]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
CHG: "hf 14 sim t 7" ie NTAG simulation, now reads the emulator memory for read...
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22 #include "BigBuf.h"
23 static uint32_t iso14a_timeout;
24 int rsamples = 0;
25 uint8_t trigger = 0;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum = 0;
28
29 //
30 // ISO14443 timing:
31 //
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
37
38 //
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40 //
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
49
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
68
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
83
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
91
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
100
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime;
104 static uint32_t LastTimeProxToAirStart;
105 static uint32_t LastProxToAirDuration;
106
107
108
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
117 #define SEC_D 0xf0
118 #define SEC_E 0x0f
119 #define SEC_F 0x00
120 #define SEC_X 0x0c
121 #define SEC_Y 0x00
122 #define SEC_Z 0xc0
123
124 const uint8_t OddByteParity[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141 };
142
143
144 void iso14a_set_trigger(bool enable) {
145 trigger = enable;
146 }
147
148
149 void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
152 }
153
154
155 void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174 }
175
176
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
179 //
180 //-----------------------------------------------------------------------------
181 byte_t oddparity (const byte_t bt)
182 {
183 return OddByteParity[bt];
184 }
185
186 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
187 {
188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
203 }
204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
208 }
209
210 void AppendCrc14443a(uint8_t* data, int len)
211 {
212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
213 }
214
215 void AppendCrc14443b(uint8_t* data, int len)
216 {
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218 }
219
220
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
224 // Basics:
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
237 static tUart Uart;
238
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT[] = {
246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
248 };
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
251
252 void UartReset()
253 {
254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
257 Uart.parityLen = 0; // number of decoded parity bytes
258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
259 Uart.parityBits = 0; // holds 8 parity bits
260 Uart.startTime = 0;
261 Uart.endTime = 0;
262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
266 }
267
268 void UartInit(uint8_t *data, uint8_t *parity)
269 {
270 Uart.output = data;
271 Uart.parity = parity;
272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
273 UartReset();
274 }
275
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278 {
279
280 Uart.fourBits = (Uart.fourBits << 8) | bit;
281
282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
283
284 Uart.syncBit = 9999; // not set
285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
294 //
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
310 Uart.endTime = Uart.startTime;
311 Uart.state = STATE_START_OF_COMMUNICATION;
312 }
313
314 } else {
315
316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
318 UartReset();
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
337 }
338 }
339 }
340 } else {
341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
356 }
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
359 Uart.state = STATE_UNSYNCD;
360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
372 }
373 if (Uart.len) {
374 return TRUE; // we are finished with decoding the raw data sequence
375 } else {
376 UartReset(); // Nothing received - start over
377 }
378 }
379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
395 }
396 }
397 }
398 }
399
400 }
401
402 return FALSE; // not finished yet, need more data
403 }
404
405
406
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
410 // Basics:
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
422 static tDemod Demod;
423
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT[] = {
427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
429 };
430
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
433
434
435 void DemodReset()
436 {
437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
439 Demod.parityLen = 0;
440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
452 }
453
454 void DemodInit(uint8_t *data, uint8_t *parity)
455 {
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459 }
460
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
463 {
464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
466
467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
485 if (Demod.syncBit != 0xFFFF) {
486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
489 Demod.state = DEMOD_MANCHESTER_DATA;
490 }
491 }
492
493 } else {
494
495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
505 Demod.parityBits <<= 1; // make room for the parity bit
506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
513 }
514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
517 Demod.bitCount++;
518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
521 Demod.parityBits <<= 1; // make room for the new parity bit
522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
529 }
530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
542 }
543 if (Demod.len) {
544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
547 }
548 }
549 }
550 }
551 return FALSE; // not finished yet, need more data
552 }
553
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
558
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
562 // near the reader.
563 //-----------------------------------------------------------------------------
564 void RAMFUNC SniffIso14443a(uint8_t param) {
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
568
569 LEDsoff();
570
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
575 bool triggered = !(param & 0x03);
576
577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
579 BigBuf_free();
580
581 // The command (reader -> tag) that we're receiving.
582 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
583 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
584
585 // The response (tag -> reader) that we're receiving.
586 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
587 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
588
589 // The DMA buffer, used to stream samples from the FPGA
590 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
591
592 // init trace buffer
593 clear_trace();
594 set_tracing(TRUE);
595
596 uint8_t *data = dmaBuf;
597 uint8_t previous_data = 0;
598 int maxDataLen = 0;
599 int dataLen = 0;
600 bool TagIsActive = FALSE;
601 bool ReaderIsActive = FALSE;
602
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
604
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse, receivedResponsePar);
607
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd, receivedCmdPar);
610
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
613
614 // And now we loop, receiving samples.
615 for(uint32_t rsamples = 0; TRUE; ) {
616
617 if(BUTTON_PRESS()) {
618 DbpString("cancelled by button");
619 break;
620 }
621
622 LED_A_ON();
623 WDT_HIT();
624
625 int register readBufDataP = data - dmaBuf;
626 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
627 if (readBufDataP <= dmaBufDataP){
628 dataLen = dmaBufDataP - readBufDataP;
629 } else {
630 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
631 }
632 // test for length of buffer
633 if(dataLen > maxDataLen) {
634 maxDataLen = dataLen;
635 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
636 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
637 break;
638 }
639 }
640 if(dataLen < 1) continue;
641
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
644 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
645 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
647 }
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
650 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
651 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
652 }
653
654 LED_A_OFF();
655
656 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
657
658 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
660 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
661 LED_C_ON();
662
663 // check - if there is a short 7bit request from reader
664 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
665
666 if(triggered) {
667 if (!LogTrace(receivedCmd,
668 Uart.len,
669 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
671 Uart.parity,
672 TRUE)) break;
673 }
674 /* And ready to receive another command. */
675 UartReset();
676 //UartInit(receivedCmd, receivedCmdPar);
677 /* And also reset the demod code, which might have been */
678 /* false-triggered by the commands from the reader. */
679 DemodReset();
680 LED_B_OFF();
681 }
682 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
683 }
684
685 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
686 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
687 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
688 LED_B_ON();
689
690 if (!LogTrace(receivedResponse,
691 Demod.len,
692 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
693 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
694 Demod.parity,
695 FALSE)) break;
696
697 if ((!triggered) && (param & 0x01)) triggered = TRUE;
698
699 // And ready to receive another response.
700 DemodReset();
701 // And reset the Miller decoder including itS (now outdated) input buffer
702 UartInit(receivedCmd, receivedCmdPar);
703
704 LED_C_OFF();
705 }
706 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
707 }
708 }
709
710 previous_data = *data;
711 rsamples++;
712 data++;
713 if(data == dmaBuf + DMA_BUFFER_SIZE) {
714 data = dmaBuf;
715 }
716 } // main cycle
717
718 DbpString("COMMAND FINISHED");
719
720 FpgaDisableSscDma();
721 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
722 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
723 LEDsoff();
724 }
725
726 //-----------------------------------------------------------------------------
727 // Prepare tag messages
728 //-----------------------------------------------------------------------------
729 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
730 {
731 ToSendReset();
732
733 // Correction bit, might be removed when not needed
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(0);
738 ToSendStuffBit(1); // 1
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741 ToSendStuffBit(0);
742
743 // Send startbit
744 ToSend[++ToSendMax] = SEC_D;
745 LastProxToAirDuration = 8 * ToSendMax - 4;
746
747 for(uint16_t i = 0; i < len; i++) {
748 uint8_t b = cmd[i];
749
750 // Data bits
751 for(uint16_t j = 0; j < 8; j++) {
752 if(b & 1) {
753 ToSend[++ToSendMax] = SEC_D;
754 } else {
755 ToSend[++ToSendMax] = SEC_E;
756 }
757 b >>= 1;
758 }
759
760 // Get the parity bit
761 if (parity[i>>3] & (0x80>>(i&0x0007))) {
762 ToSend[++ToSendMax] = SEC_D;
763 LastProxToAirDuration = 8 * ToSendMax - 4;
764 } else {
765 ToSend[++ToSendMax] = SEC_E;
766 LastProxToAirDuration = 8 * ToSendMax;
767 }
768 }
769
770 // Send stopbit
771 ToSend[++ToSendMax] = SEC_F;
772
773 // Convert from last byte pos to length
774 ToSendMax++;
775 }
776
777 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
778 {
779 uint8_t par[MAX_PARITY_SIZE];
780
781 GetParity(cmd, len, par);
782 CodeIso14443aAsTagPar(cmd, len, par);
783 }
784
785
786 static void Code4bitAnswerAsTag(uint8_t cmd)
787 {
788 int i;
789
790 ToSendReset();
791
792 // Correction bit, might be removed when not needed
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(1); // 1
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800 ToSendStuffBit(0);
801
802 // Send startbit
803 ToSend[++ToSendMax] = SEC_D;
804
805 uint8_t b = cmd;
806 for(i = 0; i < 4; i++) {
807 if(b & 1) {
808 ToSend[++ToSendMax] = SEC_D;
809 LastProxToAirDuration = 8 * ToSendMax - 4;
810 } else {
811 ToSend[++ToSendMax] = SEC_E;
812 LastProxToAirDuration = 8 * ToSendMax;
813 }
814 b >>= 1;
815 }
816
817 // Send stopbit
818 ToSend[++ToSendMax] = SEC_F;
819
820 // Convert from last byte pos to length
821 ToSendMax++;
822 }
823
824 //-----------------------------------------------------------------------------
825 // Wait for commands from reader
826 // Stop when button is pressed
827 // Or return TRUE when command is captured
828 //-----------------------------------------------------------------------------
829 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
830 {
831 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
832 // only, since we are receiving, not transmitting).
833 // Signal field is off with the appropriate LED
834 LED_D_OFF();
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
836
837 // Now run a `software UART' on the stream of incoming samples.
838 UartInit(received, parity);
839
840 // clear RXRDY:
841 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
842
843 for(;;) {
844 WDT_HIT();
845
846 if(BUTTON_PRESS()) return FALSE;
847
848 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
849 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
850 if(MillerDecoding(b, 0)) {
851 *len = Uart.len;
852 return TRUE;
853 }
854 }
855 }
856 }
857
858 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
859 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
860 int EmSend4bit(uint8_t resp);
861 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
862 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
863 int EmSendCmd(uint8_t *resp, uint16_t respLen);
864 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
865 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
866 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
867
868 static uint8_t* free_buffer_pointer;
869
870 typedef struct {
871 uint8_t* response;
872 size_t response_n;
873 uint8_t* modulation;
874 size_t modulation_n;
875 uint32_t ProxToAirDuration;
876 } tag_response_info_t;
877
878 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
879 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
880 // This will need the following byte array for a modulation sequence
881 // 144 data bits (18 * 8)
882 // 18 parity bits
883 // 2 Start and stop
884 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
885 // 1 just for the case
886 // ----------- +
887 // 166 bytes, since every bit that needs to be send costs us a byte
888 //
889
890
891 // Prepare the tag modulation bits from the message
892 CodeIso14443aAsTag(response_info->response,response_info->response_n);
893
894 // Make sure we do not exceed the free buffer space
895 if (ToSendMax > max_buffer_size) {
896 Dbprintf("Out of memory, when modulating bits for tag answer:");
897 Dbhexdump(response_info->response_n,response_info->response,false);
898 return false;
899 }
900
901 // Copy the byte array, used for this modulation to the buffer position
902 memcpy(response_info->modulation,ToSend,ToSendMax);
903
904 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
905 response_info->modulation_n = ToSendMax;
906 response_info->ProxToAirDuration = LastProxToAirDuration;
907
908 return true;
909 }
910
911
912 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
913 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
914 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
915 // -> need 273 bytes buffer
916 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
917 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
918 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
919
920 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
921 // Retrieve and store the current buffer index
922 response_info->modulation = free_buffer_pointer;
923
924 // Determine the maximum size we can use from our buffer
925 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
926
927 // Forward the prepare tag modulation function to the inner function
928 if (prepare_tag_modulation(response_info, max_buffer_size)) {
929 // Update the free buffer offset
930 free_buffer_pointer += ToSendMax;
931 return true;
932 } else {
933 return false;
934 }
935 }
936
937 //-----------------------------------------------------------------------------
938 // Main loop of simulated tag: receive commands from reader, decide what
939 // response to send, and send it.
940 //-----------------------------------------------------------------------------
941 void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
942 {
943
944 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
945 // This can be used in a reader-only attack.
946 // (it can also be retrieved via 'hf 14a list', but hey...
947 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
948 uint8_t ar_nr_collected = 0;
949
950 uint8_t sak;
951
952 // PACK response to PWD AUTH for EV1/NTAG
953 uint8_t response8[4];
954
955 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
956 uint8_t response1[2];
957
958 switch (tagType) {
959 case 1: { // MIFARE Classic
960 // Says: I am Mifare 1k - original line
961 response1[0] = 0x04;
962 response1[1] = 0x00;
963 sak = 0x08;
964 } break;
965 case 2: { // MIFARE Ultralight
966 // Says: I am a stupid memory tag, no crypto
967 response1[0] = 0x44;
968 response1[1] = 0x00;
969 sak = 0x00;
970 } break;
971 case 3: { // MIFARE DESFire
972 // Says: I am a DESFire tag, ph33r me
973 response1[0] = 0x04;
974 response1[1] = 0x03;
975 sak = 0x20;
976 } break;
977 case 4: { // ISO/IEC 14443-4
978 // Says: I am a javacard (JCOP)
979 response1[0] = 0x04;
980 response1[1] = 0x00;
981 sak = 0x28;
982 } break;
983 case 5: { // MIFARE TNP3XXX
984 // Says: I am a toy
985 response1[0] = 0x01;
986 response1[1] = 0x0f;
987 sak = 0x01;
988 } break;
989 case 6: { // MIFARE Mini
990 // Says: I am a Mifare Mini, 320b
991 response1[0] = 0x44;
992 response1[1] = 0x00;
993 sak = 0x09;
994 } break;
995 case 7: { // NTAG?
996 // Says: I am a NTAG,
997 response1[0] = 0x44;
998 response1[1] = 0x00;
999 sak = 0x00;
1000 // PACK
1001 response8[0] = 0x80;
1002 response8[1] = 0x80;
1003 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
1004 } break;
1005 default: {
1006 Dbprintf("Error: unkown tagtype (%d)",tagType);
1007 return;
1008 } break;
1009 }
1010
1011 // The second response contains the (mandatory) first 24 bits of the UID
1012 uint8_t response2[5] = {0x00};
1013
1014 // Check if the uid uses the (optional) part
1015 uint8_t response2a[5] = {0x00};
1016
1017 if (flags & FLAG_7B_UID_IN_DATA) {
1018 response2[0] = 0x88;
1019 response2[1] = data[0];
1020 response2[2] = data[1];
1021 response2[3] = data[2];
1022
1023 response2a[0] = data[3];
1024 response2a[1] = data[4];
1025 response2a[2] = data[5];
1026 response2a[3] = data[6]; //??
1027 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1028
1029 // Configure the ATQA and SAK accordingly
1030 response1[0] |= 0x40;
1031 sak |= 0x04;
1032 } else {
1033 memcpy(response2, data, 4);
1034 //num_to_bytes(uid_1st,4,response2);
1035 // Configure the ATQA and SAK accordingly
1036 response1[0] &= 0xBF;
1037 sak &= 0xFB;
1038 }
1039
1040 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1041 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1042
1043 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1044 uint8_t response3[3] = {0x00};
1045 response3[0] = sak;
1046 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1047
1048 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1049 uint8_t response3a[3] = {0x00};
1050 response3a[0] = sak & 0xFB;
1051 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1052
1053 uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
1054 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1055 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1056 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1057 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1058 // TC(1) = 0x02: CID supported, NAD not supported
1059 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1060
1061 // Prepare GET_VERSION (different for EV-1 / NTAG)
1062 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1063 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1064
1065 // Prepare CHK_TEARING
1066 uint8_t response9[] = {0xBD,0x90,0x3f};
1067
1068 #define TAG_RESPONSE_COUNT 10
1069 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1070 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1071 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1072 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1073 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1074 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1075 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1076 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1077 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1078 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
1079 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1080 };
1081
1082 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1083 // Such a response is less time critical, so we can prepare them on the fly
1084 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1085 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1086 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1087 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1088 tag_response_info_t dynamic_response_info = {
1089 .response = dynamic_response_buffer,
1090 .response_n = 0,
1091 .modulation = dynamic_modulation_buffer,
1092 .modulation_n = 0
1093 };
1094
1095 BigBuf_free_keep_EM();
1096
1097 // allocate buffers:
1098 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1099 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1100 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1101
1102 // clear trace
1103 clear_trace();
1104 set_tracing(TRUE);
1105
1106 // Prepare the responses of the anticollision phase
1107 // there will be not enough time to do this at the moment the reader sends it REQA
1108 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1109 prepare_allocated_tag_modulation(&responses[i]);
1110 }
1111
1112 int len = 0;
1113
1114 // To control where we are in the protocol
1115 int order = 0;
1116 int lastorder;
1117
1118 // Just to allow some checks
1119 int happened = 0;
1120 int happened2 = 0;
1121 int cmdsRecvd = 0;
1122
1123 // We need to listen to the high-frequency, peak-detected path.
1124 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1125
1126 cmdsRecvd = 0;
1127 tag_response_info_t* p_response;
1128
1129 LED_A_ON();
1130 for(;;) {
1131 // Clean receive command buffer
1132
1133 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1134 DbpString("Button press");
1135 break;
1136 }
1137
1138 p_response = NULL;
1139
1140 // Okay, look at the command now.
1141 lastorder = order;
1142 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1143 p_response = &responses[0]; order = 1;
1144 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1145 p_response = &responses[0]; order = 6;
1146 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1147 p_response = &responses[1]; order = 2;
1148 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1149 p_response = &responses[2]; order = 20;
1150 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1151 p_response = &responses[3]; order = 3;
1152 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1153 p_response = &responses[4]; order = 30;
1154 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1155 uint8_t block = receivedCmd[1];
1156 if ( tagType == 7 ) {
1157 uint8_t start = 4 * block;
1158
1159 if ( block < 4 ) {
1160 //NTAG 215
1161 uint8_t blockdata[50] = {
1162 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1163 data[3],data[4],data[5],data[6],
1164 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1165 0xe1,0x10,0x12,0x00,
1166 0x03,0x00,0xfe,0x00,
1167 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1168 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1169 0x00,0x00,0x00,0x00,
1170 0x00,0x00};
1171 AppendCrc14443a(blockdata+start, 16);
1172 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
1173 } else {
1174 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1175 emlGetMemBt( emdata, start, 16);
1176 AppendCrc14443a(emdata, 16);
1177 EmSendCmdEx(emdata, sizeof(emdata), false);
1178 }
1179 p_response = NULL;
1180
1181 } else {
1182 EmSendCmdEx(data+(4*block),16,false);
1183 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1184 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1185 p_response = NULL;
1186 }
1187 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
1188
1189 uint8_t emdata[MAX_FRAME_SIZE];
1190 int start = receivedCmd[1] * 4;
1191 int len = (receivedCmd[2] - receivedCmd[1]) * 4;
1192 emlGetMemBt( emdata, start, len);
1193 AppendCrc14443a(emdata, len);
1194 EmSendCmdEx(emdata, len+2, false);
1195 p_response = NULL;
1196
1197 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1198 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1199 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1200 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1201 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1202 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1203 0x00,0x00};
1204 AppendCrc14443a(data, sizeof(data)-2);
1205 EmSendCmdEx(data,sizeof(data),false);
1206 p_response = NULL;
1207 } else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
1208 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
1209 EmSendCmdEx(data,sizeof(data),false);
1210 p_response = NULL;
1211 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1212 p_response = &responses[9];
1213 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1214
1215 if (tracing) {
1216 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1217 }
1218 p_response = NULL;
1219 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1220
1221 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1222 p_response = &responses[7];
1223 } else {
1224 p_response = &responses[5]; order = 7;
1225 }
1226 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1227 if (tagType == 1 || tagType == 2) { // RATS not supported
1228 EmSend4bit(CARD_NACK_NA);
1229 p_response = NULL;
1230 } else {
1231 p_response = &responses[6]; order = 70;
1232 }
1233 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1234 if (tracing) {
1235 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1236 }
1237 uint32_t nonce = bytes_to_num(response5,4);
1238 uint32_t nr = bytes_to_num(receivedCmd,4);
1239 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1240 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1241
1242 if(flags & FLAG_NR_AR_ATTACK )
1243 {
1244 if(ar_nr_collected < 2){
1245 // Avoid duplicates... probably not necessary, nr should vary.
1246 //if(ar_nr_responses[3] != nr){
1247 ar_nr_responses[ar_nr_collected*5] = 0;
1248 ar_nr_responses[ar_nr_collected*5+1] = 0;
1249 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1250 ar_nr_responses[ar_nr_collected*5+3] = nr;
1251 ar_nr_responses[ar_nr_collected*5+4] = ar;
1252 ar_nr_collected++;
1253 //}
1254 }
1255
1256 if(ar_nr_collected > 1 ) {
1257
1258 if (MF_DBGLEVEL >= 2) {
1259 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1260 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1261 ar_nr_responses[0], // UID1
1262 ar_nr_responses[1], // UID2
1263 ar_nr_responses[2], // NT
1264 ar_nr_responses[3], // AR1
1265 ar_nr_responses[4], // NR1
1266 ar_nr_responses[8], // AR2
1267 ar_nr_responses[9] // NR2
1268 );
1269 }
1270 uint8_t len = ar_nr_collected*5*4;
1271 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1272 ar_nr_collected = 0;
1273 memset(ar_nr_responses, 0x00, len);
1274 }
1275 }
1276 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1277 {
1278
1279 }
1280 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1281 {
1282 if ( tagType == 7 ) {
1283 p_response = &responses[8]; // PACK response
1284 }
1285 }
1286 else {
1287 // Check for ISO 14443A-4 compliant commands, look at left nibble
1288 switch (receivedCmd[0]) {
1289
1290 case 0x0B:
1291 case 0x0A: { // IBlock (command)
1292 dynamic_response_info.response[0] = receivedCmd[0];
1293 dynamic_response_info.response[1] = 0x00;
1294 dynamic_response_info.response[2] = 0x90;
1295 dynamic_response_info.response[3] = 0x00;
1296 dynamic_response_info.response_n = 4;
1297 } break;
1298
1299 case 0x1A:
1300 case 0x1B: { // Chaining command
1301 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1302 dynamic_response_info.response_n = 2;
1303 } break;
1304
1305 case 0xaa:
1306 case 0xbb: {
1307 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1308 dynamic_response_info.response_n = 2;
1309 } break;
1310
1311 case 0xBA: { //
1312 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1313 dynamic_response_info.response_n = 2;
1314 } break;
1315
1316 case 0xCA:
1317 case 0xC2: { // Readers sends deselect command
1318 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1319 dynamic_response_info.response_n = 2;
1320 } break;
1321
1322 default: {
1323 // Never seen this command before
1324 if (tracing) {
1325 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1326 }
1327 Dbprintf("Received unknown command (len=%d):",len);
1328 Dbhexdump(len,receivedCmd,false);
1329 // Do not respond
1330 dynamic_response_info.response_n = 0;
1331 } break;
1332 }
1333
1334 if (dynamic_response_info.response_n > 0) {
1335 // Copy the CID from the reader query
1336 dynamic_response_info.response[1] = receivedCmd[1];
1337
1338 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1339 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1340 dynamic_response_info.response_n += 2;
1341
1342 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1343 Dbprintf("Error preparing tag response");
1344 if (tracing) {
1345 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1346 }
1347 break;
1348 }
1349 p_response = &dynamic_response_info;
1350 }
1351 }
1352
1353 // Count number of wakeups received after a halt
1354 if(order == 6 && lastorder == 5) { happened++; }
1355
1356 // Count number of other messages after a halt
1357 if(order != 6 && lastorder == 5) { happened2++; }
1358
1359 if(cmdsRecvd > 999) {
1360 DbpString("1000 commands later...");
1361 break;
1362 }
1363 cmdsRecvd++;
1364
1365 if (p_response != NULL) {
1366 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1367 // do the tracing for the previous reader request and this tag answer:
1368 uint8_t par[MAX_PARITY_SIZE];
1369 GetParity(p_response->response, p_response->response_n, par);
1370
1371 EmLogTrace(Uart.output,
1372 Uart.len,
1373 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1374 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1375 Uart.parity,
1376 p_response->response,
1377 p_response->response_n,
1378 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1379 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1380 par);
1381 }
1382
1383 if (!tracing) {
1384 Dbprintf("Trace Full. Simulation stopped.");
1385 break;
1386 }
1387 }
1388
1389 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1390 BigBuf_free_keep_EM();
1391 LED_A_OFF();
1392
1393 Dbprintf("-[ Wake ups after halt [%d]", happened);
1394 Dbprintf("-[ Messages after halt [%d]", happened2);
1395 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
1396 }
1397
1398
1399 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1400 // of bits specified in the delay parameter.
1401 void PrepareDelayedTransfer(uint16_t delay)
1402 {
1403 uint8_t bitmask = 0;
1404 uint8_t bits_to_shift = 0;
1405 uint8_t bits_shifted = 0;
1406
1407 delay &= 0x07;
1408 if (delay) {
1409 for (uint16_t i = 0; i < delay; i++) {
1410 bitmask |= (0x01 << i);
1411 }
1412 ToSend[ToSendMax++] = 0x00;
1413 for (uint16_t i = 0; i < ToSendMax; i++) {
1414 bits_to_shift = ToSend[i] & bitmask;
1415 ToSend[i] = ToSend[i] >> delay;
1416 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1417 bits_shifted = bits_to_shift;
1418 }
1419 }
1420 }
1421
1422
1423 //-------------------------------------------------------------------------------------
1424 // Transmit the command (to the tag) that was placed in ToSend[].
1425 // Parameter timing:
1426 // if NULL: transfer at next possible time, taking into account
1427 // request guard time and frame delay time
1428 // if == 0: transfer immediately and return time of transfer
1429 // if != 0: delay transfer until time specified
1430 //-------------------------------------------------------------------------------------
1431 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1432 {
1433
1434 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1435
1436 uint32_t ThisTransferTime = 0;
1437
1438 if (timing) {
1439 if(*timing == 0) { // Measure time
1440 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1441 } else {
1442 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1443 }
1444 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1445 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1446 LastTimeProxToAirStart = *timing;
1447 } else {
1448 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1449 while(GetCountSspClk() < ThisTransferTime);
1450 LastTimeProxToAirStart = ThisTransferTime;
1451 }
1452
1453 // clear TXRDY
1454 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1455
1456 uint16_t c = 0;
1457 for(;;) {
1458 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1459 AT91C_BASE_SSC->SSC_THR = cmd[c];
1460 c++;
1461 if(c >= len) {
1462 break;
1463 }
1464 }
1465 }
1466
1467 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1468 }
1469
1470
1471 //-----------------------------------------------------------------------------
1472 // Prepare reader command (in bits, support short frames) to send to FPGA
1473 //-----------------------------------------------------------------------------
1474 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1475 {
1476 int i, j;
1477 int last;
1478 uint8_t b;
1479
1480 ToSendReset();
1481
1482 // Start of Communication (Seq. Z)
1483 ToSend[++ToSendMax] = SEC_Z;
1484 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1485 last = 0;
1486
1487 size_t bytecount = nbytes(bits);
1488 // Generate send structure for the data bits
1489 for (i = 0; i < bytecount; i++) {
1490 // Get the current byte to send
1491 b = cmd[i];
1492 size_t bitsleft = MIN((bits-(i*8)),8);
1493
1494 for (j = 0; j < bitsleft; j++) {
1495 if (b & 1) {
1496 // Sequence X
1497 ToSend[++ToSendMax] = SEC_X;
1498 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1499 last = 1;
1500 } else {
1501 if (last == 0) {
1502 // Sequence Z
1503 ToSend[++ToSendMax] = SEC_Z;
1504 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1505 } else {
1506 // Sequence Y
1507 ToSend[++ToSendMax] = SEC_Y;
1508 last = 0;
1509 }
1510 }
1511 b >>= 1;
1512 }
1513
1514 // Only transmit parity bit if we transmitted a complete byte
1515 if (j == 8 && parity != NULL) {
1516 // Get the parity bit
1517 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1518 // Sequence X
1519 ToSend[++ToSendMax] = SEC_X;
1520 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1521 last = 1;
1522 } else {
1523 if (last == 0) {
1524 // Sequence Z
1525 ToSend[++ToSendMax] = SEC_Z;
1526 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1527 } else {
1528 // Sequence Y
1529 ToSend[++ToSendMax] = SEC_Y;
1530 last = 0;
1531 }
1532 }
1533 }
1534 }
1535
1536 // End of Communication: Logic 0 followed by Sequence Y
1537 if (last == 0) {
1538 // Sequence Z
1539 ToSend[++ToSendMax] = SEC_Z;
1540 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1541 } else {
1542 // Sequence Y
1543 ToSend[++ToSendMax] = SEC_Y;
1544 last = 0;
1545 }
1546 ToSend[++ToSendMax] = SEC_Y;
1547
1548 // Convert to length of command:
1549 ToSendMax++;
1550 }
1551
1552 //-----------------------------------------------------------------------------
1553 // Prepare reader command to send to FPGA
1554 //-----------------------------------------------------------------------------
1555 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1556 {
1557 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1558 }
1559
1560
1561 //-----------------------------------------------------------------------------
1562 // Wait for commands from reader
1563 // Stop when button is pressed (return 1) or field was gone (return 2)
1564 // Or return 0 when command is captured
1565 //-----------------------------------------------------------------------------
1566 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1567 {
1568 *len = 0;
1569
1570 uint32_t timer = 0, vtime = 0;
1571 int analogCnt = 0;
1572 int analogAVG = 0;
1573
1574 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1575 // only, since we are receiving, not transmitting).
1576 // Signal field is off with the appropriate LED
1577 LED_D_OFF();
1578 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1579
1580 // Set ADC to read field strength
1581 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1582 AT91C_BASE_ADC->ADC_MR =
1583 ADC_MODE_PRESCALE(63) |
1584 ADC_MODE_STARTUP_TIME(1) |
1585 ADC_MODE_SAMPLE_HOLD_TIME(15);
1586 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1587 // start ADC
1588 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1589
1590 // Now run a 'software UART' on the stream of incoming samples.
1591 UartInit(received, parity);
1592
1593 // Clear RXRDY:
1594 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1595
1596 for(;;) {
1597 WDT_HIT();
1598
1599 if (BUTTON_PRESS()) return 1;
1600
1601 // test if the field exists
1602 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1603 analogCnt++;
1604 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1605 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1606 if (analogCnt >= 32) {
1607 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1608 vtime = GetTickCount();
1609 if (!timer) timer = vtime;
1610 // 50ms no field --> card to idle state
1611 if (vtime - timer > 50) return 2;
1612 } else
1613 if (timer) timer = 0;
1614 analogCnt = 0;
1615 analogAVG = 0;
1616 }
1617 }
1618
1619 // receive and test the miller decoding
1620 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1621 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1622 if(MillerDecoding(b, 0)) {
1623 *len = Uart.len;
1624 return 0;
1625 }
1626 }
1627
1628 }
1629 }
1630
1631
1632 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1633 {
1634 uint8_t b;
1635 uint16_t i = 0;
1636 uint32_t ThisTransferTime;
1637
1638 // Modulate Manchester
1639 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1640
1641 // include correction bit if necessary
1642 if (Uart.parityBits & 0x01) {
1643 correctionNeeded = TRUE;
1644 }
1645 if(correctionNeeded) {
1646 // 1236, so correction bit needed
1647 i = 0;
1648 } else {
1649 i = 1;
1650 }
1651
1652 // clear receiving shift register and holding register
1653 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1654 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1655 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1656 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1657
1658 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1659 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1660 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1661 if (AT91C_BASE_SSC->SSC_RHR) break;
1662 }
1663
1664 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1665
1666 // Clear TXRDY:
1667 AT91C_BASE_SSC->SSC_THR = SEC_F;
1668
1669 // send cycle
1670 for(; i < respLen; ) {
1671 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1672 AT91C_BASE_SSC->SSC_THR = resp[i++];
1673 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1674 }
1675
1676 if(BUTTON_PRESS()) {
1677 break;
1678 }
1679 }
1680
1681 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1682 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1683 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1684 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1685 AT91C_BASE_SSC->SSC_THR = SEC_F;
1686 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1687 i++;
1688 }
1689 }
1690
1691 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1692
1693 return 0;
1694 }
1695
1696 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1697 Code4bitAnswerAsTag(resp);
1698 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1699 // do the tracing for the previous reader request and this tag answer:
1700 uint8_t par[1];
1701 GetParity(&resp, 1, par);
1702 EmLogTrace(Uart.output,
1703 Uart.len,
1704 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1705 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1706 Uart.parity,
1707 &resp,
1708 1,
1709 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1710 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1711 par);
1712 return res;
1713 }
1714
1715 int EmSend4bit(uint8_t resp){
1716 return EmSend4bitEx(resp, false);
1717 }
1718
1719 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1720 CodeIso14443aAsTagPar(resp, respLen, par);
1721 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1722 // do the tracing for the previous reader request and this tag answer:
1723 EmLogTrace(Uart.output,
1724 Uart.len,
1725 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1726 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1727 Uart.parity,
1728 resp,
1729 respLen,
1730 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1731 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1732 par);
1733 return res;
1734 }
1735
1736 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1737 uint8_t par[MAX_PARITY_SIZE];
1738 GetParity(resp, respLen, par);
1739 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1740 }
1741
1742 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1743 uint8_t par[MAX_PARITY_SIZE];
1744 GetParity(resp, respLen, par);
1745 return EmSendCmdExPar(resp, respLen, false, par);
1746 }
1747
1748 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1749 return EmSendCmdExPar(resp, respLen, false, par);
1750 }
1751
1752 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1753 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1754 {
1755 if (tracing) {
1756 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1757 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1758 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1759 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1760 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1761 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1762 reader_EndTime = tag_StartTime - exact_fdt;
1763 reader_StartTime = reader_EndTime - reader_modlen;
1764 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1765 return FALSE;
1766 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1767 } else {
1768 return TRUE;
1769 }
1770 }
1771
1772 //-----------------------------------------------------------------------------
1773 // Wait a certain time for tag response
1774 // If a response is captured return TRUE
1775 // If it takes too long return FALSE
1776 //-----------------------------------------------------------------------------
1777 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1778 {
1779 uint32_t c = 0x00;
1780
1781 // Set FPGA mode to "reader listen mode", no modulation (listen
1782 // only, since we are receiving, not transmitting).
1783 // Signal field is on with the appropriate LED
1784 LED_D_ON();
1785 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1786
1787 // Now get the answer from the card
1788 DemodInit(receivedResponse, receivedResponsePar);
1789
1790 // clear RXRDY:
1791 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1792
1793 for(;;) {
1794 WDT_HIT();
1795
1796 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1797 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1798 if(ManchesterDecoding(b, offset, 0)) {
1799 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1800 return TRUE;
1801 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1802 return FALSE;
1803 }
1804 }
1805 }
1806 }
1807
1808
1809 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1810 {
1811 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1812
1813 // Send command to tag
1814 TransmitFor14443a(ToSend, ToSendMax, timing);
1815 if(trigger)
1816 LED_A_ON();
1817
1818 // Log reader command in trace buffer
1819 if (tracing) {
1820 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1821 }
1822 }
1823
1824
1825 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1826 {
1827 ReaderTransmitBitsPar(frame, len*8, par, timing);
1828 }
1829
1830
1831 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1832 {
1833 // Generate parity and redirect
1834 uint8_t par[MAX_PARITY_SIZE];
1835 GetParity(frame, len/8, par);
1836 ReaderTransmitBitsPar(frame, len, par, timing);
1837 }
1838
1839
1840 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1841 {
1842 // Generate parity and redirect
1843 uint8_t par[MAX_PARITY_SIZE];
1844 GetParity(frame, len, par);
1845 ReaderTransmitBitsPar(frame, len*8, par, timing);
1846 }
1847
1848 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1849 {
1850 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1851 if (tracing) {
1852 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1853 }
1854 return Demod.len;
1855 }
1856
1857 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1858 {
1859 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1860 if (tracing) {
1861 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1862 }
1863 return Demod.len;
1864 }
1865
1866 /* performs iso14443a anticollision procedure
1867 * fills the uid pointer unless NULL
1868 * fills resp_data unless NULL */
1869 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1870 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1871 uint8_t sel_all[] = { 0x93,0x20 };
1872 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1873 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1874 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1875 uint8_t resp_par[MAX_PARITY_SIZE];
1876 byte_t uid_resp[4];
1877 size_t uid_resp_len;
1878
1879 uint8_t sak = 0x04; // cascade uid
1880 int cascade_level = 0;
1881 int len;
1882
1883 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1884 ReaderTransmitBitsPar(wupa,7,0, NULL);
1885
1886 // Receive the ATQA
1887 if(!ReaderReceive(resp, resp_par)) return 0;
1888
1889 if(p_hi14a_card) {
1890 memcpy(p_hi14a_card->atqa, resp, 2);
1891 p_hi14a_card->uidlen = 0;
1892 memset(p_hi14a_card->uid,0,10);
1893 }
1894
1895 // clear uid
1896 if (uid_ptr) {
1897 memset(uid_ptr,0,10);
1898 }
1899
1900 // check for proprietary anticollision:
1901 if ((resp[0] & 0x1F) == 0) {
1902 return 3;
1903 }
1904
1905 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1906 // which case we need to make a cascade 2 request and select - this is a long UID
1907 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1908 for(; sak & 0x04; cascade_level++) {
1909 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1910 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1911
1912 // SELECT_ALL
1913 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1914 if (!ReaderReceive(resp, resp_par)) return 0;
1915
1916 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1917 memset(uid_resp, 0, 4);
1918 uint16_t uid_resp_bits = 0;
1919 uint16_t collision_answer_offset = 0;
1920 // anti-collision-loop:
1921 while (Demod.collisionPos) {
1922 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1923 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1924 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1925 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1926 }
1927 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1928 uid_resp_bits++;
1929 // construct anticollosion command:
1930 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1931 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1932 sel_uid[2+i] = uid_resp[i];
1933 }
1934 collision_answer_offset = uid_resp_bits%8;
1935 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1936 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1937 }
1938 // finally, add the last bits and BCC of the UID
1939 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1940 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1941 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1942 }
1943
1944 } else { // no collision, use the response to SELECT_ALL as current uid
1945 memcpy(uid_resp, resp, 4);
1946 }
1947 uid_resp_len = 4;
1948
1949 // calculate crypto UID. Always use last 4 Bytes.
1950 if(cuid_ptr) {
1951 *cuid_ptr = bytes_to_num(uid_resp, 4);
1952 }
1953
1954 // Construct SELECT UID command
1955 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1956 memcpy(sel_uid+2, uid_resp, 4); // the UID
1957 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1958 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1959 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1960
1961 // Receive the SAK
1962 if (!ReaderReceive(resp, resp_par)) return 0;
1963 sak = resp[0];
1964
1965 // Test if more parts of the uid are coming
1966 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1967 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1968 // http://www.nxp.com/documents/application_note/AN10927.pdf
1969 uid_resp[0] = uid_resp[1];
1970 uid_resp[1] = uid_resp[2];
1971 uid_resp[2] = uid_resp[3];
1972
1973 uid_resp_len = 3;
1974 }
1975
1976 if(uid_ptr) {
1977 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1978 }
1979
1980 if(p_hi14a_card) {
1981 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1982 p_hi14a_card->uidlen += uid_resp_len;
1983 }
1984 }
1985
1986 if(p_hi14a_card) {
1987 p_hi14a_card->sak = sak;
1988 p_hi14a_card->ats_len = 0;
1989 }
1990
1991 // non iso14443a compliant tag
1992 if( (sak & 0x20) == 0) return 2;
1993
1994 // Request for answer to select
1995 AppendCrc14443a(rats, 2);
1996 ReaderTransmit(rats, sizeof(rats), NULL);
1997
1998 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1999
2000
2001 if(p_hi14a_card) {
2002 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2003 p_hi14a_card->ats_len = len;
2004 }
2005
2006 // reset the PCB block number
2007 iso14_pcb_blocknum = 0;
2008
2009 // set default timeout based on ATS
2010 iso14a_set_ATS_timeout(resp);
2011
2012 return 1;
2013 }
2014
2015 void iso14443a_setup(uint8_t fpga_minor_mode) {
2016 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
2017 // Set up the synchronous serial port
2018 FpgaSetupSsc();
2019 // connect Demodulated Signal to ADC:
2020 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2021
2022 // Signal field is on with the appropriate LED
2023 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2024 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2025 LED_D_ON();
2026 } else {
2027 LED_D_OFF();
2028 }
2029 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
2030
2031 // Start the timer
2032 StartCountSspClk();
2033
2034 DemodReset();
2035 UartReset();
2036 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
2037 iso14a_set_timeout(10*106); // 10ms default
2038 }
2039
2040 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2041 uint8_t parity[MAX_PARITY_SIZE];
2042 uint8_t real_cmd[cmd_len+4];
2043 real_cmd[0] = 0x0a; //I-Block
2044 // put block number into the PCB
2045 real_cmd[0] |= iso14_pcb_blocknum;
2046 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2047 memcpy(real_cmd+2, cmd, cmd_len);
2048 AppendCrc14443a(real_cmd,cmd_len+2);
2049
2050 ReaderTransmit(real_cmd, cmd_len+4, NULL);
2051 size_t len = ReaderReceive(data, parity);
2052 uint8_t *data_bytes = (uint8_t *) data;
2053 if (!len)
2054 return 0; //DATA LINK ERROR
2055 // if we received an I- or R(ACK)-Block with a block number equal to the
2056 // current block number, toggle the current block number
2057 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2058 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2059 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2060 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2061 {
2062 iso14_pcb_blocknum ^= 1;
2063 }
2064
2065 return len;
2066 }
2067
2068 //-----------------------------------------------------------------------------
2069 // Read an ISO 14443a tag. Send out commands and store answers.
2070 //
2071 //-----------------------------------------------------------------------------
2072 void ReaderIso14443a(UsbCommand *c)
2073 {
2074 iso14a_command_t param = c->arg[0];
2075 uint8_t *cmd = c->d.asBytes;
2076 size_t len = c->arg[1] & 0xffff;
2077 size_t lenbits = c->arg[1] >> 16;
2078 uint32_t timeout = c->arg[2];
2079 uint32_t arg0 = 0;
2080 byte_t buf[USB_CMD_DATA_SIZE];
2081 uint8_t par[MAX_PARITY_SIZE];
2082
2083 if(param & ISO14A_CONNECT) {
2084 clear_trace();
2085 }
2086
2087 set_tracing(TRUE);
2088
2089 if(param & ISO14A_REQUEST_TRIGGER) {
2090 iso14a_set_trigger(TRUE);
2091 }
2092
2093 if(param & ISO14A_CONNECT) {
2094 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2095 if(!(param & ISO14A_NO_SELECT)) {
2096 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2097 arg0 = iso14443a_select_card(NULL,card,NULL);
2098 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2099 }
2100 }
2101
2102 if(param & ISO14A_SET_TIMEOUT) {
2103 iso14a_set_timeout(timeout);
2104 }
2105
2106 if(param & ISO14A_APDU) {
2107 arg0 = iso14_apdu(cmd, len, buf);
2108 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2109 }
2110
2111 if(param & ISO14A_RAW) {
2112 if(param & ISO14A_APPEND_CRC) {
2113 if(param & ISO14A_TOPAZMODE) {
2114 AppendCrc14443b(cmd,len);
2115 } else {
2116 AppendCrc14443a(cmd,len);
2117 }
2118 len += 2;
2119 if (lenbits) lenbits += 16;
2120 }
2121 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2122 if(param & ISO14A_TOPAZMODE) {
2123 int bits_to_send = lenbits;
2124 uint16_t i = 0;
2125 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2126 bits_to_send -= 7;
2127 while (bits_to_send > 0) {
2128 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2129 bits_to_send -= 8;
2130 }
2131 } else {
2132 GetParity(cmd, lenbits/8, par);
2133 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2134 }
2135 } else { // want to send complete bytes only
2136 if(param & ISO14A_TOPAZMODE) {
2137 uint16_t i = 0;
2138 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2139 while (i < len) {
2140 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2141 }
2142 } else {
2143 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2144 }
2145 }
2146 arg0 = ReaderReceive(buf, par);
2147 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2148 }
2149
2150 if(param & ISO14A_REQUEST_TRIGGER) {
2151 iso14a_set_trigger(FALSE);
2152 }
2153
2154 if(param & ISO14A_NO_DISCONNECT) {
2155 return;
2156 }
2157
2158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2159 LEDsoff();
2160 }
2161
2162
2163 // Determine the distance between two nonces.
2164 // Assume that the difference is small, but we don't know which is first.
2165 // Therefore try in alternating directions.
2166 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2167
2168 if (nt1 == nt2) return 0;
2169
2170 uint16_t i;
2171 uint32_t nttmp1 = nt1;
2172 uint32_t nttmp2 = nt2;
2173
2174 for (i = 1; i < 32768; i++) {
2175 nttmp1 = prng_successor(nttmp1, 1);
2176 if (nttmp1 == nt2) return i;
2177 nttmp2 = prng_successor(nttmp2, 1);
2178 if (nttmp2 == nt1) return -i;
2179 }
2180
2181 return(-99999); // either nt1 or nt2 are invalid nonces
2182 }
2183
2184
2185 //-----------------------------------------------------------------------------
2186 // Recover several bits of the cypher stream. This implements (first stages of)
2187 // the algorithm described in "The Dark Side of Security by Obscurity and
2188 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2189 // (article by Nicolas T. Courtois, 2009)
2190 //-----------------------------------------------------------------------------
2191 void ReaderMifare(bool first_try) {
2192 // free eventually allocated BigBuf memory. We want all for tracing.
2193 BigBuf_free();
2194
2195 clear_trace();
2196 set_tracing(TRUE);
2197
2198 // Mifare AUTH
2199 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2200 uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
2201 static uint8_t mf_nr_ar3 = 0;
2202
2203 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
2204 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
2205
2206 byte_t nt_diff = 0;
2207 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2208 static byte_t par_low = 0;
2209 bool led_on = TRUE;
2210 uint8_t uid[10] = {0x00};
2211 //uint32_t cuid = 0x00;
2212
2213 uint32_t nt = 0;
2214 uint32_t previous_nt = 0;
2215 static uint32_t nt_attacked = 0;
2216 byte_t par_list[8] = {0x00};
2217 byte_t ks_list[8] = {0x00};
2218
2219 static uint32_t sync_time = 0;
2220 static uint32_t sync_cycles = 0;
2221 int catch_up_cycles = 0;
2222 int last_catch_up = 0;
2223 uint16_t consecutive_resyncs = 0;
2224 int isOK = 0;
2225
2226 int numWrongDistance = 0;
2227
2228 if (first_try) {
2229 mf_nr_ar3 = 0;
2230 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2231 sync_time = GetCountSspClk() & 0xfffffff8;
2232 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2233 nt_attacked = 0;
2234 nt = 0;
2235 par[0] = 0;
2236 }
2237 else {
2238 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2239 mf_nr_ar3++;
2240 mf_nr_ar[3] = mf_nr_ar3;
2241 par[0] = par_low;
2242 }
2243
2244 LED_A_ON();
2245 LED_B_OFF();
2246 LED_C_OFF();
2247 LED_C_ON();
2248
2249 for(uint16_t i = 0; TRUE; i++) {
2250
2251 WDT_HIT();
2252
2253 // Test if the action was cancelled
2254 if(BUTTON_PRESS()) break;
2255
2256 if (numWrongDistance > 1000) {
2257 isOK = 0;
2258 break;
2259 }
2260
2261 //if(!iso14443a_select_card(uid, NULL, &cuid)) {
2262 if(!iso14443a_select_card(uid, NULL, NULL)) {
2263 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2264 continue;
2265 }
2266
2267 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2268 catch_up_cycles = 0;
2269
2270 // if we missed the sync time already, advance to the next nonce repeat
2271 while(GetCountSspClk() > sync_time) {
2272 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2273 }
2274
2275 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2276 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2277
2278 // Receive the (4 Byte) "random" nonce
2279 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2280 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2281 continue;
2282 }
2283
2284 previous_nt = nt;
2285 nt = bytes_to_num(receivedAnswer, 4);
2286
2287 // Transmit reader nonce with fake par
2288 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2289
2290 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2291 int nt_distance = dist_nt(previous_nt, nt);
2292 if (nt_distance == 0) {
2293 nt_attacked = nt;
2294 }
2295 else {
2296
2297 // invalid nonce received, try again
2298 if (nt_distance == -99999) {
2299 numWrongDistance++;
2300 if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
2301 continue;
2302 }
2303
2304 sync_cycles = (sync_cycles - nt_distance);
2305 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2306 continue;
2307 }
2308 }
2309
2310 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2311 catch_up_cycles = -dist_nt(nt_attacked, nt);
2312 if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
2313 catch_up_cycles = 0;
2314 continue;
2315 }
2316 if (catch_up_cycles == last_catch_up) {
2317 consecutive_resyncs++;
2318 }
2319 else {
2320 last_catch_up = catch_up_cycles;
2321 consecutive_resyncs = 0;
2322 }
2323 if (consecutive_resyncs < 3) {
2324 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2325 }
2326 else {
2327 sync_cycles = sync_cycles + catch_up_cycles;
2328 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2329 }
2330 continue;
2331 }
2332
2333 consecutive_resyncs = 0;
2334
2335 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2336 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2337 {
2338 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2339
2340 if (nt_diff == 0)
2341 {
2342 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2343 }
2344
2345 led_on = !led_on;
2346 if(led_on) LED_B_ON(); else LED_B_OFF();
2347
2348 par_list[nt_diff] = SwapBits(par[0], 8);
2349 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2350
2351 // Test if the information is complete
2352 if (nt_diff == 0x07) {
2353 isOK = 1;
2354 break;
2355 }
2356
2357 nt_diff = (nt_diff + 1) & 0x07;
2358 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2359 par[0] = par_low;
2360 } else {
2361 if (nt_diff == 0 && first_try)
2362 {
2363 par[0]++;
2364 } else {
2365 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2366 }
2367 }
2368 }
2369
2370 mf_nr_ar[3] &= 0x1F;
2371
2372 byte_t buf[28] = {0x00};
2373
2374 memcpy(buf + 0, uid, 4);
2375 num_to_bytes(nt, 4, buf + 4);
2376 memcpy(buf + 8, par_list, 8);
2377 memcpy(buf + 16, ks_list, 8);
2378 memcpy(buf + 24, mf_nr_ar, 4);
2379
2380 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2381
2382 set_tracing(FALSE);
2383 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2384 LEDsoff();
2385 }
2386
2387
2388 /*
2389 *MIFARE 1K simulate.
2390 *
2391 *@param flags :
2392 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2393 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2394 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2395 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2396 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2397 */
2398 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2399 {
2400 int cardSTATE = MFEMUL_NOFIELD;
2401 int _7BUID = 0;
2402 int vHf = 0; // in mV
2403 int res;
2404 uint32_t selTimer = 0;
2405 uint32_t authTimer = 0;
2406 uint16_t len = 0;
2407 uint8_t cardWRBL = 0;
2408 uint8_t cardAUTHSC = 0;
2409 uint8_t cardAUTHKEY = 0xff; // no authentication
2410 // uint32_t cardRr = 0;
2411 uint32_t cuid = 0;
2412 //uint32_t rn_enc = 0;
2413 uint32_t ans = 0;
2414 uint32_t cardINTREG = 0;
2415 uint8_t cardINTBLOCK = 0;
2416 struct Crypto1State mpcs = {0, 0};
2417 struct Crypto1State *pcs;
2418 pcs = &mpcs;
2419 uint32_t numReads = 0;//Counts numer of times reader read a block
2420 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2421 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2422 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2423 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2424
2425 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2426 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2427 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2428 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2429 uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2430 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2431
2432 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
2433 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2434
2435 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2436 // This can be used in a reader-only attack.
2437 // (it can also be retrieved via 'hf 14a list', but hey...
2438 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
2439 uint8_t ar_nr_collected = 0;
2440
2441 // free eventually allocated BigBuf memory but keep Emulator Memory
2442 BigBuf_free_keep_EM();
2443
2444 // clear trace
2445 clear_trace();
2446 set_tracing(TRUE);
2447
2448 // Authenticate response - nonce
2449 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2450
2451 //-- Determine the UID
2452 // Can be set from emulator memory, incoming data
2453 // and can be 7 or 4 bytes long
2454 if (flags & FLAG_4B_UID_IN_DATA)
2455 {
2456 // 4B uid comes from data-portion of packet
2457 memcpy(rUIDBCC1,datain,4);
2458 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2459
2460 } else if (flags & FLAG_7B_UID_IN_DATA) {
2461 // 7B uid comes from data-portion of packet
2462 memcpy(&rUIDBCC1[1],datain,3);
2463 memcpy(rUIDBCC2, datain+3, 4);
2464 _7BUID = true;
2465 } else {
2466 // get UID from emul memory
2467 emlGetMemBt(receivedCmd, 7, 1);
2468 _7BUID = !(receivedCmd[0] == 0x00);
2469 if (!_7BUID) { // ---------- 4BUID
2470 emlGetMemBt(rUIDBCC1, 0, 4);
2471 } else { // ---------- 7BUID
2472 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2473 emlGetMemBt(rUIDBCC2, 3, 4);
2474 }
2475 }
2476
2477 // save uid.
2478 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2479 if ( _7BUID )
2480 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2481
2482 /*
2483 * Regardless of what method was used to set the UID, set fifth byte and modify
2484 * the ATQA for 4 or 7-byte UID
2485 */
2486 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2487 if (_7BUID) {
2488 rATQA[0] = 0x44;
2489 rUIDBCC1[0] = 0x88;
2490 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2491 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2492 }
2493
2494 // We need to listen to the high-frequency, peak-detected path.
2495 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2496
2497
2498 if (MF_DBGLEVEL >= 1) {
2499 if (!_7BUID) {
2500 Dbprintf("4B UID: %02x%02x%02x%02x",
2501 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2502 } else {
2503 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2504 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2505 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2506 }
2507 }
2508
2509 bool finished = FALSE;
2510 while (!BUTTON_PRESS() && !finished) {
2511 WDT_HIT();
2512
2513 // find reader field
2514 if (cardSTATE == MFEMUL_NOFIELD) {
2515 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2516 if (vHf > MF_MINFIELDV) {
2517 cardSTATE_TO_IDLE();
2518 LED_A_ON();
2519 }
2520 }
2521 if(cardSTATE == MFEMUL_NOFIELD) continue;
2522
2523 //Now, get data
2524 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2525 if (res == 2) { //Field is off!
2526 cardSTATE = MFEMUL_NOFIELD;
2527 LEDsoff();
2528 continue;
2529 } else if (res == 1) {
2530 break; //return value 1 means button press
2531 }
2532
2533 // REQ or WUP request in ANY state and WUP in HALTED state
2534 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2535 selTimer = GetTickCount();
2536 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2537 cardSTATE = MFEMUL_SELECT1;
2538
2539 // init crypto block
2540 LED_B_OFF();
2541 LED_C_OFF();
2542 crypto1_destroy(pcs);
2543 cardAUTHKEY = 0xff;
2544 continue;
2545 }
2546
2547 switch (cardSTATE) {
2548 case MFEMUL_NOFIELD:
2549 case MFEMUL_HALTED:
2550 case MFEMUL_IDLE:{
2551 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2552 break;
2553 }
2554 case MFEMUL_SELECT1:{
2555 // select all
2556 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2557 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2558 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2559 break;
2560 }
2561
2562 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2563 {
2564 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2565 }
2566 // select card
2567 if (len == 9 &&
2568 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2569 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2570 cuid = bytes_to_num(rUIDBCC1, 4);
2571 if (!_7BUID) {
2572 cardSTATE = MFEMUL_WORK;
2573 LED_B_ON();
2574 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2575 break;
2576 } else {
2577 cardSTATE = MFEMUL_SELECT2;
2578 }
2579 }
2580 break;
2581 }
2582 case MFEMUL_AUTH1:{
2583 if( len != 8)
2584 {
2585 cardSTATE_TO_IDLE();
2586 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2587 break;
2588 }
2589
2590 uint32_t ar = bytes_to_num(receivedCmd, 4);
2591 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2592
2593 //Collect AR/NR
2594 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2595 if(ar_nr_collected < 2){
2596 if(ar_nr_responses[2] != ar)
2597 {// Avoid duplicates... probably not necessary, ar should vary.
2598 //ar_nr_responses[ar_nr_collected*5] = 0;
2599 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2600 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2601 ar_nr_responses[ar_nr_collected*5+3] = nr;
2602 ar_nr_responses[ar_nr_collected*5+4] = ar;
2603 ar_nr_collected++;
2604 }
2605 // Interactive mode flag, means we need to send ACK
2606 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2607 {
2608 finished = true;
2609 }
2610 }
2611
2612 // --- crypto
2613 //crypto1_word(pcs, ar , 1);
2614 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2615
2616 //test if auth OK
2617 //if (cardRr != prng_successor(nonce, 64)){
2618
2619 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2620 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2621 // cardRr, prng_successor(nonce, 64));
2622 // Shouldn't we respond anything here?
2623 // Right now, we don't nack or anything, which causes the
2624 // reader to do a WUPA after a while. /Martin
2625 // -- which is the correct response. /piwi
2626 //cardSTATE_TO_IDLE();
2627 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2628 //break;
2629 //}
2630
2631 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2632
2633 num_to_bytes(ans, 4, rAUTH_AT);
2634 // --- crypto
2635 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2636 LED_C_ON();
2637 cardSTATE = MFEMUL_WORK;
2638 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2639 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2640 GetTickCount() - authTimer);
2641 break;
2642 }
2643 case MFEMUL_SELECT2:{
2644 if (!len) {
2645 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2646 break;
2647 }
2648 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2649 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2650 break;
2651 }
2652
2653 // select 2 card
2654 if (len == 9 &&
2655 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2656 EmSendCmd(rSAK, sizeof(rSAK));
2657 cuid = bytes_to_num(rUIDBCC2, 4);
2658 cardSTATE = MFEMUL_WORK;
2659 LED_B_ON();
2660 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2661 break;
2662 }
2663
2664 // i guess there is a command). go into the work state.
2665 if (len != 4) {
2666 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2667 break;
2668 }
2669 cardSTATE = MFEMUL_WORK;
2670 //goto lbWORK;
2671 //intentional fall-through to the next case-stmt
2672 }
2673
2674 case MFEMUL_WORK:{
2675 if (len == 0) {
2676 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2677 break;
2678 }
2679
2680 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2681
2682 if(encrypted_data) {
2683 // decrypt seqence
2684 mf_crypto1_decrypt(pcs, receivedCmd, len);
2685 }
2686
2687 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2688 authTimer = GetTickCount();
2689 cardAUTHSC = receivedCmd[1] / 4; // received block num
2690 cardAUTHKEY = receivedCmd[0] - 0x60;
2691 crypto1_destroy(pcs);//Added by martin
2692 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2693
2694 if (!encrypted_data) { // first authentication
2695 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2696
2697 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2698 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2699 } else { // nested authentication
2700 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2701 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2702 num_to_bytes(ans, 4, rAUTH_AT);
2703 }
2704
2705 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2706 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2707 cardSTATE = MFEMUL_AUTH1;
2708 break;
2709 }
2710
2711 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2712 // BUT... ACK --> NACK
2713 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2714 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2715 break;
2716 }
2717
2718 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2719 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2720 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2721 break;
2722 }
2723
2724 if(len != 4) {
2725 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2726 break;
2727 }
2728
2729 if(receivedCmd[0] == 0x30 // read block
2730 || receivedCmd[0] == 0xA0 // write block
2731 || receivedCmd[0] == 0xC0 // inc
2732 || receivedCmd[0] == 0xC1 // dec
2733 || receivedCmd[0] == 0xC2 // restore
2734 || receivedCmd[0] == 0xB0) { // transfer
2735 if (receivedCmd[1] >= 16 * 4) {
2736 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2737 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2738 break;
2739 }
2740
2741 if (receivedCmd[1] / 4 != cardAUTHSC) {
2742 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2743 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2744 break;
2745 }
2746 }
2747 // read block
2748 if (receivedCmd[0] == 0x30) {
2749 if (MF_DBGLEVEL >= 4) {
2750 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2751 }
2752 emlGetMem(response, receivedCmd[1], 1);
2753 AppendCrc14443a(response, 16);
2754 mf_crypto1_encrypt(pcs, response, 18, response_par);
2755 EmSendCmdPar(response, 18, response_par);
2756 numReads++;
2757 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
2758 Dbprintf("%d reads done, exiting", numReads);
2759 finished = true;
2760 }
2761 break;
2762 }
2763 // write block
2764 if (receivedCmd[0] == 0xA0) {
2765 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2766 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2767 cardSTATE = MFEMUL_WRITEBL2;
2768 cardWRBL = receivedCmd[1];
2769 break;
2770 }
2771 // increment, decrement, restore
2772 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2773 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2774 if (emlCheckValBl(receivedCmd[1])) {
2775 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2776 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2777 break;
2778 }
2779 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2780 if (receivedCmd[0] == 0xC1)
2781 cardSTATE = MFEMUL_INTREG_INC;
2782 if (receivedCmd[0] == 0xC0)
2783 cardSTATE = MFEMUL_INTREG_DEC;
2784 if (receivedCmd[0] == 0xC2)
2785 cardSTATE = MFEMUL_INTREG_REST;
2786 cardWRBL = receivedCmd[1];
2787 break;
2788 }
2789 // transfer
2790 if (receivedCmd[0] == 0xB0) {
2791 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2792 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2793 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2794 else
2795 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2796 break;
2797 }
2798 // halt
2799 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2800 LED_B_OFF();
2801 LED_C_OFF();
2802 cardSTATE = MFEMUL_HALTED;
2803 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2804 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2805 break;
2806 }
2807 // RATS
2808 if (receivedCmd[0] == 0xe0) {//RATS
2809 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2810 break;
2811 }
2812 // command not allowed
2813 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2814 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2815 break;
2816 }
2817 case MFEMUL_WRITEBL2:{
2818 if (len == 18){
2819 mf_crypto1_decrypt(pcs, receivedCmd, len);
2820 emlSetMem(receivedCmd, cardWRBL, 1);
2821 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2822 cardSTATE = MFEMUL_WORK;
2823 } else {
2824 cardSTATE_TO_IDLE();
2825 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2826 }
2827 break;
2828 }
2829
2830 case MFEMUL_INTREG_INC:{
2831 mf_crypto1_decrypt(pcs, receivedCmd, len);
2832 memcpy(&ans, receivedCmd, 4);
2833 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2834 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2835 cardSTATE_TO_IDLE();
2836 break;
2837 }
2838 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2839 cardINTREG = cardINTREG + ans;
2840 cardSTATE = MFEMUL_WORK;
2841 break;
2842 }
2843 case MFEMUL_INTREG_DEC:{
2844 mf_crypto1_decrypt(pcs, receivedCmd, len);
2845 memcpy(&ans, receivedCmd, 4);
2846 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2847 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2848 cardSTATE_TO_IDLE();
2849 break;
2850 }
2851 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2852 cardINTREG = cardINTREG - ans;
2853 cardSTATE = MFEMUL_WORK;
2854 break;
2855 }
2856 case MFEMUL_INTREG_REST:{
2857 mf_crypto1_decrypt(pcs, receivedCmd, len);
2858 memcpy(&ans, receivedCmd, 4);
2859 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2860 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2861 cardSTATE_TO_IDLE();
2862 break;
2863 }
2864 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2865 cardSTATE = MFEMUL_WORK;
2866 break;
2867 }
2868 }
2869 }
2870
2871 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2872 LEDsoff();
2873
2874 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2875 {
2876 //May just aswell send the collected ar_nr in the response aswell
2877 uint8_t len = ar_nr_collected*5*4;
2878 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
2879 }
2880
2881 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
2882 {
2883 if(ar_nr_collected > 1 ) {
2884 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2885 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2886 ar_nr_responses[0], // UID1
2887 ar_nr_responses[1], // UID2
2888 ar_nr_responses[2], // NT
2889 ar_nr_responses[3], // AR1
2890 ar_nr_responses[4], // NR1
2891 ar_nr_responses[8], // AR2
2892 ar_nr_responses[9] // NR2
2893 );
2894 } else {
2895 Dbprintf("Failed to obtain two AR/NR pairs!");
2896 if(ar_nr_collected > 0 ) {
2897 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2898 ar_nr_responses[0], // UID1
2899 ar_nr_responses[1], // UID2
2900 ar_nr_responses[2], // NT
2901 ar_nr_responses[3], // AR1
2902 ar_nr_responses[4] // NR1
2903 );
2904 }
2905 }
2906 }
2907 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
2908 }
2909
2910
2911 //-----------------------------------------------------------------------------
2912 // MIFARE sniffer.
2913 //
2914 //-----------------------------------------------------------------------------
2915 void RAMFUNC SniffMifare(uint8_t param) {
2916 // param:
2917 // bit 0 - trigger from first card answer
2918 // bit 1 - trigger from first reader 7-bit request
2919
2920 // free eventually allocated BigBuf memory
2921 BigBuf_free();
2922
2923 // C(red) A(yellow) B(green)
2924 LEDsoff();
2925 // init trace buffer
2926 clear_trace();
2927 set_tracing(TRUE);
2928
2929 // The command (reader -> tag) that we're receiving.
2930 // The length of a received command will in most cases be no more than 18 bytes.
2931 // So 32 should be enough!
2932 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2933 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2934 // The response (tag -> reader) that we're receiving.
2935 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2936 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2937
2938 // allocate the DMA buffer, used to stream samples from the FPGA
2939 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2940 uint8_t *data = dmaBuf;
2941 uint8_t previous_data = 0;
2942 int maxDataLen = 0;
2943 int dataLen = 0;
2944 bool ReaderIsActive = FALSE;
2945 bool TagIsActive = FALSE;
2946
2947 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2948
2949 // Set up the demodulator for tag -> reader responses.
2950 DemodInit(receivedResponse, receivedResponsePar);
2951
2952 // Set up the demodulator for the reader -> tag commands
2953 UartInit(receivedCmd, receivedCmdPar);
2954
2955 // Setup for the DMA.
2956 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2957
2958 LED_D_OFF();
2959
2960 // init sniffer
2961 MfSniffInit();
2962
2963 // And now we loop, receiving samples.
2964 for(uint32_t sniffCounter = 0; TRUE; ) {
2965
2966 if(BUTTON_PRESS()) {
2967 DbpString("cancelled by button");
2968 break;
2969 }
2970
2971 LED_A_ON();
2972 WDT_HIT();
2973
2974 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2975 // check if a transaction is completed (timeout after 2000ms).
2976 // if yes, stop the DMA transfer and send what we have so far to the client
2977 if (MfSniffSend(2000)) {
2978 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2979 sniffCounter = 0;
2980 data = dmaBuf;
2981 maxDataLen = 0;
2982 ReaderIsActive = FALSE;
2983 TagIsActive = FALSE;
2984 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2985 }
2986 }
2987
2988 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2989 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2990 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2991 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2992 } else {
2993 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2994 }
2995 // test for length of buffer
2996 if(dataLen > maxDataLen) { // we are more behind than ever...
2997 maxDataLen = dataLen;
2998 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
2999 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
3000 break;
3001 }
3002 }
3003 if(dataLen < 1) continue;
3004
3005 // primary buffer was stopped ( <-- we lost data!
3006 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3007 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3008 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
3009 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
3010 }
3011 // secondary buffer sets as primary, secondary buffer was stopped
3012 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3013 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
3014 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3015 }
3016
3017 LED_A_OFF();
3018
3019 if (sniffCounter & 0x01) {
3020
3021 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3022 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3023 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3024 LED_C_INV();
3025 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
3026
3027 /* And ready to receive another command. */
3028 //UartInit(receivedCmd, receivedCmdPar);
3029 UartReset();
3030
3031 /* And also reset the demod code */
3032 DemodReset();
3033 }
3034 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3035 }
3036
3037 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3038 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3039 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3040 LED_C_INV();
3041
3042 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
3043
3044 // And ready to receive another response.
3045 DemodReset();
3046
3047 // And reset the Miller decoder including its (now outdated) input buffer
3048 UartInit(receivedCmd, receivedCmdPar);
3049 }
3050 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3051 }
3052 }
3053
3054 previous_data = *data;
3055 sniffCounter++;
3056 data++;
3057 if(data == dmaBuf + DMA_BUFFER_SIZE) {
3058 data = dmaBuf;
3059 }
3060
3061 } // main cycle
3062
3063 DbpString("COMMAND FINISHED");
3064
3065 FpgaDisableSscDma();
3066 MfSniffEnd();
3067
3068 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3069 LEDsoff();
3070 }
Impressum, Datenschutz