]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/legicrf.c
CHG: help text
[proxmark3-svn] / armsrc / legicrf.c
CommitLineData
bd20f8f4 1//-----------------------------------------------------------------------------
2// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
9015ae0f 3// 2016 Iceman
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// LEGIC RF simulation code
10//-----------------------------------------------------------------------------
f7e3ed82 11#include "legicrf.h"
8e220a91 12
a7247d85 13static struct legic_frame {
a3994421 14 uint8_t bits;
a2b1414f 15 uint32_t data;
a7247d85 16} current_frame;
8e220a91 17
3612a8a8 18static enum {
19 STATE_DISCON,
20 STATE_IV,
21 STATE_CON,
22} legic_state;
23
24static crc_t legic_crc;
25static int legic_read_count;
26static uint32_t legic_prng_bc;
27static uint32_t legic_prng_iv;
28
29static int legic_phase_drift;
30static int legic_frame_drift;
31static int legic_reqresp_drift;
8e220a91 32
add16a62 33AT91PS_TC timer;
3612a8a8 34AT91PS_TC prng_timer;
add16a62 35
ad5bc8cc 36/*
c71c5ee1 37static void setup_timer(void) {
ad5bc8cc 38 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
39 // this it won't be terribly accurate but should be good enough.
40 //
add16a62 41 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
42 timer = AT91C_BASE_TC1;
43 timer->TC_CCR = AT91C_TC_CLKDIS;
0aa4cfc2 44 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
add16a62 45 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
46
ad5bc8cc 47 //
48 // Set up Timer 2 to use for measuring time between frames in
49 // tag simulation mode. Runs 4x faster as Timer 1
50 //
3612a8a8 51 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
52 prng_timer = AT91C_BASE_TC2;
53 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
54 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
55 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
56}
111c6934 57
58 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
59 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
60
61 // fast clock
62 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
63 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
64 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
65 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
66 AT91C_BASE_TC0->TC_RA = 1;
67 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
68
ad5bc8cc 69*/
70
71// At TIMER_CLOCK3 (MCK/32)
22f4dca8 72// testing calculating in (us) microseconds.
111c6934 73#define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
74#define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
76471e5d 75#define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
7a8db2f6 76#define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
111c6934 77#define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
ad5bc8cc 78
76471e5d 79#define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
add16a62 80
3612a8a8 81#define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
82#define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
83
3612a8a8 84#define OFFSET_LOG 1024
add16a62 85
86#define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
aac23b24 87
ad5bc8cc 88#ifndef SHORT_COIL
9015ae0f 89# define SHORT_COIL LOW(GPIO_SSC_DOUT);
ad5bc8cc 90#endif
91#ifndef OPEN_COIL
b4a6775b 92# define OPEN_COIL HIGH(GPIO_SSC_DOUT);
ad5bc8cc 93#endif
e4a8d1e2 94#ifndef LINE_IN
b8168868 95# define LINE_IN AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
e4a8d1e2 96#endif
111c6934 97// Pause pulse, off in 20us / 30ticks,
98// ONE / ZERO bit pulse,
99// one == 80us / 120ticks
100// zero == 40us / 60ticks
101#ifndef COIL_PULSE
25d52dd2 102# define COIL_PULSE(x) \
103 do { \
76471e5d 104 SHORT_COIL; \
25d52dd2 105 WaitTicks( (RWD_TIME_PAUSE) ); \
76471e5d 106 OPEN_COIL; \
22f4dca8 107 WaitTicks((x)); \
9015ae0f 108 } while (0);
111c6934 109#endif
c71c5ee1 110
111// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
112// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
113#define LEGIC_CARD_MEMSIZE 1024
114static uint8_t* cardmem;
115
faabfafe 116static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
b4a6775b 117 // Overflow, won't happen
118 if (f->bits >= 31) return;
119
120 f->data |= (bit << f->bits);
121 f->bits++;
122}
123
124static void frame_clean(struct legic_frame * const f) {
125 f->data = 0;
126 f->bits = 0;
127}
128
ad5bc8cc 129// Prng works when waiting in 99.1us cycles.
130// and while sending/receiving in bit frames (100, 60)
b4a6775b 131/*static void CalibratePrng( uint32_t time){
ad5bc8cc 132 // Calculate Cycles based on timer 100us
87342aad 133 uint32_t i = (time - sendFrameStop) / 100 ;
ad5bc8cc 134
135 // substract cycles of finished frames
136 int k = i - legic_prng_count()+1;
137
138 // substract current frame length, rewind to beginning
139 if ( k > 0 )
140 legic_prng_forward(k);
141}
b4a6775b 142*/
ad5bc8cc 143
3612a8a8 144/* Generate Keystream */
22f4dca8 145uint32_t get_key_stream(int skip, int count) {
633d0686 146
c71c5ee1 147 int i;
edaf10af 148
c71c5ee1 149 // Use int to enlarge timer tc to 32bit
edaf10af 150 legic_prng_bc += prng_timer->TC_CV;
c71c5ee1 151
152 // reset the prng timer.
edaf10af 153
154 /* If skip == -1, forward prng time based */
155 if(skip == -1) {
c71c5ee1 156 i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
edaf10af 157 i -= legic_prng_count(); /* substract cycles of finished frames */
c71c5ee1 158 i -= count; /* substract current frame length, rewind to beginning */
edaf10af 159 legic_prng_forward(i);
160 } else {
161 legic_prng_forward(skip);
162 }
163
edaf10af 164 i = (count == 6) ? -1 : legic_read_count;
165
edaf10af 166 /* Generate KeyStream */
633d0686 167 return legic_prng_get_bits(count);
3612a8a8 168}
169
170/* Send a frame in tag mode, the FPGA must have been set up by
171 * LegicRfSimulate
172 */
633d0686 173void frame_send_tag(uint16_t response, uint8_t bits) {
174
175 uint16_t mask = 1;
176
ad5bc8cc 177 /* Bitbang the response */
633d0686 178 SHORT_COIL;
ad5bc8cc 179 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
180 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
3612a8a8 181
633d0686 182 /* TAG_FRAME_WAIT -> shift by 2 */
183 legic_prng_forward(2);
184 response ^= legic_prng_get_bits(bits);
c71c5ee1 185
ad5bc8cc 186 /* Wait for the frame start */
633d0686 187 WaitTicks( TAG_FRAME_WAIT );
8e220a91 188
633d0686 189 for (; mask < BITMASK(bits); mask <<= 1) {
00271f77 190 if (response & mask)
b1cd7d5c 191 OPEN_COIL
edaf10af 192 else
b1cd7d5c 193 SHORT_COIL
633d0686 194 WaitTicks(TAG_BIT_PERIOD);
ad5bc8cc 195 }
633d0686 196 SHORT_COIL;
ad5bc8cc 197}
c71c5ee1 198
ad5bc8cc 199/* Send a frame in reader mode, the FPGA must have been set up by
200 * LegicRfReader
201 */
22f4dca8 202void frame_sendAsReader(uint32_t data, uint8_t bits){
c71c5ee1 203
b8168868 204 uint32_t starttime = GET_TICKS, send = 0, mask = 1;
111c6934 205
206 // xor lsfr onto data.
207 send = data ^ legic_prng_get_bits(bits);
ad5bc8cc 208
209 for (; mask < BITMASK(bits); mask <<= 1) {
fabef615 210 if (send & mask)
9015ae0f 211 COIL_PULSE(RWD_TIME_1)
fabef615 212 else
9015ae0f 213 COIL_PULSE(RWD_TIME_0)
dcc10e5e 214 }
e30c654b 215
76471e5d 216 // Final pause to mark the end of the frame
76471e5d 217 COIL_PULSE(0);
b4a6775b 218
fabef615 219 // log
e4d57949 220 uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2) , BYTEx(send,0), BYTEx(send,1)};
fabef615 221 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
dcc10e5e 222}
223
224/* Receive a frame from the card in reader emulation mode, the FPGA and
ad5bc8cc 225 * timer must have been set up by LegicRfReader and frame_sendAsReader.
e30c654b 226 *
dcc10e5e 227 * The LEGIC RF protocol from card to reader does not include explicit
228 * frame start/stop information or length information. The reader must
229 * know beforehand how many bits it wants to receive. (Notably: a card
230 * sending a stream of 0-bits is indistinguishable from no card present.)
e30c654b 231 *
dcc10e5e 232 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
233 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
234 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
235 * for edges. Count the edges in each bit interval. If they are approximately
236 * 0 this was a 0-bit, if they are approximately equal to the number of edges
237 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
ad5bc8cc 238 * timer that's still running from frame_sendAsReader in order to get a synchronization
dcc10e5e 239 * with the frame that we just sent.
e30c654b 240 *
241 * FIXME: Because we're relying on the hysteresis to just do the right thing
dcc10e5e 242 * the range is severely reduced (and you'll probably also need a good antenna).
e30c654b 243 * So this should be fixed some time in the future for a proper receiver.
dcc10e5e 244 */
111c6934 245static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
ad5bc8cc 246
22f4dca8 247 if ( bits > 32 ) return;
3612a8a8 248
22f4dca8 249 uint8_t i = bits, edges = 0;
d7e24e7c 250 uint32_t the_bit = 1, next_bit_at = 0, data = 0;
fabef615 251 uint32_t old_level = 0;
252 volatile uint32_t level = 0;
25d52dd2 253
fabef615 254 frame_clean(f);
e4a8d1e2 255
faabfafe 256 // calibrate the prng.
b4a6775b 257 legic_prng_forward(2);
c649c433 258 data = legic_prng_get_bits(bits);
b4a6775b 259
b4a6775b 260 //FIXED time between sending frame and now listening frame. 330us
111c6934 261 uint32_t starttime = GET_TICKS;
0b0b182f 262 // its about 9+9 ticks delay from end-send to here.
0b0b182f 263 WaitTicks( 477 );
faabfafe 264
c649c433 265 next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
25d52dd2 266
22f4dca8 267 while ( i-- ){
dcc10e5e 268 edges = 0;
111c6934 269 while ( GET_TICKS < next_bit_at) {
ad5bc8cc 270
b4a6775b 271 level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
ad5bc8cc 272
273 if (level != old_level)
b4a6775b 274 ++edges;
275
dcc10e5e 276 old_level = level;
25d52dd2 277 }
278
ad5bc8cc 279 next_bit_at += TAG_BIT_PERIOD;
3612a8a8 280
fabef615 281 // We expect 42 edges (ONE)
faabfafe 282 if ( edges > 20 )
8e220a91 283 data ^= the_bit;
87342aad 284
285 the_bit <<= 1;
dcc10e5e 286 }
e30c654b 287
b4a6775b 288 // output
dcc10e5e 289 f->data = data;
290 f->bits = bits;
db44e049 291
fabef615 292 // log
cb7902cd 293 uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
faabfafe 294 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
a7247d85 295}
296
c71c5ee1 297// Setup pm3 as a Legic Reader
87342aad 298static uint32_t setup_phase_reader(uint8_t iv) {
22f4dca8 299
f7b42573 300 // Switch on carrier and let the tag charge for 1ms
ad5bc8cc 301 HIGH(GPIO_SSC_DOUT);
77a689db 302 WaitUS(5000);
ad5bc8cc 303
22f4dca8 304 ResetTicks();
ad5bc8cc 305
f7b42573 306 // no keystream yet
c71c5ee1 307 legic_prng_init(0);
f7b42573 308
ad5bc8cc 309 // send IV handshake
310 frame_sendAsReader(iv, 7);
311
312 // Now both tag and reader has same IV. Prng can start.
3612a8a8 313 legic_prng_init(iv);
e30c654b 314
111c6934 315 frame_receiveAsReader(&current_frame, 6);
f7b42573 316
d7e24e7c 317 // 292us (438t) - fixed delay before sending ack.
318 // minus log and stuff 100tick?
319 WaitTicks(338);
320 legic_prng_forward(3);
ad5bc8cc 321
f7b42573 322 // Send obsfuscated acknowledgment frame.
ad5bc8cc 323 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
324 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
325 switch ( current_frame.data ) {
87342aad 326 case 0x0D: frame_sendAsReader(0x19, 6); break;
327 case 0x1D:
328 case 0x3D: frame_sendAsReader(0x39, 6); break;
329 default: break;
f7b42573 330 }
d7e24e7c 331
332 legic_prng_forward(2);
8e220a91 333 return current_frame.data;
2561caa2 334}
335
22f4dca8 336static void LegicCommonInit(void) {
337
7cc204bf 338 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
b4a6775b 339 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
dcc10e5e 340 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 341
dcc10e5e 342 /* Bitbang the transmitter */
b8168868 343 SHORT_COIL;
dcc10e5e 344 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
345 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
b8168868 346 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
347
c71c5ee1 348 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
0b0b182f 349 cardmem = BigBuf_get_EM_addr();
c71c5ee1 350 memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
351
352 clear_trace();
353 set_tracing(TRUE);
8e220a91 354 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
ad5bc8cc 355
22f4dca8 356 StartTicks();
8e220a91 357}
358
111c6934 359// Switch off carrier, make sure tag is reset
c71c5ee1 360static void switch_off_tag_rwd(void) {
b8168868 361 SHORT_COIL;
3e750be3 362 WaitUS(20);
8e220a91 363 WDT_HIT();
364}
c71c5ee1 365
f7b42573 366// calculate crc4 for a legic READ command
fabef615 367static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
ad5bc8cc 368 crc_clear(&legic_crc);
fabef615 369 uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd;
cb7902cd 370 crc_update(&legic_crc, temp, cmd_sz + 8 );
8e220a91 371 return crc_finish(&legic_crc);
372}
373
fabef615 374int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
8e220a91 375
fabef615 376 uint8_t byte, crc, calcCrc = 0;
377 uint32_t cmd = (index << 1) | LEGIC_READ;
635d6e9b 378
379 // 90ticks = 60us (should be 100us but crc calc takes time.)
380 //WaitTicks(330); // 330ticks prng(4) - works
381 WaitTicks(240); // 240ticks prng(3) - works
3e750be3 382
ad5bc8cc 383 frame_sendAsReader(cmd, cmd_sz);
111c6934 384 frame_receiveAsReader(&current_frame, 12);
c71c5ee1 385
c649c433 386 // CRC check.
111c6934 387 byte = BYTEx(current_frame.data, 0);
cb7902cd 388 crc = BYTEx(current_frame.data, 1);
fabef615 389 calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
65c2d21d 390
cb7902cd 391 if( calcCrc != crc ) {
b8168868 392 Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc, crc);
cb7902cd 393 return -1;
394 }
d7e24e7c 395
c15e07f1 396 legic_prng_forward(3);
8e220a91 397 return byte;
398}
399
c71c5ee1 400/*
401 * - assemble a write_cmd_frame with crc and send it
402 * - wait until the tag sends back an ACK ('1' bit unencrypted)
403 * - forward the prng based on the timing
8e220a91 404 */
b8168868 405bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
406
407 bool isOK = false;
408 uint8_t i = 80, edges = 0;
409 uint8_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd;
410 uint32_t steps = 0, next_bit_at, start, crc, old_level = 0;
c71c5ee1 411
b8168868 412 /*
3612a8a8 413 crc_clear(&legic_crc);
b8168868 414 crc_update(&legic_crc, 0, 1); // CMD_WRITE
0e8cabed 415 crc_update(&legic_crc, index, addr_sz);
3612a8a8 416 crc_update(&legic_crc, byte, 8);
3612a8a8 417 uint32_t crc = crc_finish(&legic_crc);
f0fa6638 418 */
b8168868 419 crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1);
420
c71c5ee1 421 // send write command
c2ab5e8c 422 uint32_t cmd = LEGIC_WRITE;
423 cmd |= index << 1; // index
424 cmd |= byte << (addr_sz+1); // Data
425 cmd |= (crc & 0xF ) << (addr_sz+1+8); // CRC
b8168868 426
427 /* Bitbang the response */
428 SHORT_COIL;
429 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
c71c5ee1 430
7bc3c99e 431 WaitTicks(330);
c71c5ee1 432
ad5bc8cc 433 frame_sendAsReader(cmd, cmd_sz);
b8168868 434
e4a8d1e2 435 LINE_IN;
3612a8a8 436
b8168868 437 start = GET_TICKS;
3e134b4c 438
b8168868 439 // ACK, - one single "1" bit after 3.6ms
440 // 3.6ms = 3600us * 1.5 = 5400ticks.
441 WaitTicks(5000);
442 //WaitTicks(330);
27c4a862 443
b8168868 444 next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
445
446 while ( i-- ) {
447 WDT_HIT();
3612a8a8 448 edges = 0;
27c4a862 449 while ( GET_TICKS < next_bit_at) {
b8168868 450
0b0b182f 451 volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
b8168868 452
453 if (level != old_level)
454 ++edges;
111c6934 455
3612a8a8 456 old_level = level;
457 }
b8168868 458
459 next_bit_at += TAG_BIT_PERIOD;
460
461 // We expect 42 edges (ONE)
0e8cabed 462 if(edges > 20 ) {
b8168868 463 steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD);
464 legic_prng_forward(steps);
465 isOK = true;
466 goto OUT;
3612a8a8 467 }
468 }
c71c5ee1 469
b8168868 470OUT: ;
471 // log
c2ab5e8c 472 uint8_t cmdbytes[] = {1, isOK, BYTEx(steps, 0), BYTEx(steps, 1) };
b8168868 473 LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, FALSE);
474 return isOK;
3612a8a8 475}
8e220a91 476
fabef615 477int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
3e134b4c 478
fabef615 479 uint16_t i = 0;
a3994421 480 uint8_t isOK = 1;
481 legic_card_select_t card;
482
8e220a91 483 LegicCommonInit();
faabfafe 484
fabef615 485 if ( legic_select_card_iv(&card, iv) ) {
a3994421 486 isOK = 0;
487 goto OUT;
488 }
cb7902cd 489
fabef615 490 if (len + offset >= card.cardsize)
491 len = card.cardsize - offset;
a2b1414f 492
3612a8a8 493 LED_B_ON();
c15e07f1 494 while (i < len) {
fabef615 495 int r = legic_read_byte(offset + i, card.cmdsize);
ad5bc8cc 496
497 if (r == -1 || BUTTON_PRESS()) {
fabef615 498 if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
87342aad 499 isOK = 0;
500 goto OUT;
a2b1414f 501 }
fabef615 502 cardmem[i++] = r;
3612a8a8 503 WDT_HIT();
2561caa2 504 }
c71c5ee1 505
87342aad 506OUT:
faabfafe 507 WDT_HIT();
3612a8a8 508 switch_off_tag_rwd();
c71c5ee1 509 LEDsoff();
86087eba 510 cmd_send(CMD_ACK, isOK, len, 0, cardmem, len);
3612a8a8 511 return 0;
512}
513
0e8cabed 514void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
117d9ec2 515
f0fa6638 516 #define LOWERLIMIT 4
fabef615 517 uint8_t isOK = 1;
f0fa6638 518 legic_card_select_t card;
0e8cabed 519
f0fa6638 520 // uid NOT is writeable.
521 if ( offset <= LOWERLIMIT ) {
0e8cabed 522 isOK = 0;
523 goto OUT;
524 }
525
fabef615 526 LegicCommonInit();
c71c5ee1 527
fabef615 528 if ( legic_select_card_iv(&card, iv) ) {
529 isOK = 0;
530 goto OUT;
531 }
c71c5ee1 532
f0fa6638 533 if ( len + offset + LOWERLIMIT >= card.cardsize) {
534 isOK = 0;
535 goto OUT;
536 }
0e8cabed 537
538 LED_B_ON();
f0fa6638 539 while( len > 0 ) {
c2ab5e8c 540 --len;
541 if ( !legic_write_byte( len + offset, data[len], card.addrsize) ) {
542 Dbprintf("operation failed | %d | %d | %d", len + offset, len, data[len] );
fabef615 543 isOK = 0;
544 goto OUT;
3612a8a8 545 }
0e8cabed 546 WDT_HIT();
3e134b4c 547 }
fabef615 548OUT:
549 cmd_send(CMD_ACK, isOK, 0,0,0,0);
550 switch_off_tag_rwd();
551 LEDsoff();
3e134b4c 552}
553
fabef615 554int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
3e750be3 555
a3994421 556 if ( p_card == NULL ) return 1;
3e750be3 557
fabef615 558 p_card->tagtype = setup_phase_reader(iv);
a3994421 559
560 switch(p_card->tagtype) {
3e750be3 561 case 0x0d:
a3994421 562 p_card->cmdsize = 6;
fabef615 563 p_card->addrsize = 5;
a3994421 564 p_card->cardsize = 22;
3e750be3 565 break;
566 case 0x1d:
a3994421 567 p_card->cmdsize = 9;
fabef615 568 p_card->addrsize = 8;
a3994421 569 p_card->cardsize = 256;
3e750be3 570 break;
571 case 0x3d:
a3994421 572 p_card->cmdsize = 11;
fabef615 573 p_card->addrsize = 10;
a3994421 574 p_card->cardsize = 1024;
3e750be3 575 break;
576 default:
a3994421 577 p_card->cmdsize = 0;
fabef615 578 p_card->addrsize = 0;
a3994421 579 p_card->cardsize = 0;
580 return 2;
a3994421 581 }
582 return 0;
583}
fabef615 584int legic_select_card(legic_card_select_t *p_card){
585 return legic_select_card_iv(p_card, 0x01);
586}
a3994421 587
0e8cabed 588//-----------------------------------------------------------------------------
589// Work with emulator memory
590//
591// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
592// involved in dealing with emulator memory. But if it is called later, it might
593// destroy the Emulator Memory.
594//-----------------------------------------------------------------------------
595// arg0 = offset
596// arg1 = num of bytes
597void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) {
598 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
599 legic_emlset_mem(data, arg0, arg1);
600}
601// arg0 = offset
602// arg1 = num of bytes
603void LegicEMemGet(uint32_t arg0, uint32_t arg1) {
604 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
605 uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
606 legic_emlget_mem(buf, arg0, arg1);
607 LED_B_ON();
608 cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE);
609 LED_B_OFF();
610}
611void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) {
612 cardmem = BigBuf_get_EM_addr();
613 memcpy(cardmem + offset, data, numofbytes);
614}
615void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) {
616 cardmem = BigBuf_get_EM_addr();
617 memcpy(data, cardmem + offset, numofbytes);
618}
619
a3994421 620void LegicRfInfo(void){
621
0e8cabed 622 int r;
623
a3994421 624 uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
625 legic_card_select_t *card = (legic_card_select_t*) buf;
626
627 LegicCommonInit();
c649c433 628
a3994421 629 if ( legic_select_card(card) ) {
630 cmd_send(CMD_ACK,0,0,0,0,0);
631 goto OUT;
3e750be3 632 }
633
fabef615 634 // read UID bytes
a3994421 635 for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
0e8cabed 636 r = legic_read_byte(i, card->cmdsize);
3e750be3 637 if ( r == -1 ) {
638 cmd_send(CMD_ACK,0,0,0,0,0);
639 goto OUT;
640 }
a3994421 641 card->uid[i] = r & 0xFF;
3e750be3 642 }
643
0e8cabed 644 // MCC byte.
645 r = legic_read_byte(4, card->cmdsize);
646 uint32_t calc_mcc = CRC8Legic(card->uid, 4);;
647 if ( r != calc_mcc) {
648 cmd_send(CMD_ACK,0,0,0,0,0);
649 goto OUT;
650 }
651
652 // OK
fabef615 653 cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
635d6e9b 654
a3994421 655OUT:
3e750be3 656 switch_off_tag_rwd();
657 LEDsoff();
3e750be3 658}
659
c71c5ee1 660/* Handle (whether to respond) a frame in tag mode
661 * Only called when simulating a tag.
662 */
3612a8a8 663static void frame_handle_tag(struct legic_frame const * const f)
664{
e4a8d1e2 665 // log
666 //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
667 //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
668
669 cardmem = BigBuf_get_EM_addr();
117d9ec2 670
633d0686 671 /* First Part of Handshake (IV) */
672 if(f->bits == 7) {
673
674 LED_C_ON();
c71c5ee1 675
ad5bc8cc 676 // Reset prng timer
22f4dca8 677 ResetTimer(prng_timer);
633d0686 678
e4a8d1e2 679 // IV from reader.
633d0686 680 legic_prng_init(f->data);
e4a8d1e2 681
682 // We should have three tagtypes with three different answers.
633d0686 683 frame_send_tag(0x3d, 6); /* 0x3d^0x26 = 0x1B */
e4a8d1e2 684
633d0686 685 legic_state = STATE_IV;
686 legic_read_count = 0;
687 legic_prng_bc = 0;
688 legic_prng_iv = f->data;
689
690
22f4dca8 691 ResetTimer(timer);
692 WaitUS(280);
633d0686 693 return;
694 }
3612a8a8 695
696 /* 0x19==??? */
697 if(legic_state == STATE_IV) {
e4a8d1e2 698 uint32_t local_key = get_key_stream(3, 6);
cc708897 699 int xored = 0x39 ^ local_key;
700 if((f->bits == 6) && (f->data == xored)) {
3612a8a8 701 legic_state = STATE_CON;
702
22f4dca8 703 ResetTimer(timer);
704 WaitUS(200);
3612a8a8 705 return;
111c6934 706
707 } else {
3612a8a8 708 legic_state = STATE_DISCON;
709 LED_C_OFF();
cc708897 710 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
3612a8a8 711 return;
712 }
713 }
714
715 /* Read */
716 if(f->bits == 11) {
717 if(legic_state == STATE_CON) {
e4a8d1e2 718 uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11);
719 uint16_t addr = f->data ^ key;
720 addr >>= 1;
721 uint8_t data = cardmem[addr];
111c6934 722 int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
3612a8a8 723
e4a8d1e2 724 legic_read_count++;
3612a8a8 725 legic_prng_forward(legic_reqresp_drift);
726
633d0686 727 frame_send_tag(hash | data, 12);
22f4dca8 728 ResetTimer(timer);
cc708897 729 legic_prng_forward(2);
e4a8d1e2 730 WaitTicks(330);
3612a8a8 731 return;
732 }
733 }
734
735 /* Write */
736 if(f->bits == 23) {
e4a8d1e2 737 uint32_t key = get_key_stream(-1, 23); //legic_frame_drift, 23);
738 uint16_t addr = f->data ^ key;
739 addr >>= 1;
740 addr &= 0x3ff;
741 uint32_t data = f->data ^ key;
742 data >>= 11;
743 data &= 0xff;
744
745 cardmem[addr] = data;
3612a8a8 746 /* write command */
747 legic_state = STATE_DISCON;
748 LED_C_OFF();
749 Dbprintf("write - addr: %x, data: %x", addr, data);
e4a8d1e2 750 // should send a ACK within 3.5ms too
3612a8a8 751 return;
752 }
753
754 if(legic_state != STATE_DISCON) {
755 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
3612a8a8 756 Dbprintf("IV: %03.3x", legic_prng_iv);
3612a8a8 757 }
e4a8d1e2 758
3612a8a8 759 legic_state = STATE_DISCON;
760 legic_read_count = 0;
761 SpinDelay(10);
762 LED_C_OFF();
763 return;
764}
765
766/* Read bit by bit untill full frame is received
767 * Call to process frame end answer
768 */
c71c5ee1 769static void emit(int bit) {
770
771 switch (bit) {
772 case 1:
773 frame_append_bit(&current_frame, 1);
774 break;
775 case 0:
776 frame_append_bit(&current_frame, 0);
777 break;
778 default:
779 if(current_frame.bits <= 4) {
780 frame_clean(&current_frame);
781 } else {
782 frame_handle_tag(&current_frame);
783 frame_clean(&current_frame);
784 }
785 WDT_HIT();
786 break;
787 }
3612a8a8 788}
789
790void LegicRfSimulate(int phase, int frame, int reqresp)
791{
792 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
793 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
794 * envelope waveform on DIN and should send our response on DOUT.
795 *
796 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
797 * measure the time between two rising edges on DIN, and no encoding on the
798 * subcarrier from card to reader, so we'll just shift out our verbatim data
799 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
800 * seems to be 300us-ish.
801 */
e4a8d1e2 802
803 int old_level = 0, active = 0;
804 legic_state = STATE_DISCON;
3612a8a8 805
c71c5ee1 806 legic_phase_drift = phase;
807 legic_frame_drift = frame;
808 legic_reqresp_drift = reqresp;
809
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
811 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
c71c5ee1 812 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
813
814 /* Bitbang the receiver */
e4a8d1e2 815 LINE_IN;
816
817 // need a way to determine which tagtype we are simulating
818
819 // hook up emulator memory
820 cardmem = BigBuf_get_EM_addr();
821
822 clear_trace();
823 set_tracing(TRUE);
c71c5ee1 824
c71c5ee1 825 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
826
e4a8d1e2 827 StartTicks();
c71c5ee1 828
829 LED_B_ON();
830 DbpString("Starting Legic emulator, press button to end");
3612a8a8 831
c71c5ee1 832 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e4a8d1e2 833 volatile uint32_t level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
834
835 uint32_t time = GET_TICKS;
836
837 if (level != old_level) {
838
839 if (level) {
c71c5ee1 840
e4a8d1e2 841 ResetTicks();
c71c5ee1 842
843 if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
844 /* 1 bit */
845 emit(1);
846 active = 1;
847 LED_A_ON();
848 } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
849 /* 0 bit */
850 emit(0);
851 active = 1;
852 LED_A_ON();
853 } else if (active) {
854 /* invalid */
855 emit(-1);
856 active = 0;
857 LED_A_OFF();
858 }
859 }
860 }
3612a8a8 861
c71c5ee1 862 /* Frame end */
863 if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
864 emit(-1);
865 active = 0;
866 LED_A_OFF();
867 }
a2b1414f 868
e4a8d1e2 869 /*
870 * Disable the counter, Then wait for the clock to acknowledge the
871 * shutdown in its status register. Reading the SR has the
872 * side-effect of clearing any pending state in there.
873 */
874 if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA))
875 StopTicks();
c71c5ee1 876
877 old_level = level;
878 WDT_HIT();
879 }
e4a8d1e2 880
881 WDT_HIT();
882 switch_off_tag_rwd();
c71c5ee1 883 LEDsoff();
e4a8d1e2 884 cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
c71c5ee1 885}
3e134b4c 886
3e134b4c 887//-----------------------------------------------------------------------------
888// Code up a string of octets at layer 2 (including CRC, we don't generate
889// that here) so that they can be transmitted to the reader. Doesn't transmit
890// them yet, just leaves them ready to send in ToSend[].
891//-----------------------------------------------------------------------------
892// static void CodeLegicAsTag(const uint8_t *cmd, int len)
893// {
894 // int i;
895
896 // ToSendReset();
897
898 // // Transmit a burst of ones, as the initial thing that lets the
899 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
900 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
901 // // so I will too.
902 // for(i = 0; i < 20; i++) {
903 // ToSendStuffBit(1);
904 // ToSendStuffBit(1);
905 // ToSendStuffBit(1);
906 // ToSendStuffBit(1);
907 // }
908
909 // // Send SOF.
910 // for(i = 0; i < 10; i++) {
911 // ToSendStuffBit(0);
912 // ToSendStuffBit(0);
913 // ToSendStuffBit(0);
914 // ToSendStuffBit(0);
915 // }
916 // for(i = 0; i < 2; i++) {
917 // ToSendStuffBit(1);
918 // ToSendStuffBit(1);
919 // ToSendStuffBit(1);
920 // ToSendStuffBit(1);
921 // }
922
923 // for(i = 0; i < len; i++) {
924 // int j;
925 // uint8_t b = cmd[i];
926
927 // // Start bit
928 // ToSendStuffBit(0);
929 // ToSendStuffBit(0);
930 // ToSendStuffBit(0);
931 // ToSendStuffBit(0);
932
933 // // Data bits
934 // for(j = 0; j < 8; j++) {
935 // if(b & 1) {
936 // ToSendStuffBit(1);
937 // ToSendStuffBit(1);
938 // ToSendStuffBit(1);
939 // ToSendStuffBit(1);
940 // } else {
941 // ToSendStuffBit(0);
942 // ToSendStuffBit(0);
943 // ToSendStuffBit(0);
944 // ToSendStuffBit(0);
945 // }
946 // b >>= 1;
947 // }
948
949 // // Stop bit
950 // ToSendStuffBit(1);
951 // ToSendStuffBit(1);
952 // ToSendStuffBit(1);
953 // ToSendStuffBit(1);
954 // }
955
956 // // Send EOF.
957 // for(i = 0; i < 10; i++) {
958 // ToSendStuffBit(0);
959 // ToSendStuffBit(0);
960 // ToSendStuffBit(0);
961 // ToSendStuffBit(0);
962 // }
963 // for(i = 0; i < 2; i++) {
964 // ToSendStuffBit(1);
965 // ToSendStuffBit(1);
966 // ToSendStuffBit(1);
967 // ToSendStuffBit(1);
968 // }
969
970 // // Convert from last byte pos to length
971 // ToSendMax++;
972// }
973
974//-----------------------------------------------------------------------------
975// The software UART that receives commands from the reader, and its state
976// variables.
977//-----------------------------------------------------------------------------
62577a62 978/*
3e134b4c 979static struct {
980 enum {
981 STATE_UNSYNCD,
982 STATE_GOT_FALLING_EDGE_OF_SOF,
983 STATE_AWAITING_START_BIT,
984 STATE_RECEIVING_DATA
985 } state;
986 uint16_t shiftReg;
987 int bitCnt;
988 int byteCnt;
989 int byteCntMax;
990 int posCnt;
991 uint8_t *output;
992} Uart;
62577a62 993*/
3e134b4c 994/* Receive & handle a bit coming from the reader.
995 *
996 * This function is called 4 times per bit (every 2 subcarrier cycles).
997 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
998 *
999 * LED handling:
1000 * LED A -> ON once we have received the SOF and are expecting the rest.
1001 * LED A -> OFF once we have received EOF or are in error state or unsynced
1002 *
1003 * Returns: true if we received a EOF
1004 * false if we are still waiting for some more
1005 */
1006// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1007// {
1008 // switch(Uart.state) {
1009 // case STATE_UNSYNCD:
1010 // if(!bit) {
1011 // // we went low, so this could be the beginning of an SOF
1012 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1013 // Uart.posCnt = 0;
1014 // Uart.bitCnt = 0;
1015 // }
1016 // break;
1017
1018 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1019 // Uart.posCnt++;
1020 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1021 // if(bit) {
1022 // if(Uart.bitCnt > 9) {
1023 // // we've seen enough consecutive
1024 // // zeros that it's a valid SOF
1025 // Uart.posCnt = 0;
1026 // Uart.byteCnt = 0;
1027 // Uart.state = STATE_AWAITING_START_BIT;
1028 // LED_A_ON(); // Indicate we got a valid SOF
1029 // } else {
1030 // // didn't stay down long enough
1031 // // before going high, error
1032 // Uart.state = STATE_UNSYNCD;
1033 // }
1034 // } else {
1035 // // do nothing, keep waiting
1036 // }
1037 // Uart.bitCnt++;
1038 // }
1039 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1040 // if(Uart.bitCnt > 12) {
1041 // // Give up if we see too many zeros without
1042 // // a one, too.
1043 // LED_A_OFF();
1044 // Uart.state = STATE_UNSYNCD;
1045 // }
1046 // break;
1047
1048 // case STATE_AWAITING_START_BIT:
1049 // Uart.posCnt++;
1050 // if(bit) {
1051 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1052 // // stayed high for too long between
1053 // // characters, error
1054 // Uart.state = STATE_UNSYNCD;
1055 // }
1056 // } else {
1057 // // falling edge, this starts the data byte
1058 // Uart.posCnt = 0;
1059 // Uart.bitCnt = 0;
1060 // Uart.shiftReg = 0;
1061 // Uart.state = STATE_RECEIVING_DATA;
1062 // }
1063 // break;
1064
1065 // case STATE_RECEIVING_DATA:
1066 // Uart.posCnt++;
1067 // if(Uart.posCnt == 2) {
1068 // // time to sample a bit
1069 // Uart.shiftReg >>= 1;
1070 // if(bit) {
1071 // Uart.shiftReg |= 0x200;
1072 // }
1073 // Uart.bitCnt++;
1074 // }
1075 // if(Uart.posCnt >= 4) {
1076 // Uart.posCnt = 0;
1077 // }
1078 // if(Uart.bitCnt == 10) {
1079 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1080 // {
1081 // // this is a data byte, with correct
1082 // // start and stop bits
1083 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1084 // Uart.byteCnt++;
1085
1086 // if(Uart.byteCnt >= Uart.byteCntMax) {
1087 // // Buffer overflowed, give up
1088 // LED_A_OFF();
1089 // Uart.state = STATE_UNSYNCD;
1090 // } else {
1091 // // so get the next byte now
1092 // Uart.posCnt = 0;
1093 // Uart.state = STATE_AWAITING_START_BIT;
1094 // }
1095 // } else if (Uart.shiftReg == 0x000) {
1096 // // this is an EOF byte
1097 // LED_A_OFF(); // Finished receiving
1098 // Uart.state = STATE_UNSYNCD;
1099 // if (Uart.byteCnt != 0) {
1100 // return TRUE;
1101 // }
1102 // } else {
1103 // // this is an error
1104 // LED_A_OFF();
1105 // Uart.state = STATE_UNSYNCD;
1106 // }
1107 // }
1108 // break;
1109
1110 // default:
1111 // LED_A_OFF();
1112 // Uart.state = STATE_UNSYNCD;
1113 // break;
1114 // }
1115
1116 // return FALSE;
1117// }
62577a62 1118/*
3e134b4c 1119
f7b42573 1120static void UartReset() {
1121 Uart.byteCntMax = 3;
3e134b4c 1122 Uart.state = STATE_UNSYNCD;
1123 Uart.byteCnt = 0;
1124 Uart.bitCnt = 0;
1125 Uart.posCnt = 0;
f7b42573 1126 memset(Uart.output, 0x00, 3);
3e134b4c 1127}
62577a62 1128*/
f7b42573 1129// static void UartInit(uint8_t *data) {
3e134b4c 1130 // Uart.output = data;
1131 // UartReset();
1132// }
1133
1134//=============================================================================
1135// An LEGIC reader. We take layer two commands, code them
1136// appropriately, and then send them to the tag. We then listen for the
1137// tag's response, which we leave in the buffer to be demodulated on the
1138// PC side.
1139//=============================================================================
62577a62 1140/*
3e134b4c 1141static struct {
1142 enum {
1143 DEMOD_UNSYNCD,
1144 DEMOD_PHASE_REF_TRAINING,
1145 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1146 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1147 DEMOD_AWAITING_START_BIT,
1148 DEMOD_RECEIVING_DATA
1149 } state;
1150 int bitCount;
1151 int posCount;
1152 int thisBit;
1153 uint16_t shiftReg;
1154 uint8_t *output;
1155 int len;
1156 int sumI;
1157 int sumQ;
1158} Demod;
62577a62 1159*/
3e134b4c 1160/*
1161 * Handles reception of a bit from the tag
1162 *
1163 * This function is called 2 times per bit (every 4 subcarrier cycles).
1164 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1165 *
1166 * LED handling:
1167 * LED C -> ON once we have received the SOF and are expecting the rest.
1168 * LED C -> OFF once we have received EOF or are unsynced
1169 *
1170 * Returns: true if we received a EOF
1171 * false if we are still waiting for some more
1172 *
1173 */
3e134b4c 1174
62577a62 1175/*
3e134b4c 1176static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1177{
1178 int v = 0;
1179 int ai = ABS(ci);
1180 int aq = ABS(cq);
1181 int halfci = (ai >> 1);
1182 int halfcq = (aq >> 1);
1183
1184 switch(Demod.state) {
1185 case DEMOD_UNSYNCD:
1186
1187 CHECK_FOR_SUBCARRIER()
1188
1189 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1190 Demod.state = DEMOD_PHASE_REF_TRAINING;
1191 Demod.sumI = ci;
1192 Demod.sumQ = cq;
1193 Demod.posCount = 1;
1194 }
1195 break;
1196
1197 case DEMOD_PHASE_REF_TRAINING:
1198 if(Demod.posCount < 8) {
1199
1200 CHECK_FOR_SUBCARRIER()
1201
1202 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1203 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1204 // note: synchronization time > 80 1/fs
1205 Demod.sumI += ci;
1206 Demod.sumQ += cq;
1207 ++Demod.posCount;
1208 } else {
1209 // subcarrier lost
1210 Demod.state = DEMOD_UNSYNCD;
1211 }
1212 } else {
1213 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1214 }
1215 break;
1216
1217 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1218
1219 MAKE_SOFT_DECISION()
1220
1221 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1222 // logic '0' detected
1223 if (v <= 0) {
1224
1225 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1226
1227 // start of SOF sequence
1228 Demod.posCount = 0;
1229 } else {
1230 // maximum length of TR1 = 200 1/fs
1231 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1232 }
1233 ++Demod.posCount;
1234 break;
1235
1236 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1237 ++Demod.posCount;
1238
1239 MAKE_SOFT_DECISION()
1240
1241 if(v > 0) {
1242 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1243 if(Demod.posCount < 10*2) {
1244 Demod.state = DEMOD_UNSYNCD;
1245 } else {
1246 LED_C_ON(); // Got SOF
1247 Demod.state = DEMOD_AWAITING_START_BIT;
1248 Demod.posCount = 0;
1249 Demod.len = 0;
1250 }
1251 } else {
1252 // low phase of SOF too long (> 12 etu)
1253 if(Demod.posCount > 13*2) {
1254 Demod.state = DEMOD_UNSYNCD;
1255 LED_C_OFF();
1256 }
1257 }
1258 break;
1259
1260 case DEMOD_AWAITING_START_BIT:
1261 ++Demod.posCount;
1262
1263 MAKE_SOFT_DECISION()
1264
1265 if(v > 0) {
1266 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1267 if(Demod.posCount > 3*2) {
1268 Demod.state = DEMOD_UNSYNCD;
1269 LED_C_OFF();
1270 }
1271 } else {
1272 // start bit detected
1273 Demod.bitCount = 0;
1274 Demod.posCount = 1; // this was the first half
1275 Demod.thisBit = v;
1276 Demod.shiftReg = 0;
1277 Demod.state = DEMOD_RECEIVING_DATA;
1278 }
1279 break;
1280
1281 case DEMOD_RECEIVING_DATA:
1282
1283 MAKE_SOFT_DECISION()
1284
1285 if(Demod.posCount == 0) {
1286 // first half of bit
1287 Demod.thisBit = v;
1288 Demod.posCount = 1;
1289 } else {
1290 // second half of bit
1291 Demod.thisBit += v;
1292 Demod.shiftReg >>= 1;
1293 // logic '1'
1294 if(Demod.thisBit > 0)
1295 Demod.shiftReg |= 0x200;
1296
1297 ++Demod.bitCount;
1298
1299 if(Demod.bitCount == 10) {
1300
1301 uint16_t s = Demod.shiftReg;
1302
1303 if((s & 0x200) && !(s & 0x001)) {
1304 // stop bit == '1', start bit == '0'
1305 uint8_t b = (s >> 1);
1306 Demod.output[Demod.len] = b;
1307 ++Demod.len;
1308 Demod.state = DEMOD_AWAITING_START_BIT;
1309 } else {
1310 Demod.state = DEMOD_UNSYNCD;
1311 LED_C_OFF();
1312
1313 if(s == 0x000) {
1314 // This is EOF (start, stop and all data bits == '0'
1315 return TRUE;
1316 }
1317 }
1318 }
1319 Demod.posCount = 0;
1320 }
1321 break;
1322
1323 default:
1324 Demod.state = DEMOD_UNSYNCD;
1325 LED_C_OFF();
1326 break;
1327 }
1328 return FALSE;
1329}
62577a62 1330*/
1331/*
3e134b4c 1332// Clear out the state of the "UART" that receives from the tag.
1333static void DemodReset() {
1334 Demod.len = 0;
1335 Demod.state = DEMOD_UNSYNCD;
1336 Demod.posCount = 0;
1337 Demod.sumI = 0;
1338 Demod.sumQ = 0;
1339 Demod.bitCount = 0;
1340 Demod.thisBit = 0;
1341 Demod.shiftReg = 0;
f7b42573 1342 memset(Demod.output, 0x00, 3);
3e134b4c 1343}
1344
1345static void DemodInit(uint8_t *data) {
1346 Demod.output = data;
1347 DemodReset();
1348}
62577a62 1349*/
3e134b4c 1350
1351/*
1352 * Demodulate the samples we received from the tag, also log to tracebuffer
1353 * quiet: set to 'TRUE' to disable debug output
1354 */
62577a62 1355
1356 /*
3e134b4c 1357 #define LEGIC_DMA_BUFFER_SIZE 256
62577a62 1358
1359 static void GetSamplesForLegicDemod(int n, bool quiet)
3e134b4c 1360{
1361 int max = 0;
1362 bool gotFrame = FALSE;
1363 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1364 int ci, cq, samples = 0;
1365
1366 BigBuf_free();
1367
1368 // And put the FPGA in the appropriate mode
1369 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1370
1371 // The response (tag -> reader) that we're receiving.
1372 // Set up the demodulator for tag -> reader responses.
1373 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1374
1375 // The DMA buffer, used to stream samples from the FPGA
1376 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1377 int8_t *upTo = dmaBuf;
1378
1379 // Setup and start DMA.
1380 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1381 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1382 return;
1383 }
1384
1385 // Signal field is ON with the appropriate LED:
1386 LED_D_ON();
1387 for(;;) {
1388 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1389 if(behindBy > max) max = behindBy;
1390
1391 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1392 ci = upTo[0];
1393 cq = upTo[1];
1394 upTo += 2;
1395 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1396 upTo = dmaBuf;
1397 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1398 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1399 }
1400 lastRxCounter -= 2;
1401 if(lastRxCounter <= 0)
1402 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1403
1404 samples += 2;
1405
1406 gotFrame = HandleLegicSamplesDemod(ci , cq );
1407 if ( gotFrame )
1408 break;
1409 }
1410
1411 if(samples > n || gotFrame)
1412 break;
1413 }
1414
1415 FpgaDisableSscDma();
1416
1417 if (!quiet && Demod.len == 0) {
1418 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1419 max,
1420 samples,
1421 gotFrame,
1422 Demod.len,
1423 Demod.sumI,
1424 Demod.sumQ
1425 );
1426 }
1427
1428 //Tracing
1429 if (Demod.len > 0) {
1430 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1431 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1432 }
1433}
62577a62 1434
1435*/
1436
3e134b4c 1437//-----------------------------------------------------------------------------
1438// Transmit the command (to the tag) that was placed in ToSend[].
1439//-----------------------------------------------------------------------------
62577a62 1440/*
3e134b4c 1441static void TransmitForLegic(void)
1442{
1443 int c;
1444
1445 FpgaSetupSsc();
1446
1447 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1448 AT91C_BASE_SSC->SSC_THR = 0xff;
1449
1450 // Signal field is ON with the appropriate Red LED
1451 LED_D_ON();
1452
1453 // Signal we are transmitting with the Green LED
1454 LED_B_ON();
1455 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1456
1457 for(c = 0; c < 10;) {
1458 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1459 AT91C_BASE_SSC->SSC_THR = 0xff;
1460 c++;
1461 }
1462 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1463 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1464 (void)r;
1465 }
1466 WDT_HIT();
1467 }
1468
1469 c = 0;
1470 for(;;) {
1471 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1472 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1473 legic_prng_forward(1); // forward the lfsr
1474 c++;
1475 if(c >= ToSendMax) {
1476 break;
1477 }
1478 }
1479 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1480 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1481 (void)r;
1482 }
1483 WDT_HIT();
1484 }
1485 LED_B_OFF();
1486}
62577a62 1487*/
3e134b4c 1488
1489//-----------------------------------------------------------------------------
1490// Code a layer 2 command (string of octets, including CRC) into ToSend[],
1491// so that it is ready to transmit to the tag using TransmitForLegic().
1492//-----------------------------------------------------------------------------
62577a62 1493/*
bf2cd644 1494static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
3e134b4c 1495{
1496 int i, j;
1497 uint8_t b;
1498
1499 ToSendReset();
1500
1501 // Send SOF
bf2cd644 1502 for(i = 0; i < 7; i++)
3e134b4c 1503 ToSendStuffBit(1);
3e134b4c 1504
bf2cd644 1505
1506 for(i = 0; i < cmdlen; i++) {
3e134b4c 1507 // Start bit
1508 ToSendStuffBit(0);
1509
1510 // Data bits
1511 b = cmd[i];
bf2cd644 1512 for(j = 0; j < bits; j++) {
3e134b4c 1513 if(b & 1) {
1514 ToSendStuffBit(1);
1515 } else {
1516 ToSendStuffBit(0);
1517 }
1518 b >>= 1;
1519 }
1520 }
1521
1522 // Convert from last character reference to length
1523 ++ToSendMax;
1524}
62577a62 1525*/
3e134b4c 1526/**
1527 Convenience function to encode, transmit and trace Legic comms
1528 **/
62577a62 1529/*
1530 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
3e134b4c 1531{
bf2cd644 1532 CodeLegicBitsAsReader(cmd, cmdlen, bits);
3e134b4c 1533 TransmitForLegic();
1534 if (tracing) {
1535 uint8_t parity[1] = {0x00};
3e82f956 1536 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
3e134b4c 1537 }
1538}
1539
62577a62 1540*/
3e134b4c 1541// Set up LEGIC communication
62577a62 1542/*
3e134b4c 1543void ice_legic_setup() {
1544
1545 // standard things.
1546 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1547 BigBuf_free(); BigBuf_Clear_ext(false);
1548 clear_trace();
1549 set_tracing(TRUE);
1550 DemodReset();
1551 UartReset();
1552
1553 // Set up the synchronous serial port
1554 FpgaSetupSsc();
1555
1556 // connect Demodulated Signal to ADC:
1557 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1558
1559 // Signal field is on with the appropriate LED
1560 LED_D_ON();
1561 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
f7b42573 1562 SpinDelay(20);
3e134b4c 1563 // Start the timer
1564 //StartCountSspClk();
1565
1566 // initalize CRC
1567 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
1568
1569 // initalize prng
1570 legic_prng_init(0);
62577a62 1571}
1572*/
Impressum, Datenschutz