]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
fixup code
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
8ce3e4b4 4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Implements a card only attack based on crypto text (encrypted nonces
9// received during a nested authentication) only. Unlike other card only
10// attacks this doesn't rely on implementation errors but only on the
11// inherent weaknesses of the crypto1 cypher. Described in
12// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14// Computer and Communications Security, 2015
15//-----------------------------------------------------------------------------
2dcf60f3 16#include "cmdhfmfhard.h"
8ce3e4b4 17
f8ada309 18#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f
GG
19#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
20#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
21#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
236e8f7c 22#define CRACKING_THRESHOLD 39.00f // as 2^39
81ba7ee8 23
24#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 25
26static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
27 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0290 };
8ce3e4b4 60
61typedef struct noncelistentry {
62 uint32_t nonce_enc;
63 uint8_t par_enc;
64 void *next;
65} noncelistentry_t;
66
67typedef struct noncelist {
68 uint16_t num;
69 uint16_t Sum;
70 uint16_t Sum8_guess;
71 uint8_t BitFlip[2];
72 float Sum8_prob;
73 bool updated;
74 noncelistentry_t *first;
a531720a 75 float score1, score2;
8ce3e4b4 76} noncelist_t;
77
3130ba4b 78static size_t nonces_to_bruteforce = 0;
79static noncelistentry_t *brute_force_nonces[256];
810f5379 80static uint32_t cuid = 0;
8ce3e4b4 81static noncelist_t nonces[256];
fe8042f2 82static uint8_t best_first_bytes[256];
8ce3e4b4 83static uint16_t first_byte_Sum = 0;
84static uint16_t first_byte_num = 0;
85static uint16_t num_good_first_bytes = 0;
f8ada309 86static uint64_t maximum_states = 0;
87static uint64_t known_target_key;
0d5ee8e2 88static bool write_stats = false;
89static FILE *fstats = NULL;
8ce3e4b4 90
91
92typedef enum {
93 EVEN_STATE = 0,
94 ODD_STATE = 1
95} odd_even_t;
96
97#define STATELIST_INDEX_WIDTH 16
98#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
99
100typedef struct {
101 uint32_t *states[2];
102 uint32_t len[2];
103 uint32_t *index[2][STATELIST_INDEX_SIZE];
104} partial_indexed_statelist_t;
105
106typedef struct {
107 uint32_t *states[2];
108 uint32_t len[2];
109 void* next;
110} statelist_t;
111
112
f8ada309 113static partial_indexed_statelist_t partial_statelist[17];
114static partial_indexed_statelist_t statelist_bitflip;
f8ada309 115static statelist_t *candidates = NULL;
8ce3e4b4 116
383a1fb3
GG
117bool thread_check_started = false;
118bool thread_check_done = false;
383a1fb3
GG
119bool field_off = false;
120
121pthread_t thread_check;
383a1fb3 122
bbcd41a6 123static void* check_thread();
057d2e91
GG
124static bool generate_candidates(uint16_t, uint16_t);
125static bool brute_force(void);
126
8ce3e4b4 127static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
128{
129 uint8_t first_byte = nonce_enc >> 24;
130 noncelistentry_t *p1 = nonces[first_byte].first;
131 noncelistentry_t *p2 = NULL;
132
133 if (p1 == NULL) { // first nonce with this 1st byte
134 first_byte_num++;
f8ada309 135 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 136 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
137 // nonce_enc,
138 // par_enc,
139 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 140 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 141 }
142
143 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
144 p2 = p1;
145 p1 = p1->next;
146 }
147
148 if (p1 == NULL) { // need to add at the end of the list
149 if (p2 == NULL) { // list is empty yet. Add first entry.
150 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
151 } else { // add new entry at end of existing list.
152 p2 = p2->next = malloc(sizeof(noncelistentry_t));
153 }
154 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
155 if (p2 == NULL) { // need to insert at start of list
156 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
157 } else {
158 p2 = p2->next = malloc(sizeof(noncelistentry_t));
159 }
160 } else { // we have seen this 2nd byte before. Nothing to add or insert.
161 return (0);
162 }
163
164 // add or insert new data
165 p2->next = p1;
166 p2->nonce_enc = nonce_enc;
167 p2->par_enc = par_enc;
168
3130ba4b 169 if(nonces_to_bruteforce < 256){
170 brute_force_nonces[nonces_to_bruteforce] = p2;
171 nonces_to_bruteforce++;
172 }
173
8ce3e4b4 174 nonces[first_byte].num++;
f8ada309 175 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 176 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
177
178 return (1); // new nonce added
179}
180
0d5ee8e2 181static void init_nonce_memory(void)
182{
183 for (uint16_t i = 0; i < 256; i++) {
184 nonces[i].num = 0;
185 nonces[i].Sum = 0;
186 nonces[i].Sum8_guess = 0;
187 nonces[i].Sum8_prob = 0.0;
188 nonces[i].updated = true;
189 nonces[i].first = NULL;
190 }
191 first_byte_num = 0;
192 first_byte_Sum = 0;
193 num_good_first_bytes = 0;
194}
195
0d5ee8e2 196static void free_nonce_list(noncelistentry_t *p)
197{
198 if (p == NULL) {
199 return;
200 } else {
201 free_nonce_list(p->next);
202 free(p);
203 }
204}
205
0d5ee8e2 206static void free_nonces_memory(void)
207{
208 for (uint16_t i = 0; i < 256; i++) {
209 free_nonce_list(nonces[i].first);
210 }
211}
212
8ce3e4b4 213static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
214{
215 uint16_t sum = 0;
216 for (uint16_t j = 0; j < 16; j++) {
217 uint32_t st = state;
218 uint16_t part_sum = 0;
219 if (odd_even == ODD_STATE) {
220 for (uint16_t i = 0; i < 5; i++) {
221 part_sum ^= filter(st);
222 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
223 }
f8ada309 224 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 225 } else {
226 for (uint16_t i = 0; i < 4; i++) {
227 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
228 part_sum ^= filter(st);
229 }
230 }
231 sum += part_sum;
232 }
233 return sum;
234}
235
fe8042f2 236// static uint16_t SumProperty(struct Crypto1State *s)
237// {
238 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
239 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
240 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
241// }
8ce3e4b4 242
8ce3e4b4 243static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
244{
245 // for efficient computation we are using the recursive definition
246 // (K-k+1) * (n-k+1)
247 // P(X=k) = P(X=k-1) * --------------------
248 // k * (N-K-n+k)
249 // and
250 // (N-K)*(N-K-1)*...*(N-K-n+1)
251 // P(X=0) = -----------------------------
252 // N*(N-1)*...*(N-n+1)
253
254 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
255 if (k == 0) {
256 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
257 double log_result = 0.0;
258 for (int16_t i = N-K; i >= N-K-n+1; i--) {
259 log_result += log(i);
260 }
261 for (int16_t i = N; i >= N-n+1; i--) {
262 log_result -= log(i);
263 }
264 return exp(log_result);
265 } else {
266 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
267 double log_result = 0.0;
268 for (int16_t i = k+1; i <= n; i++) {
269 log_result += log(i);
270 }
271 for (int16_t i = K+1; i <= N; i++) {
272 log_result -= log(i);
273 }
274 return exp(log_result);
275 } else { // recursion
276 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
277 }
278 }
279}
3130ba4b 280
8ce3e4b4 281static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
282{
283 const uint16_t N = 256;
8ce3e4b4 284
4b2e63be 285 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 286
4b2e63be 287 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
288 double p_S_is_K = p_K[K];
289 double p_T_is_k = 0;
290 for (uint16_t i = 0; i <= 256; i++) {
291 if (p_K[i] != 0.0) {
292 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 293 }
4b2e63be 294 }
295 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 296}
297
a531720a 298
299static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
300{
301 static const uint_fast8_t common_bits_LUT[256] = {
302 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
303 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
304 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
305 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
306 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
318 };
319
320 return common_bits_LUT[bytes_diff];
321}
322
8ce3e4b4 323static void Tests()
324{
fe8042f2 325 // printf("Tests: Partial Statelist sizes\n");
326 // for (uint16_t i = 0; i <= 16; i+=2) {
327 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
328 // }
329 // for (uint16_t i = 0; i <= 16; i+=2) {
330 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
331 // }
8ce3e4b4 332
333 // #define NUM_STATISTICS 100000
8ce3e4b4 334 // uint32_t statistics_odd[17];
f8ada309 335 // uint64_t statistics[257];
8ce3e4b4 336 // uint32_t statistics_even[17];
337 // struct Crypto1State cs;
338 // time_t time1 = clock();
339
340 // for (uint16_t i = 0; i < 257; i++) {
341 // statistics[i] = 0;
342 // }
343 // for (uint16_t i = 0; i < 17; i++) {
344 // statistics_odd[i] = 0;
345 // statistics_even[i] = 0;
346 // }
347
348 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
349 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
350 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
351 // uint16_t sum_property = SumProperty(&cs);
352 // statistics[sum_property] += 1;
353 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
354 // statistics_even[sum_property]++;
355 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
356 // statistics_odd[sum_property]++;
357 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
358 // }
359
360 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
361 // for (uint16_t i = 0; i < 257; i++) {
362 // if (statistics[i] != 0) {
363 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
364 // }
365 // }
366 // for (uint16_t i = 0; i <= 16; i++) {
367 // if (statistics_odd[i] != 0) {
368 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
369 // }
370 // }
371 // for (uint16_t i = 0; i <= 16; i++) {
372 // if (statistics_odd[i] != 0) {
373 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
374 // }
375 // }
376
377 // printf("Tests: Sum Probabilities based on Partial Sums\n");
378 // for (uint16_t i = 0; i < 257; i++) {
379 // statistics[i] = 0;
380 // }
381 // uint64_t num_states = 0;
382 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
383 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
384 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
385 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
386 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
387 // }
388 // }
389 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
390 // for (uint16_t i = 0; i < 257; i++) {
391 // if (statistics[i] != 0) {
392 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
393 // }
394 // }
395
396 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
397 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
398 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
399 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
400 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
401 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
402 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
403
fe8042f2 404 // struct Crypto1State *pcs;
405 // pcs = crypto1_create(0xffffffffffff);
406 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
407 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
408 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
409 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
410 // best_first_bytes[0],
411 // SumProperty(pcs),
412 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
413 // //test_state_odd = pcs->odd & 0x00ffffff;
414 // //test_state_even = pcs->even & 0x00ffffff;
415 // crypto1_destroy(pcs);
416 // pcs = crypto1_create(0xa0a1a2a3a4a5);
417 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
418 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
419 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
420 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
421 // best_first_bytes[0],
422 // SumProperty(pcs),
423 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
424 // //test_state_odd = pcs->odd & 0x00ffffff;
425 // //test_state_even = pcs->even & 0x00ffffff;
426 // crypto1_destroy(pcs);
427 // pcs = crypto1_create(0xa6b9aa97b955);
428 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
430 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
431 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
432 // best_first_bytes[0],
433 // SumProperty(pcs),
434 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 435 //test_state_odd = pcs->odd & 0x00ffffff;
436 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 437 // crypto1_destroy(pcs);
8ce3e4b4 438
439
fe8042f2 440 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 441
cd777a05 442 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
443 // for (uint16_t i = 0; i < 256; i++) {
444 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
445 // if (i % 8 == 7) {
446 // printf("\n");
447 // }
448 // }
8ce3e4b4 449
cd777a05 450 // printf("\nTests: Sorted First Bytes:\n");
451 // for (uint16_t i = 0; i < 256; i++) {
452 // uint8_t best_byte = best_first_bytes[i];
453 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
454 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
455 // i, best_byte,
456 // nonces[best_byte].num,
457 // nonces[best_byte].Sum,
458 // nonces[best_byte].Sum8_guess,
459 // nonces[best_byte].Sum8_prob * 100,
460 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
461 // //nonces[best_byte].score1,
462 // //nonces[best_byte].score2
463 // );
464 // }
f8ada309 465
466 // printf("\nTests: parity performance\n");
467 // time_t time1p = clock();
468 // uint32_t par_sum = 0;
469 // for (uint32_t i = 0; i < 100000000; i++) {
470 // par_sum += parity(i);
471 // }
472 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
473
474 // time1p = clock();
475 // par_sum = 0;
476 // for (uint32_t i = 0; i < 100000000; i++) {
477 // par_sum += evenparity32(i);
478 // }
479 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
480
8ce3e4b4 481
f8ada309 482}
483
f8ada309 484static void sort_best_first_bytes(void)
485{
fe8042f2 486 // sort based on probability for correct guess
8ce3e4b4 487 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 488 uint16_t j = 0;
8ce3e4b4 489 float prob1 = nonces[i].Sum8_prob;
f8ada309 490 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 491 while (prob1 < prob2 && j < i) {
8ce3e4b4 492 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
493 }
fe8042f2 494 if (j < i) {
495 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 496 best_first_bytes[k] = best_first_bytes[k-1];
497 }
fe8042f2 498 }
8ce3e4b4 499 best_first_bytes[j] = i;
500 }
f8ada309 501
fe8042f2 502 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 503 uint16_t num_good_nonces = 0;
fe8042f2 504 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 505 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 506 ++num_good_nonces;
507 }
508 }
509
510 uint16_t best_first_byte = 0;
511
512 // select the best possible first byte based on number of common bits with all {b'}
513 // uint16_t max_common_bits = 0;
514 // for (uint16_t i = 0; i < num_good_nonces; i++) {
515 // uint16_t sum_common_bits = 0;
516 // for (uint16_t j = 0; j < num_good_nonces; j++) {
517 // if (i != j) {
518 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
519 // }
520 // }
521 // if (sum_common_bits > max_common_bits) {
522 // max_common_bits = sum_common_bits;
523 // best_first_byte = i;
524 // }
525 // }
526
527 // select best possible first byte {b} based on least likely sum/bitflip property
528 float min_p_K = 1.0;
529 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
530 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
531 float bitflip_prob = 1.0;
532 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
533 bitflip_prob = 0.09375;
534 }
a531720a 535 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
f8ada309 536 if (p_K[sum8] * bitflip_prob <= min_p_K) {
537 min_p_K = p_K[sum8] * bitflip_prob;
f8ada309 538 }
539 }
540
a531720a 541
f8ada309 542 // use number of commmon bits as a tie breaker
543 uint16_t max_common_bits = 0;
544 for (uint16_t i = 0; i < num_good_nonces; i++) {
545 float bitflip_prob = 1.0;
546 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
547 bitflip_prob = 0.09375;
548 }
549 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
550 uint16_t sum_common_bits = 0;
551 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 552 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 553 }
a531720a 554 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 555 if (sum_common_bits > max_common_bits) {
556 max_common_bits = sum_common_bits;
557 best_first_byte = i;
558 }
559 }
560 }
561
a531720a 562 // swap best possible first byte to the pole position
f8ada309 563 uint16_t temp = best_first_bytes[0];
564 best_first_bytes[0] = best_first_bytes[best_first_byte];
565 best_first_bytes[best_first_byte] = temp;
566
8ce3e4b4 567}
568
8ce3e4b4 569static uint16_t estimate_second_byte_sum(void)
570{
8ce3e4b4 571
572 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
573 float Sum8_prob = 0.0;
574 uint16_t Sum8 = 0;
575 if (nonces[first_byte].updated) {
576 for (uint16_t sum = 0; sum <= 256; sum++) {
577 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
578 if (prob > Sum8_prob) {
579 Sum8_prob = prob;
580 Sum8 = sum;
581 }
582 }
583 nonces[first_byte].Sum8_guess = Sum8;
584 nonces[first_byte].Sum8_prob = Sum8_prob;
585 nonces[first_byte].updated = false;
586 }
587 }
588
589 sort_best_first_bytes();
590
591 uint16_t num_good_nonces = 0;
fe8042f2 592 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 593 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
8ce3e4b4 594 ++num_good_nonces;
595 }
596 }
597
598 return num_good_nonces;
599}
600
8ce3e4b4 601static int read_nonce_file(void)
602{
603 FILE *fnonces = NULL;
ddaecc08 604 uint8_t trgBlockNo = 0;
605 uint8_t trgKeyType = 0;
8ce3e4b4 606 uint8_t read_buf[9];
ddaecc08 607 uint32_t nt_enc1 = 0, nt_enc2 = 0;
608 uint8_t par_enc = 0;
8ce3e4b4 609 int total_num_nonces = 0;
610
611 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
612 PrintAndLog("Could not open file nonces.bin");
613 return 1;
614 }
615
616 PrintAndLog("Reading nonces from file nonces.bin...");
841d7af0 617 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
618 if ( bytes_read == 0) {
8ce3e4b4 619 PrintAndLog("File reading error.");
620 fclose(fnonces);
2dcf60f3 621 fnonces = NULL;
8ce3e4b4 622 return 1;
623 }
624 cuid = bytes_to_num(read_buf, 4);
625 trgBlockNo = bytes_to_num(read_buf+4, 1);
626 trgKeyType = bytes_to_num(read_buf+5, 1);
627
628 while (fread(read_buf, 1, 9, fnonces) == 9) {
629 nt_enc1 = bytes_to_num(read_buf, 4);
630 nt_enc2 = bytes_to_num(read_buf+4, 4);
631 par_enc = bytes_to_num(read_buf+8, 1);
632 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
633 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
634 add_nonce(nt_enc1, par_enc >> 4);
635 add_nonce(nt_enc2, par_enc & 0x0f);
636 total_num_nonces += 2;
637 }
638 fclose(fnonces);
2dcf60f3 639 fnonces = NULL;
8ce3e4b4 640 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 641 return 0;
642}
643
a531720a 644static void Check_for_FilterFlipProperties(void)
645{
646 printf("Checking for Filter Flip Properties...\n");
647
0d5ee8e2 648 uint16_t num_bitflips = 0;
649
a531720a 650 for (uint16_t i = 0; i < 256; i++) {
651 nonces[i].BitFlip[ODD_STATE] = false;
652 nonces[i].BitFlip[EVEN_STATE] = false;
653 }
654
655 for (uint16_t i = 0; i < 256; i++) {
656 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
657 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
658 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
659
660 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
661 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 662 num_bitflips++;
a531720a 663 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
664 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 665 num_bitflips++;
a531720a 666 }
667 }
0d5ee8e2 668
669 if (write_stats) {
670 fprintf(fstats, "%d;", num_bitflips);
671 }
672}
673
0d5ee8e2 674static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
675{
1f1929a4 676 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 677 // init cryptostate with key:
678 for(int8_t i = 47; i > 0; i -= 2) {
679 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
680 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
681 }
682
683 *par_enc = 0;
684 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
685 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
686 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
687 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
688 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
689 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
690 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
691 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
692 }
693
694}
695
0d5ee8e2 696static void simulate_acquire_nonces()
697{
698 clock_t time1 = clock();
699 bool filter_flip_checked = false;
700 uint32_t total_num_nonces = 0;
701 uint32_t next_fivehundred = 500;
702 uint32_t total_added_nonces = 0;
703
704 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
705 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
706
707 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
708 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
709
710 do {
711 uint32_t nt_enc = 0;
712 uint8_t par_enc = 0;
713
714 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
715 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
716 total_added_nonces += add_nonce(nt_enc, par_enc);
717 total_num_nonces++;
718
719 if (first_byte_num == 256 ) {
720 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
721 if (!filter_flip_checked) {
722 Check_for_FilterFlipProperties();
723 filter_flip_checked = true;
724 }
725 num_good_first_bytes = estimate_second_byte_sum();
726 if (total_num_nonces > next_fivehundred) {
727 next_fivehundred = (total_num_nonces/500+1) * 500;
728 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
729 total_num_nonces,
730 total_added_nonces,
731 CONFIDENCE_THRESHOLD * 100.0,
732 num_good_first_bytes);
733 }
734 }
735
736 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
737
b112787d 738 time1 = clock() - time1;
739 if ( time1 > 0 ) {
0d5ee8e2 740 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
741 total_num_nonces,
b112787d 742 ((float)time1)/CLOCKS_PER_SEC,
743 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
744 }
0d5ee8e2 745 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
746
a531720a 747}
748
f8ada309 749static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 750{
751 clock_t time1 = clock();
752 bool initialize = true;
8ce3e4b4 753 bool finished = false;
a531720a 754 bool filter_flip_checked = false;
8ce3e4b4 755 uint32_t flags = 0;
756 uint8_t write_buf[9];
757 uint32_t total_num_nonces = 0;
758 uint32_t next_fivehundred = 500;
759 uint32_t total_added_nonces = 0;
057d2e91 760 uint32_t idx = 1;
8ce3e4b4 761 FILE *fnonces = NULL;
762 UsbCommand resp;
763
383a1fb3 764 field_off = false;
0325c12f
GG
765 thread_check_started = false;
766 thread_check_done = false;
383a1fb3 767
8ce3e4b4 768 printf("Acquiring nonces...\n");
383a1fb3 769
8ce3e4b4 770 clearCommandBuffer();
771
772 do {
236e8f7c 773 if (thread_check_started && !thread_check_done) {
383a1fb3
GG
774 sleep(3);
775 continue;
776 }
777
8ce3e4b4 778 flags = 0;
779 flags |= initialize ? 0x0001 : 0;
780 flags |= slow ? 0x0002 : 0;
781 flags |= field_off ? 0x0004 : 0;
782 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
783 memcpy(c.d.asBytes, key, 6);
784
785 SendCommand(&c);
786
787 if (field_off) finished = true;
788
789 if (initialize) {
790 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
791 if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
792
793 cuid = resp.arg[1];
794 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
795 if (nonce_file_write && fnonces == NULL) {
796 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
797 PrintAndLog("Could not create file nonces.bin");
798 return 3;
799 }
800 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
801 num_to_bytes(cuid, 4, write_buf);
802 fwrite(write_buf, 1, 4, fnonces);
803 fwrite(&trgBlockNo, 1, 1, fnonces);
804 fwrite(&trgKeyType, 1, 1, fnonces);
805 }
806 }
807
808 if (!initialize) {
809 uint32_t nt_enc1, nt_enc2;
810 uint8_t par_enc;
811 uint16_t num_acquired_nonces = resp.arg[2];
812 uint8_t *bufp = resp.d.asBytes;
813 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
814 nt_enc1 = bytes_to_num(bufp, 4);
815 nt_enc2 = bytes_to_num(bufp+4, 4);
816 par_enc = bytes_to_num(bufp+8, 1);
817
818 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
819 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
820 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
821 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
822
0325c12f 823 if (nonce_file_write && fnonces) {
8ce3e4b4 824 fwrite(bufp, 1, 9, fnonces);
825 }
826
827 bufp += 9;
828 }
829
830 total_num_nonces += num_acquired_nonces;
831 }
832
383a1fb3 833 if (first_byte_num == 256 && !field_off) {
8ce3e4b4 834 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
a531720a 835 if (!filter_flip_checked) {
836 Check_for_FilterFlipProperties();
837 filter_flip_checked = true;
838 }
383a1fb3 839
8ce3e4b4 840 num_good_first_bytes = estimate_second_byte_sum();
841 if (total_num_nonces > next_fivehundred) {
842 next_fivehundred = (total_num_nonces/500+1) * 500;
843 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
844 total_num_nonces,
845 total_added_nonces,
846 CONFIDENCE_THRESHOLD * 100.0,
847 num_good_first_bytes);
383a1fb3 848 }
057d2e91 849
383a1fb3
GG
850 if (thread_check_started) {
851 if (thread_check_done) {
383a1fb3 852 pthread_join (thread_check, 0);
383a1fb3 853 thread_check_started = thread_check_done = false;
057d2e91 854 }
383a1fb3 855 } else {
bbcd41a6
GG
856 if (total_added_nonces >= MIN_NONCES_REQUIRED)
857 {
858 num_good_first_bytes = estimate_second_byte_sum();
859 if (total_added_nonces > (NONCES_TRIGGER*idx) || num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
860 pthread_create (&thread_check, NULL, check_thread, NULL);
861 thread_check_started = true;
862 idx++;
863 }
864 }
057d2e91 865 }
8ce3e4b4 866 }
867
868 if (!initialize) {
1a4b6738 869 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
0325c12f
GG
870 if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
871 fclose(fnonces);
872 fnonces = NULL;
873 }
1a4b6738 874 return 1;
875 }
383a1fb3 876
1a4b6738 877 if (resp.arg[0]) {
0325c12f
GG
878 if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
879 fclose(fnonces);
880 fnonces = NULL;
881 }
1a4b6738 882 return resp.arg[0]; // error during nested_hard
883 }
8ce3e4b4 884 }
885
886 initialize = false;
887
888 } while (!finished);
889
0325c12f 890 if (nonce_file_write && fnonces) {
8ce3e4b4 891 fclose(fnonces);
0325c12f 892 fnonces = NULL;
8ce3e4b4 893 }
894
b112787d 895 time1 = clock() - time1;
896 if ( time1 > 0 ) {
81ba7ee8 897 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
898 total_num_nonces,
899 ((float)time1)/CLOCKS_PER_SEC,
900 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 901 );
902 }
8ce3e4b4 903 return 0;
904}
905
8ce3e4b4 906static int init_partial_statelists(void)
907{
f8ada309 908 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
909// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
910 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 911
912 printf("Allocating memory for partial statelists...\n");
913 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
914 for (uint16_t i = 0; i <= 16; i+=2) {
915 partial_statelist[i].len[odd_even] = 0;
916 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
917 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
918 if (partial_statelist[i].states[odd_even] == NULL) {
919 PrintAndLog("Cannot allocate enough memory. Aborting");
920 return 4;
921 }
922 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
923 partial_statelist[i].index[odd_even][j] = NULL;
924 }
925 }
926 }
927
928 printf("Generating partial statelists...\n");
929 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
930 uint32_t index = -1;
931 uint32_t num_of_states = 1<<20;
932 for (uint32_t state = 0; state < num_of_states; state++) {
933 uint16_t sum_property = PartialSumProperty(state, odd_even);
934 uint32_t *p = partial_statelist[sum_property].states[odd_even];
935 p += partial_statelist[sum_property].len[odd_even];
936 *p = state;
937 partial_statelist[sum_property].len[odd_even]++;
938 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
939 if ((state & index_mask) != index) {
940 index = state & index_mask;
941 }
942 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
943 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
944 }
945 }
946 // add End Of List markers
947 for (uint16_t i = 0; i <= 16; i += 2) {
948 uint32_t *p = partial_statelist[i].states[odd_even];
949 p += partial_statelist[i].len[odd_even];
81ba7ee8 950 *p = END_OF_LIST_MARKER;
8ce3e4b4 951 }
952 }
953
954 return 0;
955}
8ce3e4b4 956
957static void init_BitFlip_statelist(void)
958{
959 printf("Generating bitflip statelist...\n");
960 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
961 uint32_t index = -1;
962 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
963 for (uint32_t state = 0; state < (1 << 20); state++) {
964 if (filter(state) != filter(state^1)) {
965 if ((state & index_mask) != index) {
966 index = state & index_mask;
967 }
968 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
969 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
970 }
971 *p++ = state;
972 }
973 }
974 // set len and add End Of List marker
975 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 976 *p = END_OF_LIST_MARKER;
8ce3e4b4 977 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
978}
8ce3e4b4 979
a531720a 980static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 981{
982 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
983
984 if (p == NULL) return NULL;
a531720a 985 while (*p < (state & mask)) p++;
81ba7ee8 986 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 987 if ((*p & mask) == (state & mask)) return p; // found a match.
988 return NULL; // no match
989}
990
a531720a 991static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 992{
a531720a 993 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
994 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
995 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
996 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
997 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
998 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
999 return !all_diff;
1000}
1001
a531720a 1002static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
1003{
1004 uint_fast8_t j_bit_mask = 0x01 << bit;
1005 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
1006 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
1007 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
1008 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1009 return all_diff;
1010}
1011
a531720a 1012static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1013{
1014 if (odd_even) {
1015 // odd bits
1016 switch (num_common_bits) {
1017 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1018 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1019 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1020 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1021 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1022 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1023 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1024 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1025 }
a531720a 1026 } else {
1027 // even bits
1028 switch (num_common_bits) {
1029 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1030 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1031 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1032 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1033 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1034 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1035 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1036 }
8ce3e4b4 1037 }
1038
1039 return true; // valid state
1040}
1041
8ce3e4b4 1042static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1043{
1044 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1045 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1046 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1047 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1048 uint32_t mask = 0xfffffff0;
1049 if (odd_even == ODD_STATE) {
a531720a 1050 mask >>= j/2;
8ce3e4b4 1051 } else {
a531720a 1052 mask >>= (j+1)/2;
8ce3e4b4 1053 }
1054 mask &= 0x000fffff;
1055 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1056 bool found_match = false;
1057 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1058 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1059 if (r*(16-s) + (16-r)*s == sum_a8) {
1060 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1061 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1062 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1063 if (p != NULL) {
81ba7ee8 1064 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1065 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1066 found_match = true;
1067 // if ((odd_even == ODD_STATE && state == test_state_odd)
1068 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1069 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1070 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1071 // }
1072 break;
1073 } else {
1074 // if ((odd_even == ODD_STATE && state == test_state_odd)
1075 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1076 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1077 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1078 // }
1079 }
1080 p++;
1081 }
1082 } else {
1083 // if ((odd_even == ODD_STATE && state == test_state_odd)
1084 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1085 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1086 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1087 // }
1088 }
1089 }
1090 }
1091 }
1092
1093 if (!found_match) {
1094 // if ((odd_even == ODD_STATE && state == test_state_odd)
1095 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1096 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1097 // }
1098 return false;
1099 }
1100 }
1101
1102 return true;
1103}
1104
f8ada309 1105static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1106{
1107 for (uint16_t i = 0; i < 256; i++) {
1108 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1109 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1110 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1111 uint32_t mask = 0xfffffff0;
1112 if (odd_even == ODD_STATE) {
a531720a 1113 mask >>= j/2;
f8ada309 1114 } else {
a531720a 1115 mask >>= (j+1)/2;
f8ada309 1116 }
1117 mask &= 0x000fffff;
1118 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1119 bool found_match = false;
1120 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1121 if (p != NULL) {
81ba7ee8 1122 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1123 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1124 found_match = true;
1125 // if ((odd_even == ODD_STATE && state == test_state_odd)
1126 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1127 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1128 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1129 // }
1130 break;
1131 } else {
1132 // if ((odd_even == ODD_STATE && state == test_state_odd)
1133 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1134 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1135 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1136 // }
1137 }
1138 p++;
1139 }
1140 } else {
1141 // if ((odd_even == ODD_STATE && state == test_state_odd)
1142 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1143 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1144 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1145 // }
1146 }
1147 if (!found_match) {
1148 // if ((odd_even == ODD_STATE && state == test_state_odd)
1149 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1150 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1151 // }
1152 return false;
1153 }
1154 }
1155
1156 }
1157
1158 return true;
1159}
1160
a531720a 1161static struct sl_cache_entry {
1162 uint32_t *sl;
1163 uint32_t len;
1164 } sl_cache[17][17][2];
1165
a531720a 1166static void init_statelist_cache(void)
1167{
a531720a 1168 for (uint16_t i = 0; i < 17; i+=2) {
1169 for (uint16_t j = 0; j < 17; j+=2) {
1170 for (uint16_t k = 0; k < 2; k++) {
1171 sl_cache[i][j][k].sl = NULL;
1172 sl_cache[i][j][k].len = 0;
1173 }
1174 }
1175 }
1176}
1177
8ce3e4b4 1178static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1179{
1180 uint32_t worstcase_size = 1<<20;
1181
a531720a 1182 // check cache for existing results
1183 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1184 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1185 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1186 return 0;
1187 }
1188
8ce3e4b4 1189 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1190 if (candidates->states[odd_even] == NULL) {
1191 PrintAndLog("Out of memory error.\n");
1192 return 4;
1193 }
a531720a 1194 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1195 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1196 uint32_t search_mask = 0x000ffff0;
1197 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1198 if (p2 != NULL) {
81ba7ee8 1199 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1200 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1201 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1202 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1203 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1204 *add_p++ = (*p1 << 4) | *p2;
1205 }
8ce3e4b4 1206 }
f8ada309 1207 }
8ce3e4b4 1208 p2++;
1209 }
1210 }
8ce3e4b4 1211 }
f8ada309 1212
a531720a 1213 // set end of list marker and len
81ba7ee8 1214 *add_p = END_OF_LIST_MARKER;
a531720a 1215 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1216
8ce3e4b4 1217 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1218
a531720a 1219 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1220 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1221
8ce3e4b4 1222 return 0;
1223}
1224
8ce3e4b4 1225static statelist_t *add_more_candidates(statelist_t *current_candidates)
1226{
1227 statelist_t *new_candidates = NULL;
1228 if (current_candidates == NULL) {
1229 if (candidates == NULL) {
1230 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1231 }
1232 new_candidates = candidates;
1233 } else {
1234 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1235 }
1236 new_candidates->next = NULL;
1237 new_candidates->len[ODD_STATE] = 0;
1238 new_candidates->len[EVEN_STATE] = 0;
1239 new_candidates->states[ODD_STATE] = NULL;
1240 new_candidates->states[EVEN_STATE] = NULL;
1241 return new_candidates;
1242}
1243
057d2e91 1244static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1245{
1246 struct Crypto1State *pcs;
1247 pcs = crypto1_create(key);
1248 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1249
1250 uint32_t state_odd = pcs->odd & 0x00ffffff;
1251 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1252 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
8ce3e4b4 1253
f8ada309 1254 uint64_t count = 0;
8ce3e4b4 1255 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1256 bool found_odd = false;
1257 bool found_even = false;
8ce3e4b4 1258 uint32_t *p_odd = p->states[ODD_STATE];
1259 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1260 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1261 if ((*p_odd & 0x00ffffff) == state_odd) {
1262 found_odd = true;
1263 break;
1264 }
8ce3e4b4 1265 p_odd++;
1266 }
81ba7ee8 1267 while (*p_even != END_OF_LIST_MARKER) {
f8ada309 1268 if ((*p_even & 0x00ffffff) == state_even) {
1269 found_even = true;
1270 }
8ce3e4b4 1271 p_even++;
1272 }
f8ada309 1273 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1274 if (found_odd && found_even) {
81ba7ee8 1275 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1276 count,
1277 log(count)/log(2),
1278 maximum_states,
1279 log(maximum_states)/log(2)
1280 );
0d5ee8e2 1281 if (write_stats) {
1282 fprintf(fstats, "1\n");
1283 }
f8ada309 1284 crypto1_destroy(pcs);
057d2e91 1285 return true;
f8ada309 1286 }
8ce3e4b4 1287 }
f8ada309 1288
1289 printf("Key NOT found!\n");
0d5ee8e2 1290 if (write_stats) {
1291 fprintf(fstats, "0\n");
1292 }
8ce3e4b4 1293 crypto1_destroy(pcs);
057d2e91
GG
1294
1295 return false;
8ce3e4b4 1296}
1297
057d2e91 1298static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1299{
1300 printf("Generating crypto1 state candidates... \n");
1301
1302 statelist_t *current_candidates = NULL;
1303 // estimate maximum candidate states
f8ada309 1304 maximum_states = 0;
8ce3e4b4 1305 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1306 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1307 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1308 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1309 }
1310 }
1311 }
057d2e91 1312
0325c12f 1313 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1314
5e32cf75 1315 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
8ce3e4b4 1316
a531720a 1317 init_statelist_cache();
1318
8ce3e4b4 1319 for (uint16_t p = 0; p <= 16; p += 2) {
1320 for (uint16_t q = 0; q <= 16; q += 2) {
1321 if (p*(16-q) + (16-p)*q == sum_a0) {
2dcf60f3 1322 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1323 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
8ce3e4b4 1324 for (uint16_t r = 0; r <= 16; r += 2) {
1325 for (uint16_t s = 0; s <= 16; s += 2) {
1326 if (r*(16-s) + (16-r)*s == sum_a8) {
1327 current_candidates = add_more_candidates(current_candidates);
a531720a 1328 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1329 // and eliminate the need to calculate the other part
1330 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1331 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
8ce3e4b4 1332 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1333 if(current_candidates->len[ODD_STATE]) {
8ce3e4b4 1334 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1335 } else {
1336 current_candidates->len[EVEN_STATE] = 0;
1337 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1338 *p = END_OF_LIST_MARKER;
a531720a 1339 }
1340 } else {
1341 add_matching_states(current_candidates, q, s, EVEN_STATE);
1342 if(current_candidates->len[EVEN_STATE]) {
1343 add_matching_states(current_candidates, p, r, ODD_STATE);
1344 } else {
1345 current_candidates->len[ODD_STATE] = 0;
1346 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1347 *p = END_OF_LIST_MARKER;
a531720a 1348 }
1349 }
1c38049b 1350 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1351 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1352 }
1353 }
1354 }
1355 }
1356 }
1357 }
1358
8ce3e4b4 1359 maximum_states = 0;
1360 for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
1361 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1362 }
0325c12f
GG
1363
1364 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1365
057d2e91
GG
1366 float kcalc = log(maximum_states)/log(2.0);
1367 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1368 if (write_stats) {
1369 if (maximum_states != 0) {
057d2e91 1370 fprintf(fstats, "%1.1f;", kcalc);
0d5ee8e2 1371 } else {
1372 fprintf(fstats, "%1.1f;", 0.0);
1373 }
1374 }
236e8f7c 1375 if (kcalc < CRACKING_THRESHOLD) return true;
057d2e91
GG
1376
1377 return false;
0d5ee8e2 1378}
1379
0d5ee8e2 1380static void free_candidates_memory(statelist_t *sl)
1381{
1382 if (sl == NULL) {
1383 return;
1384 } else {
1385 free_candidates_memory(sl->next);
1386 free(sl);
1387 }
1388}
1389
0d5ee8e2 1390static void free_statelist_cache(void)
1391{
1392 for (uint16_t i = 0; i < 17; i+=2) {
1393 for (uint16_t j = 0; j < 17; j+=2) {
1394 for (uint16_t k = 0; k < 2; k++) {
1395 free(sl_cache[i][j][k].sl);
1396 }
1397 }
1398 }
8ce3e4b4 1399}
1400
45c0c48c 1401uint64_t foundkey = 0;
3130ba4b 1402size_t keys_found = 0;
1403size_t bucket_count = 0;
1404statelist_t* buckets[128];
1405size_t total_states_tested = 0;
1406size_t thread_count = 4;
1407
1408// these bitsliced states will hold identical states in all slices
1409bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1410
1411// arrays of bitsliced states with identical values in all slices
1412bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1413bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1414
1415#define EXACT_COUNT
1416
1417static const uint64_t crack_states_bitsliced(statelist_t *p){
1418 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1419 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1420 uint64_t key = -1;
1421 uint8_t bSize = sizeof(bitslice_t);
1422
1423#ifdef EXACT_COUNT
1424 size_t bucket_states_tested = 0;
1425 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1426#else
1427 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1428#endif
1429
1430 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1431 size_t bitsliced_blocks = 0;
1432 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1433
1434 // bitslice all the even states
1435 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1436
1437#ifdef __WIN32
1438 #ifdef __MINGW32__
1439 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1440 #else
1441 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1442 #endif
1443#else
b01e7d20 1444 #ifdef __APPLE__
9d590832 1445 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1446 #else
3130ba4b 1447 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1448 #endif
3130ba4b 1449#endif
1450
1451 if ( !lstate_p ) {
1452 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1453 return key;
1454 }
1455
1456 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1457
1458 // bitslice even half-states
1459 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1460#ifdef EXACT_COUNT
1461 bucket_size[bitsliced_blocks] = max_slices;
1462#endif
1463 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1464 uint32_t e = *(p_even+slice_idx);
1465 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1466 // set even bits
1467 if(e&1){
1468 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1469 }
1470 }
1471 }
1472 // compute the rollback bits
1473 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1474 // inlined crypto1_bs_lfsr_rollback
1475 const bitslice_value_t feedout = lstate_p[0].value;
1476 ++lstate_p;
1477 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1478 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1479 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1480 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1481 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1482 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1483 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1484 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1485 }
1486 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1487 }
1488
1489 // bitslice every odd state to every block of even half-states with half-finished rollback
1490 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1491 // early abort
1492 if(keys_found){
1493 goto out;
1494 }
1495
1496 // set the odd bits and compute rollback
1497 uint64_t o = (uint64_t) *p_odd;
1498 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1499 // pre-compute part of the odd feedback bits (minus rollback)
1500 bool odd_feedback_bit = parity(o&0x9ce5c);
1501
1502 crypto1_bs_rewind_a0();
1503 // set odd bits
1504 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1505 if(o & 1){
1506 state_p[state_idx] = bs_ones;
1507 } else {
1508 state_p[state_idx] = bs_zeroes;
1509 }
1510 }
1511 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1512
1513 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1514 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1515 size_t state_idx;
1516 // set even bits
1517 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1518 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1519 }
1520 // set rollback bits
1521 uint64_t lo = o;
1522 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1523 // set the odd bits and take in the odd rollback bits from the even states
1524 if(lo & 1){
1525 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1526 } else {
1527 state_p[state_idx] = bitsliced_even_state[state_idx];
1528 }
1529
1530 // set the even bits and take in the even rollback bits from the odd states
1531 if((lo >> 32) & 1){
1532 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1533 } else {
1534 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1535 }
1536 }
1537
1538#ifdef EXACT_COUNT
1539 bucket_states_tested += bucket_size[block_idx];
1540#endif
1541 // pre-compute first keystream and feedback bit vectors
1542 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1543 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1544 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1545 state_p[47-24].value ^ state_p[47-42].value);
1546
1547 // vector to contain test results (1 = passed, 0 = failed)
1548 bitslice_t results = bs_ones;
1549
1550 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1551 size_t parity_bit_idx = 0;
1552 bitslice_value_t fb_bits = fbb;
1553 bitslice_value_t ks_bits = ksb;
1554 state_p = &states[KEYSTREAM_SIZE-1];
1555 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1556
1557 // highest bit is transmitted/received first
1558 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1559 // decrypt nonce bits
1560 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1561 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1562
1563 // compute real parity bits on the fly
1564 parity_bit_vector ^= decrypted_nonce_bit_vector;
1565
1566 // update state
1567 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1568
1569 // compute next keystream bit
1570 ks_bits = crypto1_bs_f20(state_p);
1571
1572 // for each byte:
1573 if((ks_idx&7) == 0){
1574 // get encrypted parity bits
1575 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1576
1577 // decrypt parity bits
1578 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1579
1580 // compare actual parity bits with decrypted parity bits and take count in results vector
1581 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1582
1583 // make sure we still have a match in our set
1584 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1585
1586 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1587 // the short-circuiting also helps
1588 if(results.bytes64[0] == 0
1589#if MAX_BITSLICES > 64
1590 && results.bytes64[1] == 0
1591#endif
1592#if MAX_BITSLICES > 128
1593 && results.bytes64[2] == 0
1594 && results.bytes64[3] == 0
1595#endif
1596 ){
1597 goto stop_tests;
1598 }
1599 // this is about as fast but less portable (requires -std=gnu99)
1600 // asm goto ("ptest %1, %0\n\t"
1601 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1602 parity_bit_vector = bs_zeroes.value;
1603 }
1604 // compute next feedback bit vector
1605 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1606 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1607 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1608 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1609 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1610 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1611 }
1612 }
1613 // all nonce tests were successful: we've found the key in this block!
1614 state_t keys[MAX_BITSLICES];
1615 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1616 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1617 if(get_vector_bit(results_idx, results)){
1618 key = keys[results_idx].value;
1619 goto out;
1620 }
1621 }
1622stop_tests:
1623 // prepare to set new states
1624 crypto1_bs_rewind_a0();
1625 continue;
1626 }
1627 }
1628
1629out:
1630 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1631
1632#ifdef __WIN32
1633 #ifdef __MINGW32__
1634 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1635 #else
1636 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1637 #endif
1638#else
2e350b19 1639 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1640#endif
1641
1642 }
1643 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1644 return key;
1645}
8ce3e4b4 1646
bbcd41a6 1647static void* check_thread()
383a1fb3 1648{
383a1fb3 1649 num_good_first_bytes = estimate_second_byte_sum();
383a1fb3 1650
bbcd41a6 1651 clock_t time1 = clock();
236e8f7c 1652 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
bbcd41a6 1653 time1 = clock() - time1;
236e8f7c 1654 if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
0325c12f 1655
236e8f7c 1656 if (cracking || known_target_key != -1) {
bbcd41a6 1657 field_off = brute_force(); // switch off field with next SendCommand and then finish
383a1fb3
GG
1658 }
1659
1660 thread_check_done = true;
1661
1662 return (void *) NULL;
1663}
1664
3130ba4b 1665static void* crack_states_thread(void* x){
1666 const size_t thread_id = (size_t)x;
1667 size_t current_bucket = thread_id;
1668 while(current_bucket < bucket_count){
1669 statelist_t * bucket = buckets[current_bucket];
1670 if(bucket){
1671 const uint64_t key = crack_states_bitsliced(bucket);
1672 if(key != -1){
3130ba4b 1673 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1674 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1675 break;
1676 } else if(keys_found){
1677 break;
1678 } else {
1679 printf(".");
1680 fflush(stdout);
1681 }
1682 }
1683 current_bucket += thread_count;
1684 }
1685 return NULL;
1686}
cd777a05 1687
057d2e91 1688static bool brute_force(void)
8ce3e4b4 1689{
057d2e91 1690 bool ret = false;
f8ada309 1691 if (known_target_key != -1) {
1692 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1693 ret = TestIfKeyExists(known_target_key);
f8ada309 1694 } else {
0325c12f 1695 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1696
057d2e91
GG
1697 PrintAndLog("Brute force phase starting.");
1698 time_t start, end;
1699 time(&start);
1700 keys_found = 0;
ddaecc08 1701 foundkey = 0;
3130ba4b 1702
057d2e91
GG
1703 crypto1_bs_init();
1704
1705 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
1706 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
1707 // convert to 32 bit little-endian
ed69e099 1708 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1709
1710 PrintAndLog("Bitslicing nonces...");
1711 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1712 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1713 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1714 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1715 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1716 // convert to 32 bit little-endian
1717 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1718 }
057d2e91 1719 total_states_tested = 0;
3130ba4b 1720
057d2e91
GG
1721 // count number of states to go
1722 bucket_count = 0;
1723 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1724 buckets[bucket_count] = p;
1725 bucket_count++;
1726 }
3130ba4b 1727
1728#ifndef __WIN32
057d2e91 1729 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1730 if ( thread_count < 1)
1731 thread_count = 1;
3130ba4b 1732#endif /* _WIN32 */
fd3be901 1733
057d2e91 1734 pthread_t threads[thread_count];
3130ba4b 1735
057d2e91
GG
1736 // enumerate states using all hardware threads, each thread handles one bucket
1737 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1738
057d2e91
GG
1739 for(size_t i = 0; i < thread_count; i++){
1740 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1741 }
1742 for(size_t i = 0; i < thread_count; i++){
1743 pthread_join(threads[i], 0);
1744 }
1745
1746 time(&end);
1747 double elapsed_time = difftime(end, start);
1748
383a1fb3 1749 if (keys_found && TestIfKeyExists(foundkey)) {
1e2bb9c9 1750 PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time);
45c0c48c 1751 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91
GG
1752 ret = true;
1753 } else {
1e2bb9c9 1754 PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time);
21d359f6 1755 }
057d2e91
GG
1756
1757 // reset this counter for the next call
1758 nonces_to_bruteforce = 0;
f8ada309 1759 }
057d2e91
GG
1760
1761 return ret;
f8ada309 1762}
1763
0d5ee8e2 1764int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1765{
0d5ee8e2 1766 // initialize Random number generator
1767 time_t t;
1768 srand((unsigned) time(&t));
1769
f8ada309 1770 if (trgkey != NULL) {
1771 known_target_key = bytes_to_num(trgkey, 6);
1772 } else {
1773 known_target_key = -1;
1774 }
8ce3e4b4 1775
8ce3e4b4 1776 init_partial_statelists();
1777 init_BitFlip_statelist();
0d5ee8e2 1778 write_stats = false;
8ce3e4b4 1779
0d5ee8e2 1780 if (tests) {
1781 // set the correct locale for the stats printing
1782 setlocale(LC_ALL, "");
1783 write_stats = true;
1784 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1785 PrintAndLog("Could not create/open file hardnested_stats.txt");
1786 return 3;
1787 }
1788 for (uint32_t i = 0; i < tests; i++) {
1789 init_nonce_memory();
1790 simulate_acquire_nonces();
1791 Tests();
1792 printf("Sum(a0) = %d\n", first_byte_Sum);
1793 fprintf(fstats, "%d;", first_byte_Sum);
1794 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1795 brute_force();
1796 free_nonces_memory();
1797 free_statelist_cache();
1798 free_candidates_memory(candidates);
1799 candidates = NULL;
1800 }
1801 fclose(fstats);
0325c12f 1802 fstats = NULL;
0d5ee8e2 1803 } else {
1804 init_nonce_memory();
236e8f7c 1805 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
b112787d 1806 if (read_nonce_file() != 0) {
1807 return 3;
1808 }
1809 Check_for_FilterFlipProperties();
1810 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
236e8f7c
GG
1811 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1812
1813 clock_t time1 = clock();
1814 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1815 time1 = clock() - time1;
1816 if (time1 > 0)
1817 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1818
1819 if (cracking)
1820 brute_force();
1821 } else { // acquire nonces.
b112787d 1822 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1823 if (is_OK != 0) {
1824 return is_OK;
1825 }
8ce3e4b4 1826 }
8ce3e4b4 1827
45c0c48c 1828 //Tests();
b112787d 1829
9d590832 1830 //PrintAndLog("");
1831 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
b112787d 1832 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1833 // best_first_bytes[0],
1834 // best_first_bytes[1],
1835 // best_first_bytes[2],
1836 // best_first_bytes[3],
1837 // best_first_bytes[4],
1838 // best_first_bytes[5],
1839 // best_first_bytes[6],
1840 // best_first_bytes[7],
1841 // best_first_bytes[8],
1842 // best_first_bytes[9] );
b112787d 1843
b112787d 1844 free_nonces_memory();
1845 free_statelist_cache();
1846 free_candidates_memory(candidates);
1847 candidates = NULL;
057d2e91 1848 }
8ce3e4b4 1849 return 0;
1850}
1851
1852
Impressum, Datenschutz