_responses[8], // AR2
1267 ar_nr_responses[9] // NR2
1268 );
1269 }
1270 uint8_t len = ar_nr_collected*5*4;
1271 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1272 ar_nr_collected = 0;
1273 memset(ar_nr_responses, 0x00, len);
d26849d4 1274 }
1275 }
32719adf 1276 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1277 {
1278
1279 }
1280 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1281 {
1282 if ( tagType == 7 ) {
1283 p_response = &responses[8]; // PACK response
1284 }
1285 }
1286 else {
7bc95e2e 1287 // Check for ISO 14443A-4 compliant commands, look at left nibble
1288 switch (receivedCmd[0]) {
1289
1290 case 0x0B:
1291 case 0x0A: { // IBlock (command)
1292 dynamic_response_info.response[0] = receivedCmd[0];
1293 dynamic_response_info.response[1] = 0x00;
1294 dynamic_response_info.response[2] = 0x90;
1295 dynamic_response_info.response[3] = 0x00;
1296 dynamic_response_info.response_n = 4;
1297 } break;
1298
1299 case 0x1A:
1300 case 0x1B: { // Chaining command
1301 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1302 dynamic_response_info.response_n = 2;
1303 } break;
1304
1305 case 0xaa:
1306 case 0xbb: {
1307 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1308 dynamic_response_info.response_n = 2;
1309 } break;
1310
1311 case 0xBA: { //
1312 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1313 dynamic_response_info.response_n = 2;
1314 } break;
1315
1316 case 0xCA:
1317 case 0xC2: { // Readers sends deselect command
1318 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1319 dynamic_response_info.response_n = 2;
1320 } break;
1321
1322 default: {
1323 // Never seen this command before
1324 if (tracing) {
6a1f2d82 1325 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1326 }
1327 Dbprintf("Received unknown command (len=%d):",len);
1328 Dbhexdump(len,receivedCmd,false);
1329 // Do not respond
1330 dynamic_response_info.response_n = 0;
1331 } break;
1332 }
ce02f6f9 1333
7bc95e2e 1334 if (dynamic_response_info.response_n > 0) {
1335 // Copy the CID from the reader query
1336 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1337
7bc95e2e 1338 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1339 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1340 dynamic_response_info.response_n += 2;
ce02f6f9 1341
7bc95e2e 1342 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1343 Dbprintf("Error preparing tag response");
1344 if (tracing) {
6a1f2d82 1345 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1346 }
1347 break;
1348 }
1349 p_response = &dynamic_response_info;
1350 }
81cd0474 1351 }
15c4dc5a 1352
1353 // Count number of wakeups received after a halt
1354 if(order == 6 && lastorder == 5) { happened++; }
1355
1356 // Count number of other messages after a halt
1357 if(order != 6 && lastorder == 5) { happened2++; }
1358
15c4dc5a 1359 if(cmdsRecvd > 999) {
1360 DbpString("1000 commands later...");
254b70a4 1361 break;
15c4dc5a 1362 }
ce02f6f9 1363 cmdsRecvd++;
1364
1365 if (p_response != NULL) {
7bc95e2e 1366 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1367 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1368 uint8_t par[MAX_PARITY_SIZE];
1369 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1370
7bc95e2e 1371 EmLogTrace(Uart.output,
1372 Uart.len,
1373 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1374 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1375 Uart.parity,
7bc95e2e 1376 p_response->response,
1377 p_response->response_n,
1378 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1379 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1380 par);
7bc95e2e 1381 }
1382
1383 if (!tracing) {
1384 Dbprintf("Trace Full. Simulation stopped.");
1385 break;
1386 }
1387 }
15c4dc5a 1388
d26849d4 1389 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
f71f4deb 1390 BigBuf_free_keep_EM();
c9216a92 1391 LED_A_OFF();
1392
1393 Dbprintf("-[ Wake ups after halt [%d]", happened);
1394 Dbprintf("-[ Messages after halt [%d]", happened2);
1395 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
15c4dc5a 1396}
1397
9492e0b0 1398
1399// prepare a delayed transfer. This simply shifts ToSend[] by a number
1400// of bits specified in the delay parameter.
1401void PrepareDelayedTransfer(uint16_t delay)
1402{
1403 uint8_t bitmask = 0;
1404 uint8_t bits_to_shift = 0;
1405 uint8_t bits_shifted = 0;
1406
1407 delay &= 0x07;
1408 if (delay) {
1409 for (uint16_t i = 0; i < delay; i++) {
1410 bitmask |= (0x01 << i);
1411 }
7bc95e2e 1412 ToSend[ToSendMax++] = 0x00;
9492e0b0 1413 for (uint16_t i = 0; i < ToSendMax; i++) {
1414 bits_to_shift = ToSend[i] & bitmask;
1415 ToSend[i] = ToSend[i] >> delay;
1416 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1417 bits_shifted = bits_to_shift;
1418 }
1419 }
1420}
1421
7bc95e2e 1422
1423//-------------------------------------------------------------------------------------
15c4dc5a 1424// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1425// Parameter timing:
7bc95e2e 1426// if NULL: transfer at next possible time, taking into account
1427// request guard time and frame delay time
1428// if == 0: transfer immediately and return time of transfer
9492e0b0 1429// if != 0: delay transfer until time specified
7bc95e2e 1430//-------------------------------------------------------------------------------------
6a1f2d82 1431static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1432{
7bc95e2e 1433
9492e0b0 1434 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1435
7bc95e2e 1436 uint32_t ThisTransferTime = 0;
e30c654b 1437
9492e0b0 1438 if (timing) {
1439 if(*timing == 0) { // Measure time
7bc95e2e 1440 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1441 } else {
1442 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1443 }
7bc95e2e 1444 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1445 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1446 LastTimeProxToAirStart = *timing;
1447 } else {
1448 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1449 while(GetCountSspClk() < ThisTransferTime);
1450 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1451 }
1452
7bc95e2e 1453 // clear TXRDY
1454 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1455
7bc95e2e 1456 uint16_t c = 0;
9492e0b0 1457 for(;;) {
1458 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1459 AT91C_BASE_SSC->SSC_THR = cmd[c];
1460 c++;
1461 if(c >= len) {
1462 break;
1463 }
1464 }
1465 }
7bc95e2e 1466
1467 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1468}
1469
7bc95e2e 1470
15c4dc5a 1471//-----------------------------------------------------------------------------
195af472 1472// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1473//-----------------------------------------------------------------------------
6a1f2d82 1474void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1475{
7bc95e2e 1476 int i, j;
1477 int last;
1478 uint8_t b;
e30c654b 1479
7bc95e2e 1480 ToSendReset();
e30c654b 1481
7bc95e2e 1482 // Start of Communication (Seq. Z)
1483 ToSend[++ToSendMax] = SEC_Z;
1484 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1485 last = 0;
1486
1487 size_t bytecount = nbytes(bits);
1488 // Generate send structure for the data bits
1489 for (i = 0; i < bytecount; i++) {
1490 // Get the current byte to send
1491 b = cmd[i];
1492 size_t bitsleft = MIN((bits-(i*8)),8);
1493
1494 for (j = 0; j < bitsleft; j++) {
1495 if (b & 1) {
1496 // Sequence X
1497 ToSend[++ToSendMax] = SEC_X;
1498 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1499 last = 1;
1500 } else {
1501 if (last == 0) {
1502 // Sequence Z
1503 ToSend[++ToSendMax] = SEC_Z;
1504 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1505 } else {
1506 // Sequence Y
1507 ToSend[++ToSendMax] = SEC_Y;
1508 last = 0;
1509 }
1510 }
1511 b >>= 1;
1512 }
1513
6a1f2d82 1514 // Only transmit parity bit if we transmitted a complete byte
0ec548dc 1515 if (j == 8 && parity != NULL) {
7bc95e2e 1516 // Get the parity bit
6a1f2d82 1517 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1518 // Sequence X
1519 ToSend[++ToSendMax] = SEC_X;
1520 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1521 last = 1;
1522 } else {
1523 if (last == 0) {
1524 // Sequence Z
1525 ToSend[++ToSendMax] = SEC_Z;
1526 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1527 } else {
1528 // Sequence Y
1529 ToSend[++ToSendMax] = SEC_Y;
1530 last = 0;
1531 }
1532 }
1533 }
1534 }
e30c654b 1535
7bc95e2e 1536 // End of Communication: Logic 0 followed by Sequence Y
1537 if (last == 0) {
1538 // Sequence Z
1539 ToSend[++ToSendMax] = SEC_Z;
1540 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1541 } else {
1542 // Sequence Y
1543 ToSend[++ToSendMax] = SEC_Y;
1544 last = 0;
1545 }
1546 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1547
7bc95e2e 1548 // Convert to length of command:
1549 ToSendMax++;
15c4dc5a 1550}
1551
195af472 1552//-----------------------------------------------------------------------------
1553// Prepare reader command to send to FPGA
1554//-----------------------------------------------------------------------------
6a1f2d82 1555void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1556{
6a1f2d82 1557 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1558}
1559
0c8d25eb 1560
9ca155ba
M
1561//-----------------------------------------------------------------------------
1562// Wait for commands from reader
1563// Stop when button is pressed (return 1) or field was gone (return 2)
1564// Or return 0 when command is captured
1565//-----------------------------------------------------------------------------
6a1f2d82 1566static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1567{
1568 *len = 0;
1569
1570 uint32_t timer = 0, vtime = 0;
1571 int analogCnt = 0;
1572 int analogAVG = 0;
1573
1574 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1575 // only, since we are receiving, not transmitting).
1576 // Signal field is off with the appropriate LED
1577 LED_D_OFF();
1578 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1579
1580 // Set ADC to read field strength
1581 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1582 AT91C_BASE_ADC->ADC_MR =
0c8d25eb 1583 ADC_MODE_PRESCALE(63) |
1584 ADC_MODE_STARTUP_TIME(1) |
1585 ADC_MODE_SAMPLE_HOLD_TIME(15);
9ca155ba
M
1586 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1587 // start ADC
1588 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1589
1590 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1591 UartInit(received, parity);
7bc95e2e 1592
1593 // Clear RXRDY:
1594 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1595
9ca155ba
M
1596 for(;;) {
1597 WDT_HIT();
1598
1599 if (BUTTON_PRESS()) return 1;
1600
1601 // test if the field exists
1602 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1603 analogCnt++;
1604 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1605 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1606 if (analogCnt >= 32) {
0c8d25eb 1607 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
9ca155ba
M
1608 vtime = GetTickCount();
1609 if (!timer) timer = vtime;
1610 // 50ms no field --> card to idle state
1611 if (vtime - timer > 50) return 2;
1612 } else
1613 if (timer) timer = 0;
1614 analogCnt = 0;
1615 analogAVG = 0;
1616 }
1617 }
7bc95e2e 1618
9ca155ba 1619 // receive and test the miller decoding
7bc95e2e 1620 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1621 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1622 if(MillerDecoding(b, 0)) {
1623 *len = Uart.len;
9ca155ba
M
1624 return 0;
1625 }
7bc95e2e 1626 }
1627
9ca155ba
M
1628 }
1629}
1630
9ca155ba 1631
6a1f2d82 1632static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1633{
1634 uint8_t b;
1635 uint16_t i = 0;
1636 uint32_t ThisTransferTime;
1637
9ca155ba
M
1638 // Modulate Manchester
1639 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1640
1641 // include correction bit if necessary
1642 if (Uart.parityBits & 0x01) {
1643 correctionNeeded = TRUE;
1644 }
1645 if(correctionNeeded) {
9ca155ba
M
1646 // 1236, so correction bit needed
1647 i = 0;
7bc95e2e 1648 } else {
1649 i = 1;
9ca155ba 1650 }
7bc95e2e 1651
d714d3ef 1652 // clear receiving shift register and holding register
7bc95e2e 1653 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1654 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1655 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1656 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1657
7bc95e2e 1658 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1659 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1660 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1661 if (AT91C_BASE_SSC->SSC_RHR) break;
1662 }
1663
1664 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1665
1666 // Clear TXRDY:
1667 AT91C_BASE_SSC->SSC_THR = SEC_F;
1668
9ca155ba 1669 // send cycle
bb42a03e 1670 for(; i < respLen; ) {
9ca155ba 1671 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1672 AT91C_BASE_SSC->SSC_THR = resp[i++];
1673 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1674 }
7bc95e2e 1675
9ca155ba
M
1676 if(BUTTON_PRESS()) {
1677 break;
1678 }
1679 }
1680
7bc95e2e 1681 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
0c8d25eb 1682 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1683 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
7bc95e2e 1684 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1685 AT91C_BASE_SSC->SSC_THR = SEC_F;
1686 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1687 i++;
1688 }
1689 }
0c8d25eb 1690
7bc95e2e 1691 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1692
9ca155ba
M
1693 return 0;
1694}
1695
7bc95e2e 1696int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1697 Code4bitAnswerAsTag(resp);
0a39986e 1698 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1699 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1700 uint8_t par[1];
1701 GetParity(&resp, 1, par);
7bc95e2e 1702 EmLogTrace(Uart.output,
1703 Uart.len,
1704 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1705 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1706 Uart.parity,
7bc95e2e 1707 &resp,
1708 1,
1709 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1710 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1711 par);
0a39986e 1712 return res;
9ca155ba
M
1713}
1714
8f51ddb0 1715int EmSend4bit(uint8_t resp){
7bc95e2e 1716 return EmSend4bitEx(resp, false);
8f51ddb0
M
1717}
1718
6a1f2d82 1719int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1720 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1721 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1722 // do the tracing for the previous reader request and this tag answer:
1723 EmLogTrace(Uart.output,
1724 Uart.len,
1725 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1726 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1727 Uart.parity,
7bc95e2e 1728 resp,
1729 respLen,
1730 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1731 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1732 par);
8f51ddb0
M
1733 return res;
1734}
1735
6a1f2d82 1736int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1737 uint8_t par[MAX_PARITY_SIZE];
1738 GetParity(resp, respLen, par);
1739 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1740}
1741
6a1f2d82 1742int EmSendCmd(uint8_t *resp, uint16_t respLen){
1743 uint8_t par[MAX_PARITY_SIZE];
1744 GetParity(resp, respLen, par);
1745 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1746}
1747
6a1f2d82 1748int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1749 return EmSendCmdExPar(resp, respLen, false, par);
1750}
1751
6a1f2d82 1752bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1753 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1754{
1755 if (tracing) {
1756 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1757 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1758 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1759 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1760 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1761 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1762 reader_EndTime = tag_StartTime - exact_fdt;
1763 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1764 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1765 return FALSE;
6a1f2d82 1766 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1767 } else {
1768 return TRUE;
1769 }
9ca155ba
M
1770}
1771
15c4dc5a 1772//-----------------------------------------------------------------------------
1773// Wait a certain time for tag response
1774// If a response is captured return TRUE
e691fc45 1775// If it takes too long return FALSE
15c4dc5a 1776//-----------------------------------------------------------------------------
6a1f2d82 1777static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1778{
46c65fed 1779 uint32_t c = 0x00;
e691fc45 1780
15c4dc5a 1781 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1782 // only, since we are receiving, not transmitting).
1783 // Signal field is on with the appropriate LED
1784 LED_D_ON();
1785 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1786
534983d7 1787 // Now get the answer from the card
6a1f2d82 1788 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1789
7bc95e2e 1790 // clear RXRDY:
1791 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1792
15c4dc5a 1793 for(;;) {
534983d7 1794 WDT_HIT();
15c4dc5a 1795
534983d7 1796 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1797 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1798 if(ManchesterDecoding(b, offset, 0)) {
1799 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1800 return TRUE;
19a700a8 1801 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
7bc95e2e 1802 return FALSE;
15c4dc5a 1803 }
534983d7 1804 }
1805 }
15c4dc5a 1806}
1807
0ec548dc 1808
6a1f2d82 1809void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1810{
6a1f2d82 1811 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1812
7bc95e2e 1813 // Send command to tag
1814 TransmitFor14443a(ToSend, ToSendMax, timing);
1815 if(trigger)
1816 LED_A_ON();
dfc3c505 1817
7bc95e2e 1818 // Log reader command in trace buffer
1819 if (tracing) {
6a1f2d82 1820 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1821 }
15c4dc5a 1822}
1823
0ec548dc 1824
6a1f2d82 1825void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1826{
6a1f2d82 1827 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1828}
15c4dc5a 1829
0ec548dc 1830
6a1f2d82 1831void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1832{
1833 // Generate parity and redirect
6a1f2d82 1834 uint8_t par[MAX_PARITY_SIZE];
1835 GetParity(frame, len/8, par);
1836 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1837}
1838
0ec548dc 1839
6a1f2d82 1840void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1841{
1842 // Generate parity and redirect
6a1f2d82 1843 uint8_t par[MAX_PARITY_SIZE];
1844 GetParity(frame, len, par);
1845 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1846}
1847
6a1f2d82 1848int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1849{
6a1f2d82 1850 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1851 if (tracing) {
6a1f2d82 1852 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1853 }
e691fc45 1854 return Demod.len;
1855}
1856
6a1f2d82 1857int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1858{
6a1f2d82 1859 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1860 if (tracing) {
6a1f2d82 1861 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1862 }
e691fc45 1863 return Demod.len;
f89c7050
M
1864}
1865
e691fc45 1866/* performs iso14443a anticollision procedure
534983d7 1867 * fills the uid pointer unless NULL
1868 * fills resp_data unless NULL */
6a1f2d82 1869int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1870 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1871 uint8_t sel_all[] = { 0x93,0x20 };
1872 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1873 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
f71f4deb 1874 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1875 uint8_t resp_par[MAX_PARITY_SIZE];
6a1f2d82 1876 byte_t uid_resp[4];
1877 size_t uid_resp_len;
1878
1879 uint8_t sak = 0x04; // cascade uid
1880 int cascade_level = 0;
1881 int len;
1882
1883 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1884 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1885
6a1f2d82 1886 // Receive the ATQA
1887 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1888
1889 if(p_hi14a_card) {
1890 memcpy(p_hi14a_card->atqa, resp, 2);
1891 p_hi14a_card->uidlen = 0;
1892 memset(p_hi14a_card->uid,0,10);
1893 }
5f6d6c90 1894
6a1f2d82 1895 // clear uid
1896 if (uid_ptr) {
1897 memset(uid_ptr,0,10);
1898 }
79a73ab2 1899
0ec548dc 1900 // check for proprietary anticollision:
1901 if ((resp[0] & 0x1F) == 0) {
1902 return 3;
1903 }
1904
6a1f2d82 1905 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1906 // which case we need to make a cascade 2 request and select - this is a long UID
1907 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1908 for(; sak & 0x04; cascade_level++) {
1909 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1910 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1911
1912 // SELECT_ALL
1913 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1914 if (!ReaderReceive(resp, resp_par)) return 0;
1915
1916 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1917 memset(uid_resp, 0, 4);
1918 uint16_t uid_resp_bits = 0;
1919 uint16_t collision_answer_offset = 0;
1920 // anti-collision-loop:
1921 while (Demod.collisionPos) {
1922 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1923 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1924 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
758f1fd1 1925 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1926 }
1927 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1928 uid_resp_bits++;
1929 // construct anticollosion command:
1930 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1931 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1932 sel_uid[2+i] = uid_resp[i];
1933 }
1934 collision_answer_offset = uid_resp_bits%8;
1935 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1936 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1937 }
6a1f2d82 1938 // finally, add the last bits and BCC of the UID
1939 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1940 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1941 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1942 }
e691fc45 1943
6a1f2d82 1944 } else { // no collision, use the response to SELECT_ALL as current uid
1945 memcpy(uid_resp, resp, 4);
1946 }
1947 uid_resp_len = 4;
5f6d6c90 1948
6a1f2d82 1949 // calculate crypto UID. Always use last 4 Bytes.
1950 if(cuid_ptr) {
1951 *cuid_ptr = bytes_to_num(uid_resp, 4);
1952 }
e30c654b 1953
6a1f2d82 1954 // Construct SELECT UID command
1955 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1956 memcpy(sel_uid+2, uid_resp, 4); // the UID
1957 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1958 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1959 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1960
1961 // Receive the SAK
1962 if (!ReaderReceive(resp, resp_par)) return 0;
1963 sak = resp[0];
1964
52ab55ab 1965 // Test if more parts of the uid are coming
6a1f2d82 1966 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1967 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1968 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 1969 uid_resp[0] = uid_resp[1];
1970 uid_resp[1] = uid_resp[2];
1971 uid_resp[2] = uid_resp[3];
1972
1973 uid_resp_len = 3;
1974 }
5f6d6c90 1975
6a1f2d82 1976 if(uid_ptr) {
1977 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1978 }
5f6d6c90 1979
6a1f2d82 1980 if(p_hi14a_card) {
1981 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1982 p_hi14a_card->uidlen += uid_resp_len;
1983 }
1984 }
79a73ab2 1985
6a1f2d82 1986 if(p_hi14a_card) {
1987 p_hi14a_card->sak = sak;
1988 p_hi14a_card->ats_len = 0;
1989 }
534983d7 1990
3fe4ff4f 1991 // non iso14443a compliant tag
1992 if( (sak & 0x20) == 0) return 2;
534983d7 1993
6a1f2d82 1994 // Request for answer to select
1995 AppendCrc14443a(rats, 2);
1996 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1997
6a1f2d82 1998 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 1999
3fe4ff4f 2000
6a1f2d82 2001 if(p_hi14a_card) {
2002 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2003 p_hi14a_card->ats_len = len;
2004 }
5f6d6c90 2005
6a1f2d82 2006 // reset the PCB block number
2007 iso14_pcb_blocknum = 0;
19a700a8 2008
2009 // set default timeout based on ATS
2010 iso14a_set_ATS_timeout(resp);
2011
6a1f2d82 2012 return 1;
7e758047 2013}
15c4dc5a 2014
7bc95e2e 2015void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 2016 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 2017 // Set up the synchronous serial port
2018 FpgaSetupSsc();
7bc95e2e 2019 // connect Demodulated Signal to ADC:
7e758047 2020 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 2021
7e758047 2022 // Signal field is on with the appropriate LED
7bc95e2e 2023 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2024 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2025 LED_D_ON();
2026 } else {
2027 LED_D_OFF();
2028 }
2029 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 2030
7bc95e2e 2031 // Start the timer
2032 StartCountSspClk();
2033
2034 DemodReset();
2035 UartReset();
2036 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
46c65fed 2037 iso14a_set_timeout(10*106); // 10ms default
7e758047 2038}
15c4dc5a 2039
6a1f2d82 2040int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2041 uint8_t parity[MAX_PARITY_SIZE];
534983d7 2042 uint8_t real_cmd[cmd_len+4];
2043 real_cmd[0] = 0x0a; //I-Block
b0127e65 2044 // put block number into the PCB
2045 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 2046 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2047 memcpy(real_cmd+2, cmd, cmd_len);
2048 AppendCrc14443a(real_cmd,cmd_len+2);
2049
9492e0b0 2050 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 2051 size_t len = ReaderReceive(data, parity);
2052 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 2053 if (!len)
2054 return 0; //DATA LINK ERROR
2055 // if we received an I- or R(ACK)-Block with a block number equal to the
2056 // current block number, toggle the current block number
2057 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2058 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2059 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2060 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2061 {
2062 iso14_pcb_blocknum ^= 1;
2063 }
2064
534983d7 2065 return len;
2066}
2067
7e758047 2068//-----------------------------------------------------------------------------
2069// Read an ISO 14443a tag. Send out commands and store answers.
2070//
2071//-----------------------------------------------------------------------------
7bc95e2e 2072void ReaderIso14443a(UsbCommand *c)
7e758047 2073{
534983d7 2074 iso14a_command_t param = c->arg[0];
7bc95e2e 2075 uint8_t *cmd = c->d.asBytes;
04bc1c66 2076 size_t len = c->arg[1] & 0xffff;
2077 size_t lenbits = c->arg[1] >> 16;
2078 uint32_t timeout = c->arg[2];
9492e0b0 2079 uint32_t arg0 = 0;
2080 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 2081 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 2082
5f6d6c90 2083 if(param & ISO14A_CONNECT) {
3000dc4e 2084 clear_trace();
5f6d6c90 2085 }
e691fc45 2086
3000dc4e 2087 set_tracing(TRUE);
e30c654b 2088
79a73ab2 2089 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 2090 iso14a_set_trigger(TRUE);
9492e0b0 2091 }
15c4dc5a 2092
534983d7 2093 if(param & ISO14A_CONNECT) {
7bc95e2e 2094 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 2095 if(!(param & ISO14A_NO_SELECT)) {
2096 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2097 arg0 = iso14443a_select_card(NULL,card,NULL);
2098 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2099 }
534983d7 2100 }
e30c654b 2101
534983d7 2102 if(param & ISO14A_SET_TIMEOUT) {
04bc1c66 2103 iso14a_set_timeout(timeout);
534983d7 2104 }
e30c654b 2105
534983d7 2106 if(param & ISO14A_APDU) {
902cb3c0 2107 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 2108 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2109 }
e30c654b 2110
534983d7 2111 if(param & ISO14A_RAW) {
2112 if(param & ISO14A_APPEND_CRC) {
0ec548dc 2113 if(param & ISO14A_TOPAZMODE) {
2114 AppendCrc14443b(cmd,len);
2115 } else {
d26849d4 2116 AppendCrc14443a(cmd,len);
0ec548dc 2117 }
534983d7 2118 len += 2;
c7324bef 2119 if (lenbits) lenbits += 16;
15c4dc5a 2120 }
0ec548dc 2121 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2122 if(param & ISO14A_TOPAZMODE) {
2123 int bits_to_send = lenbits;
2124 uint16_t i = 0;
2125 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2126 bits_to_send -= 7;
2127 while (bits_to_send > 0) {
2128 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2129 bits_to_send -= 8;
2130 }
2131 } else {
6a1f2d82 2132 GetParity(cmd, lenbits/8, par);
0ec548dc 2133 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2134 }
2135 } else { // want to send complete bytes only
2136 if(param & ISO14A_TOPAZMODE) {
2137 uint16_t i = 0;
2138 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2139 while (i < len) {
2140 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2141 }
5f6d6c90 2142 } else {
0ec548dc 2143 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2144 }
5f6d6c90 2145 }
6a1f2d82 2146 arg0 = ReaderReceive(buf, par);
9492e0b0 2147 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2148 }
15c4dc5a 2149
79a73ab2 2150 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 2151 iso14a_set_trigger(FALSE);
9492e0b0 2152 }
15c4dc5a 2153
79a73ab2 2154 if(param & ISO14A_NO_DISCONNECT) {
534983d7 2155 return;
9492e0b0 2156 }
15c4dc5a 2157
15c4dc5a 2158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2159 LEDsoff();
15c4dc5a 2160}
b0127e65 2161
1c611bbd 2162
1c611bbd 2163// Determine the distance between two nonces.
2164// Assume that the difference is small, but we don't know which is first.
2165// Therefore try in alternating directions.
2166int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2167
1c611bbd 2168 if (nt1 == nt2) return 0;
2169
d26849d4 2170 uint16_t i;
2171 uint32_t nttmp1 = nt1;
2172 uint32_t nttmp2 = nt2;
1c611bbd 2173
2174 for (i = 1; i < 32768; i++) {
2175 nttmp1 = prng_successor(nttmp1, 1);
2176 if (nttmp1 == nt2) return i;
2177 nttmp2 = prng_successor(nttmp2, 1);
2178 if (nttmp2 == nt1) return -i;
2179 }
2180
2181 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 2182}
2183
e772353f 2184
1c611bbd 2185//-----------------------------------------------------------------------------
2186// Recover several bits of the cypher stream. This implements (first stages of)
2187// the algorithm described in "The Dark Side of Security by Obscurity and
2188// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2189// (article by Nicolas T. Courtois, 2009)
2190//-----------------------------------------------------------------------------
d26849d4 2191void ReaderMifare(bool first_try) {
f71f4deb 2192 // free eventually allocated BigBuf memory. We want all for tracing.
2193 BigBuf_free();
2194
3000dc4e
MHS
2195 clear_trace();
2196 set_tracing(TRUE);
e772353f 2197
d26849d4 2198 // Mifare AUTH
2199 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2200 uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
2201 static uint8_t mf_nr_ar3 = 0;
2202
2203 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
2204 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
2205
1c611bbd 2206 byte_t nt_diff = 0;
6a1f2d82 2207 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2208 static byte_t par_low = 0;
2209 bool led_on = TRUE;
d26849d4 2210 uint8_t uid[10] = {0x00};
2211 //uint32_t cuid = 0x00;
e772353f 2212
6a1f2d82 2213 uint32_t nt = 0;
2ed270a8 2214 uint32_t previous_nt = 0;
1c611bbd 2215 static uint32_t nt_attacked = 0;
3fe4ff4f 2216 byte_t par_list[8] = {0x00};
2217 byte_t ks_list[8] = {0x00};
e772353f 2218
d26849d4 2219 static uint32_t sync_time = 0;
2220 static uint32_t sync_cycles = 0;
1c611bbd 2221 int catch_up_cycles = 0;
2222 int last_catch_up = 0;
2223 uint16_t consecutive_resyncs = 0;
2224 int isOK = 0;
e772353f 2225
d26849d4 2226 int numWrongDistance = 0;
2227
1c611bbd 2228 if (first_try) {
1c611bbd 2229 mf_nr_ar3 = 0;
7bc95e2e 2230 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2231 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 2232 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2233 nt_attacked = 0;
2234 nt = 0;
6a1f2d82 2235 par[0] = 0;
1c611bbd 2236 }
2237 else {
2238 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2239 mf_nr_ar3++;
2240 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2241 par[0] = par_low;
1c611bbd 2242 }
e30c654b 2243
15c4dc5a 2244 LED_A_ON();
2245 LED_B_OFF();
2246 LED_C_OFF();
d26849d4 2247 LED_C_ON();
7bc95e2e 2248
1c611bbd 2249 for(uint16_t i = 0; TRUE; i++) {
2250
2251 WDT_HIT();
e30c654b 2252
1c611bbd 2253 // Test if the action was cancelled
d26849d4 2254 if(BUTTON_PRESS()) break;
2255
2256 if (numWrongDistance > 1000) {
2257 isOK = 0;
1c611bbd 2258 break;
2259 }
2260
d26849d4 2261 //if(!iso14443a_select_card(uid, NULL, &cuid)) {
2262 if(!iso14443a_select_card(uid, NULL, NULL)) {
9492e0b0 2263 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2264 continue;
2265 }
2266
9492e0b0 2267 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 2268 catch_up_cycles = 0;
2269
2270 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 2271 while(GetCountSspClk() > sync_time) {
9492e0b0 2272 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 2273 }
e30c654b 2274
9492e0b0 2275 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2276 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2277
1c611bbd 2278 // Receive the (4 Byte) "random" nonce
6a1f2d82 2279 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2280 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2281 continue;
2282 }
2283
1c611bbd 2284 previous_nt = nt;
2285 nt = bytes_to_num(receivedAnswer, 4);
2286
2287 // Transmit reader nonce with fake par
9492e0b0 2288 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2289
2290 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2291 int nt_distance = dist_nt(previous_nt, nt);
2292 if (nt_distance == 0) {
2293 nt_attacked = nt;
2294 }
2295 else {
d26849d4 2296
2297 // invalid nonce received, try again
2298 if (nt_distance == -99999) {
2299 numWrongDistance++;
2300 if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
1c611bbd 2301 continue;
2302 }
d26849d4 2303
1c611bbd 2304 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2305 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2306 continue;
2307 }
2308 }
2309
2310 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2311 catch_up_cycles = -dist_nt(nt_attacked, nt);
d26849d4 2312 if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
1c611bbd 2313 catch_up_cycles = 0;
2314 continue;
2315 }
2316 if (catch_up_cycles == last_catch_up) {
2317 consecutive_resyncs++;
2318 }
2319 else {
2320 last_catch_up = catch_up_cycles;
2321 consecutive_resyncs = 0;
2322 }
2323 if (consecutive_resyncs < 3) {
9492e0b0 2324 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2325 }
2326 else {
2327 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2328 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2329 }
2330 continue;
2331 }
2332
2333 consecutive_resyncs = 0;
2334
2335 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
6a1f2d82 2336 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2337 {
9492e0b0 2338 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2339
2340 if (nt_diff == 0)
2341 {
6a1f2d82 2342 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2343 }
2344
2345 led_on = !led_on;
2346 if(led_on) LED_B_ON(); else LED_B_OFF();
2347
6a1f2d82 2348 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2349 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2350
2351 // Test if the information is complete
2352 if (nt_diff == 0x07) {
2353 isOK = 1;
2354 break;
2355 }
2356
2357 nt_diff = (nt_diff + 1) & 0x07;
2358 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2359 par[0] = par_low;
1c611bbd 2360 } else {
2361 if (nt_diff == 0 && first_try)
2362 {
6a1f2d82 2363 par[0]++;
1c611bbd 2364 } else {
6a1f2d82 2365 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2366 }
2367 }
2368 }
2369
1c611bbd 2370 mf_nr_ar[3] &= 0x1F;
2371
d26849d4 2372 byte_t buf[28] = {0x00};
2373
1c611bbd 2374 memcpy(buf + 0, uid, 4);
2375 num_to_bytes(nt, 4, buf + 4);
2376 memcpy(buf + 8, par_list, 8);
2377 memcpy(buf + 16, ks_list, 8);
2378 memcpy(buf + 24, mf_nr_ar, 4);
2379
2380 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2381
d26849d4 2382 set_tracing(FALSE);
1c611bbd 2383 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2384 LEDsoff();
20f9a2a1 2385}
1c611bbd 2386
d26849d4 2387
2388 /*
d2f487af 2389 *MIFARE 1K simulate.
2390 *
2391 *@param flags :
2392 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2393 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2394 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2395 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2396 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2397 */
2398void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2399{
50193c1e 2400 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2401 int _7BUID = 0;
9ca155ba 2402 int vHf = 0; // in mV
8f51ddb0 2403 int res;
0a39986e
M
2404 uint32_t selTimer = 0;
2405 uint32_t authTimer = 0;
6a1f2d82 2406 uint16_t len = 0;
8f51ddb0 2407 uint8_t cardWRBL = 0;
9ca155ba
M
2408 uint8_t cardAUTHSC = 0;
2409 uint8_t cardAUTHKEY = 0xff; // no authentication
c3c241f3 2410// uint32_t cardRr = 0;
9ca155ba 2411 uint32_t cuid = 0;
d2f487af 2412 //uint32_t rn_enc = 0;
51969283 2413 uint32_t ans = 0;
0014cb46
M
2414 uint32_t cardINTREG = 0;
2415 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2416 struct Crypto1State mpcs = {0, 0};
2417 struct Crypto1State *pcs;
2418 pcs = &mpcs;
d2f487af 2419 uint32_t numReads = 0;//Counts numer of times reader read a block
f71f4deb 2420 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2421 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2422 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2423 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
9ca155ba 2424
d2f487af 2425 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2426 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2427 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
c3c241f3 2428 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2429 uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
d2f487af 2430 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2431
2d2f7d19 2432 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
d2f487af 2433 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2434
d2f487af 2435 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2436 // This can be used in a reader-only attack.
2437 // (it can also be retrieved via 'hf 14a list', but hey...
c3c241f3 2438 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
d2f487af 2439 uint8_t ar_nr_collected = 0;
0014cb46 2440
f71f4deb 2441 // free eventually allocated BigBuf memory but keep Emulator Memory
2442 BigBuf_free_keep_EM();
0c8d25eb 2443
0a39986e 2444 // clear trace
3000dc4e
MHS
2445 clear_trace();
2446 set_tracing(TRUE);
51969283 2447
7bc95e2e 2448 // Authenticate response - nonce
51969283 2449 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2450
d2f487af 2451 //-- Determine the UID
2452 // Can be set from emulator memory, incoming data
2453 // and can be 7 or 4 bytes long
7bc95e2e 2454 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2455 {
2456 // 4B uid comes from data-portion of packet
2457 memcpy(rUIDBCC1,datain,4);
8556b852 2458 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2459
7bc95e2e 2460 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2461 // 7B uid comes from data-portion of packet
2462 memcpy(&rUIDBCC1[1],datain,3);
2463 memcpy(rUIDBCC2, datain+3, 4);
2464 _7BUID = true;
7bc95e2e 2465 } else {
d2f487af 2466 // get UID from emul memory
2467 emlGetMemBt(receivedCmd, 7, 1);
2468 _7BUID = !(receivedCmd[0] == 0x00);
2469 if (!_7BUID) { // ---------- 4BUID
2470 emlGetMemBt(rUIDBCC1, 0, 4);
2471 } else { // ---------- 7BUID
2472 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2473 emlGetMemBt(rUIDBCC2, 3, 4);
2474 }
2475 }
7bc95e2e 2476
c3c241f3 2477 // save uid.
2478 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2479 if ( _7BUID )
2480 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2481
d2f487af 2482 /*
2483 * Regardless of what method was used to set the UID, set fifth byte and modify
2484 * the ATQA for 4 or 7-byte UID
2485 */
d2f487af 2486 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2487 if (_7BUID) {
d2f487af 2488 rATQA[0] = 0x44;
8556b852 2489 rUIDBCC1[0] = 0x88;
d26849d4 2490 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852
M
2491 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2492 }
2493
9ca155ba 2494 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2495 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2496
9ca155ba 2497
d2f487af 2498 if (MF_DBGLEVEL >= 1) {
2499 if (!_7BUID) {
b03c0f2d 2500 Dbprintf("4B UID: %02x%02x%02x%02x",
2501 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2502 } else {
b03c0f2d 2503 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2504 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2505 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2506 }
2507 }
7bc95e2e 2508
2509 bool finished = FALSE;
d2f487af 2510 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2511 WDT_HIT();
9ca155ba
M
2512
2513 // find reader field
9ca155ba 2514 if (cardSTATE == MFEMUL_NOFIELD) {
0c8d25eb 2515 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
9ca155ba 2516 if (vHf > MF_MINFIELDV) {
0014cb46 2517 cardSTATE_TO_IDLE();
9ca155ba
M
2518 LED_A_ON();
2519 }
2520 }
d2f487af 2521 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2522
d2f487af 2523 //Now, get data
6a1f2d82 2524 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2525 if (res == 2) { //Field is off!
2526 cardSTATE = MFEMUL_NOFIELD;
2527 LEDsoff();
2528 continue;
7bc95e2e 2529 } else if (res == 1) {
2530 break; //return value 1 means button press
2531 }
2532
d2f487af 2533 // REQ or WUP request in ANY state and WUP in HALTED state
2534 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2535 selTimer = GetTickCount();
2536 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2537 cardSTATE = MFEMUL_SELECT1;
2538
2539 // init crypto block
2540 LED_B_OFF();
2541 LED_C_OFF();
2542 crypto1_destroy(pcs);
2543 cardAUTHKEY = 0xff;
2544 continue;
0a39986e 2545 }
7bc95e2e 2546
50193c1e 2547 switch (cardSTATE) {
d2f487af 2548 case MFEMUL_NOFIELD:
2549 case MFEMUL_HALTED:
50193c1e 2550 case MFEMUL_IDLE:{
6a1f2d82 2551 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2552 break;
2553 }
2554 case MFEMUL_SELECT1:{
9ca155ba
M
2555 // select all
2556 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2557 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2558 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2559 break;
9ca155ba
M
2560 }
2561
d2f487af 2562 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2563 {
2564 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2565 }
9ca155ba 2566 // select card
0a39986e
M
2567 if (len == 9 &&
2568 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2569 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2570 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2571 if (!_7BUID) {
2572 cardSTATE = MFEMUL_WORK;
0014cb46
M
2573 LED_B_ON();
2574 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2575 break;
8556b852
M
2576 } else {
2577 cardSTATE = MFEMUL_SELECT2;
8556b852 2578 }
9ca155ba 2579 }
50193c1e
M
2580 break;
2581 }
d2f487af 2582 case MFEMUL_AUTH1:{
2583 if( len != 8)
2584 {
2585 cardSTATE_TO_IDLE();
6a1f2d82 2586 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2587 break;
2588 }
0c8d25eb 2589
d2f487af 2590 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2591 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2592
2593 //Collect AR/NR
46cd801c 2594 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2595 if(ar_nr_collected < 2){
273b57a7 2596 if(ar_nr_responses[2] != ar)
2597 {// Avoid duplicates... probably not necessary, ar should vary.
c3c241f3 2598 //ar_nr_responses[ar_nr_collected*5] = 0;
2599 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2600 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2601 ar_nr_responses[ar_nr_collected*5+3] = nr;
2602 ar_nr_responses[ar_nr_collected*5+4] = ar;
273b57a7 2603 ar_nr_collected++;
12d708fe 2604 }
2605 // Interactive mode flag, means we need to send ACK
2606 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2607 {
2608 finished = true;
46cd801c 2609 }
d2f487af 2610 }
2611
2612 // --- crypto
c3c241f3 2613 //crypto1_word(pcs, ar , 1);
2614 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2615
2616 //test if auth OK
2617 //if (cardRr != prng_successor(nonce, 64)){
2618
2619 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2620 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2621 // cardRr, prng_successor(nonce, 64));
7bc95e2e 2622 // Shouldn't we respond anything here?
d2f487af 2623 // Right now, we don't nack or anything, which causes the
2624 // reader to do a WUPA after a while. /Martin
b03c0f2d 2625 // -- which is the correct response. /piwi
c3c241f3 2626 //cardSTATE_TO_IDLE();
2627 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2628 //break;
2629 //}
d2f487af 2630
2631 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2632
2633 num_to_bytes(ans, 4, rAUTH_AT);
2634 // --- crypto
2635 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2636 LED_C_ON();
2637 cardSTATE = MFEMUL_WORK;
b03c0f2d 2638 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2639 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2640 GetTickCount() - authTimer);
d2f487af 2641 break;
2642 }
50193c1e 2643 case MFEMUL_SELECT2:{
7bc95e2e 2644 if (!len) {
6a1f2d82 2645 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2646 break;
2647 }
8556b852 2648 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2649 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2650 break;
2651 }
9ca155ba 2652
8556b852
M
2653 // select 2 card
2654 if (len == 9 &&
2655 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2656 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2657 cuid = bytes_to_num(rUIDBCC2, 4);
2658 cardSTATE = MFEMUL_WORK;
2659 LED_B_ON();
0014cb46 2660 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2661 break;
2662 }
0014cb46
M
2663
2664 // i guess there is a command). go into the work state.
7bc95e2e 2665 if (len != 4) {
6a1f2d82 2666 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2667 break;
2668 }
0014cb46 2669 cardSTATE = MFEMUL_WORK;
d2f487af 2670 //goto lbWORK;
2671 //intentional fall-through to the next case-stmt
50193c1e 2672 }
51969283 2673
7bc95e2e 2674 case MFEMUL_WORK:{
2675 if (len == 0) {
6a1f2d82 2676 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2677 break;
2678 }
2679
d2f487af 2680 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2681
7bc95e2e 2682 if(encrypted_data) {
51969283
M
2683 // decrypt seqence
2684 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2685 }
7bc95e2e 2686
d2f487af 2687 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2688 authTimer = GetTickCount();
2689 cardAUTHSC = receivedCmd[1] / 4; // received block num
2690 cardAUTHKEY = receivedCmd[0] - 0x60;
2691 crypto1_destroy(pcs);//Added by martin
2692 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2693
d2f487af 2694 if (!encrypted_data) { // first authentication
b03c0f2d 2695 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2696
d2f487af 2697 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2698 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2699 } else { // nested authentication
b03c0f2d 2700 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2701 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2702 num_to_bytes(ans, 4, rAUTH_AT);
2703 }
0c8d25eb 2704
d2f487af 2705 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2706 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2707 cardSTATE = MFEMUL_AUTH1;
2708 break;
51969283 2709 }
7bc95e2e 2710
8f51ddb0
M
2711 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2712 // BUT... ACK --> NACK
2713 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2714 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2715 break;
2716 }
2717
2718 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2719 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2720 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2721 break;
0a39986e
M
2722 }
2723
7bc95e2e 2724 if(len != 4) {
6a1f2d82 2725 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2726 break;
2727 }
d2f487af 2728
2729 if(receivedCmd[0] == 0x30 // read block
2730 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2731 || receivedCmd[0] == 0xC0 // inc
2732 || receivedCmd[0] == 0xC1 // dec
2733 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2734 || receivedCmd[0] == 0xB0) { // transfer
2735 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2736 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2737 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2738 break;
2739 }
2740
7bc95e2e 2741 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2742 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2743 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2744 break;
2745 }
d2f487af 2746 }
2747 // read block
2748 if (receivedCmd[0] == 0x30) {
b03c0f2d 2749 if (MF_DBGLEVEL >= 4) {
d2f487af 2750 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2751 }
8f51ddb0
M
2752 emlGetMem(response, receivedCmd[1], 1);
2753 AppendCrc14443a(response, 16);
6a1f2d82 2754 mf_crypto1_encrypt(pcs, response, 18, response_par);
2755 EmSendCmdPar(response, 18, response_par);
d2f487af 2756 numReads++;
12d708fe 2757 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
d2f487af 2758 Dbprintf("%d reads done, exiting", numReads);
2759 finished = true;
2760 }
0a39986e
M
2761 break;
2762 }
0a39986e 2763 // write block
d2f487af 2764 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2765 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2766 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2767 cardSTATE = MFEMUL_WRITEBL2;
2768 cardWRBL = receivedCmd[1];
0a39986e 2769 break;
7bc95e2e 2770 }
0014cb46 2771 // increment, decrement, restore
d2f487af 2772 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2773 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2774 if (emlCheckValBl(receivedCmd[1])) {
c3c241f3 2775 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2776 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2777 break;
2778 }
2779 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2780 if (receivedCmd[0] == 0xC1)
2781 cardSTATE = MFEMUL_INTREG_INC;
2782 if (receivedCmd[0] == 0xC0)
2783 cardSTATE = MFEMUL_INTREG_DEC;
2784 if (receivedCmd[0] == 0xC2)
2785 cardSTATE = MFEMUL_INTREG_REST;
2786 cardWRBL = receivedCmd[1];
0014cb46
M
2787 break;
2788 }
0014cb46 2789 // transfer
d2f487af 2790 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2791 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2792 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2793 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2794 else
2795 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2796 break;
2797 }
9ca155ba 2798 // halt
d2f487af 2799 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2800 LED_B_OFF();
0a39986e 2801 LED_C_OFF();
0014cb46
M
2802 cardSTATE = MFEMUL_HALTED;
2803 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2804 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2805 break;
9ca155ba 2806 }
d2f487af 2807 // RATS
2808 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2809 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2810 break;
2811 }
d2f487af 2812 // command not allowed
2813 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2814 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2815 break;
8f51ddb0
M
2816 }
2817 case MFEMUL_WRITEBL2:{
2818 if (len == 18){
2819 mf_crypto1_decrypt(pcs, receivedCmd, len);
2820 emlSetMem(receivedCmd, cardWRBL, 1);
2821 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2822 cardSTATE = MFEMUL_WORK;
51969283 2823 } else {
0014cb46 2824 cardSTATE_TO_IDLE();
6a1f2d82 2825 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2826 }
8f51ddb0 2827 break;
50193c1e 2828 }
0014cb46
M
2829
2830 case MFEMUL_INTREG_INC:{
2831 mf_crypto1_decrypt(pcs, receivedCmd, len);
2832 memcpy(&ans, receivedCmd, 4);
2833 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2834 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2835 cardSTATE_TO_IDLE();
2836 break;
7bc95e2e 2837 }
6a1f2d82 2838 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2839 cardINTREG = cardINTREG + ans;
2840 cardSTATE = MFEMUL_WORK;
2841 break;
2842 }
2843 case MFEMUL_INTREG_DEC:{
2844 mf_crypto1_decrypt(pcs, receivedCmd, len);
2845 memcpy(&ans, receivedCmd, 4);
2846 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2847 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2848 cardSTATE_TO_IDLE();
2849 break;
2850 }
6a1f2d82 2851 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2852 cardINTREG = cardINTREG - ans;
2853 cardSTATE = MFEMUL_WORK;
2854 break;
2855 }
2856 case MFEMUL_INTREG_REST:{
2857 mf_crypto1_decrypt(pcs, receivedCmd, len);
2858 memcpy(&ans, receivedCmd, 4);
2859 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2860 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2861 cardSTATE_TO_IDLE();
2862 break;
2863 }
6a1f2d82 2864 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2865 cardSTATE = MFEMUL_WORK;
2866 break;
2867 }
50193c1e 2868 }
50193c1e
M
2869 }
2870
9ca155ba
M
2871 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2872 LEDsoff();
2873
d2f487af 2874 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2875 {
2876 //May just aswell send the collected ar_nr in the response aswell
c3c241f3 2877 uint8_t len = ar_nr_collected*5*4;
2878 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
d2f487af 2879 }
d714d3ef 2880
12d708fe 2881 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
d2f487af 2882 {
12d708fe 2883 if(ar_nr_collected > 1 ) {
d2f487af 2884 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
c3c241f3 2885 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2886 ar_nr_responses[0], // UID1
2887 ar_nr_responses[1], // UID2
2888 ar_nr_responses[2], // NT
2889 ar_nr_responses[3], // AR1
2890 ar_nr_responses[4], // NR1
2891 ar_nr_responses[8], // AR2
2892 ar_nr_responses[9] // NR2
d2f487af 2893 );
7bc95e2e 2894 } else {
d2f487af 2895 Dbprintf("Failed to obtain two AR/NR pairs!");
12d708fe 2896 if(ar_nr_collected > 0 ) {
c3c241f3 2897 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2898 ar_nr_responses[0], // UID1
2899 ar_nr_responses[1], // UID2
2900 ar_nr_responses[2], // NT
2901 ar_nr_responses[3], // AR1
2902 ar_nr_responses[4] // NR1
d2f487af 2903 );
2904 }
2905 }
2906 }
c3c241f3 2907 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
15c4dc5a 2908}
b62a5a84 2909
d2f487af 2910
b62a5a84
M
2911//-----------------------------------------------------------------------------
2912// MIFARE sniffer.
2913//
2914//-----------------------------------------------------------------------------
5cd9ec01
M
2915void RAMFUNC SniffMifare(uint8_t param) {
2916 // param:
2917 // bit 0 - trigger from first card answer
2918 // bit 1 - trigger from first reader 7-bit request
39864b0b 2919
d26849d4 2920 // free eventually allocated BigBuf memory
2921 BigBuf_free();
2922
39864b0b 2923 // C(red) A(yellow) B(green)
b62a5a84
M
2924 LEDsoff();
2925 // init trace buffer
3000dc4e
MHS
2926 clear_trace();
2927 set_tracing(TRUE);
b62a5a84 2928
b62a5a84
M
2929 // The command (reader -> tag) that we're receiving.
2930 // The length of a received command will in most cases be no more than 18 bytes.
2931 // So 32 should be enough!
f71f4deb 2932 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2933 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 2934 // The response (tag -> reader) that we're receiving.
f71f4deb 2935 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2936 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 2937
f71f4deb 2938 // allocate the DMA buffer, used to stream samples from the FPGA
2939 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
7bc95e2e 2940 uint8_t *data = dmaBuf;
2941 uint8_t previous_data = 0;
5cd9ec01
M
2942 int maxDataLen = 0;
2943 int dataLen = 0;
7bc95e2e 2944 bool ReaderIsActive = FALSE;
2945 bool TagIsActive = FALSE;
2946
2947 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2948
2949 // Set up the demodulator for tag -> reader responses.
6a1f2d82 2950 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2951
2952 // Set up the demodulator for the reader -> tag commands
6a1f2d82 2953 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
2954
2955 // Setup for the DMA.
7bc95e2e 2956 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2957
b62a5a84 2958 LED_D_OFF();
39864b0b
M
2959
2960 // init sniffer
2961 MfSniffInit();
b62a5a84 2962
b62a5a84 2963 // And now we loop, receiving samples.
7bc95e2e 2964 for(uint32_t sniffCounter = 0; TRUE; ) {
2965
5cd9ec01
M
2966 if(BUTTON_PRESS()) {
2967 DbpString("cancelled by button");
7bc95e2e 2968 break;
5cd9ec01
M
2969 }
2970
b62a5a84
M
2971 LED_A_ON();
2972 WDT_HIT();
39864b0b 2973
7bc95e2e 2974 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2975 // check if a transaction is completed (timeout after 2000ms).
2976 // if yes, stop the DMA transfer and send what we have so far to the client
2977 if (MfSniffSend(2000)) {
2978 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2979 sniffCounter = 0;
2980 data = dmaBuf;
2981 maxDataLen = 0;
2982 ReaderIsActive = FALSE;
2983 TagIsActive = FALSE;
2984 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2985 }
39864b0b 2986 }
7bc95e2e 2987
2988 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2989 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2990 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2991 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2992 } else {
2993 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2994 }
2995 // test for length of buffer
7bc95e2e 2996 if(dataLen > maxDataLen) { // we are more behind than ever...
2997 maxDataLen = dataLen;
f71f4deb 2998 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
5cd9ec01 2999 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 3000 break;
b62a5a84
M
3001 }
3002 }
5cd9ec01 3003 if(dataLen < 1) continue;
b62a5a84 3004
7bc95e2e 3005 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
3006 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3007 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3008 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 3009 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
3010 }
3011 // secondary buffer sets as primary, secondary buffer was stopped
3012 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3013 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
3014 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3015 }
5cd9ec01
M
3016
3017 LED_A_OFF();
b62a5a84 3018
7bc95e2e 3019 if (sniffCounter & 0x01) {
b62a5a84 3020
7bc95e2e 3021 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3022 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3023 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3024 LED_C_INV();
6a1f2d82 3025 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 3026
7bc95e2e 3027 /* And ready to receive another command. */
2d2f7d19 3028 //UartInit(receivedCmd, receivedCmdPar);
3029 UartReset();
7bc95e2e 3030
3031 /* And also reset the demod code */
3032 DemodReset();
3033 }
3034 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3035 }
3036
3037 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3038 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3039 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3040 LED_C_INV();
b62a5a84 3041
6a1f2d82 3042 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 3043
7bc95e2e 3044 // And ready to receive another response.
3045 DemodReset();
46c65fed 3046
0ec548dc 3047 // And reset the Miller decoder including its (now outdated) input buffer
3048 UartInit(receivedCmd, receivedCmdPar);
7bc95e2e 3049 }
3050 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3051 }
b62a5a84
M
3052 }
3053
7bc95e2e 3054 previous_data = *data;
3055 sniffCounter++;
5cd9ec01 3056 data++;
d714d3ef 3057 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 3058 data = dmaBuf;
b62a5a84 3059 }
7bc95e2e 3060
b62a5a84
M
3061 } // main cycle
3062
3063 DbpString("COMMAND FINISHED");
3064
55acbb2a 3065 FpgaDisableSscDma();
39864b0b
M
3066 MfSniffEnd();
3067
7bc95e2e 3068 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 3069 LEDsoff();
3803d529 3070}
Impressum, Datenschutz