]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/legicrf.c
CHG: "hf legic read" - increased timeout values client side, reading MIM1024 takes...
[proxmark3-svn] / armsrc / legicrf.c
CommitLineData
bd20f8f4 1//-----------------------------------------------------------------------------
2// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// LEGIC RF simulation code
9//-----------------------------------------------------------------------------
f7e3ed82 10#include "legicrf.h"
8e220a91 11
a7247d85 12static struct legic_frame {
a3994421 13 uint8_t bits;
a2b1414f 14 uint32_t data;
a7247d85 15} current_frame;
8e220a91 16
3612a8a8 17static enum {
18 STATE_DISCON,
19 STATE_IV,
20 STATE_CON,
21} legic_state;
22
23static crc_t legic_crc;
24static int legic_read_count;
25static uint32_t legic_prng_bc;
26static uint32_t legic_prng_iv;
27
28static int legic_phase_drift;
29static int legic_frame_drift;
30static int legic_reqresp_drift;
8e220a91 31
add16a62 32AT91PS_TC timer;
3612a8a8 33AT91PS_TC prng_timer;
add16a62 34
ad5bc8cc 35/*
c71c5ee1 36static void setup_timer(void) {
ad5bc8cc 37 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
38 // this it won't be terribly accurate but should be good enough.
39 //
add16a62 40 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
41 timer = AT91C_BASE_TC1;
42 timer->TC_CCR = AT91C_TC_CLKDIS;
0aa4cfc2 43 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
add16a62 44 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
45
ad5bc8cc 46 //
47 // Set up Timer 2 to use for measuring time between frames in
48 // tag simulation mode. Runs 4x faster as Timer 1
49 //
3612a8a8 50 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
51 prng_timer = AT91C_BASE_TC2;
52 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
53 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
54 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
55}
111c6934 56
57 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
58 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
59
60 // fast clock
61 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
62 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
63 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
64 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
65 AT91C_BASE_TC0->TC_RA = 1;
66 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
67
ad5bc8cc 68*/
69
70// At TIMER_CLOCK3 (MCK/32)
22f4dca8 71// testing calculating in (us) microseconds.
111c6934 72#define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
73#define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
76471e5d 74#define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
7a8db2f6 75#define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
111c6934 76#define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
ad5bc8cc 77
76471e5d 78#define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
add16a62 79
3612a8a8 80#define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
81#define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
82
3612a8a8 83#define OFFSET_LOG 1024
add16a62 84
85#define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
aac23b24 86
ad5bc8cc 87#ifndef SHORT_COIL
b4a6775b 88# define SHORT_COIL LOW(GPIO_SSC_DOUT);
ad5bc8cc 89#endif
90#ifndef OPEN_COIL
b4a6775b 91# define OPEN_COIL HIGH(GPIO_SSC_DOUT);
ad5bc8cc 92#endif
93
111c6934 94// Pause pulse, off in 20us / 30ticks,
95// ONE / ZERO bit pulse,
96// one == 80us / 120ticks
97// zero == 40us / 60ticks
98#ifndef COIL_PULSE
25d52dd2 99# define COIL_PULSE(x) \
100 do { \
76471e5d 101 SHORT_COIL; \
25d52dd2 102 WaitTicks( (RWD_TIME_PAUSE) ); \
76471e5d 103 OPEN_COIL; \
22f4dca8 104 WaitTicks((x)); \
25d52dd2 105 } while (0)
111c6934 106#endif
c71c5ee1 107
108// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
109// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
110#define LEGIC_CARD_MEMSIZE 1024
111static uint8_t* cardmem;
112
faabfafe 113static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
b4a6775b 114 // Overflow, won't happen
115 if (f->bits >= 31) return;
116
117 f->data |= (bit << f->bits);
118 f->bits++;
119}
120
121static void frame_clean(struct legic_frame * const f) {
122 f->data = 0;
123 f->bits = 0;
124}
125
ad5bc8cc 126// Prng works when waiting in 99.1us cycles.
127// and while sending/receiving in bit frames (100, 60)
b4a6775b 128/*static void CalibratePrng( uint32_t time){
ad5bc8cc 129 // Calculate Cycles based on timer 100us
87342aad 130 uint32_t i = (time - sendFrameStop) / 100 ;
ad5bc8cc 131
132 // substract cycles of finished frames
133 int k = i - legic_prng_count()+1;
134
135 // substract current frame length, rewind to beginning
136 if ( k > 0 )
137 legic_prng_forward(k);
138}
b4a6775b 139*/
ad5bc8cc 140
3612a8a8 141/* Generate Keystream */
22f4dca8 142uint32_t get_key_stream(int skip, int count) {
c71c5ee1 143 uint32_t key = 0;
144 int i;
edaf10af 145
c71c5ee1 146 // Use int to enlarge timer tc to 32bit
edaf10af 147 legic_prng_bc += prng_timer->TC_CV;
c71c5ee1 148
149 // reset the prng timer.
22f4dca8 150 ResetTimer(prng_timer);
edaf10af 151
152 /* If skip == -1, forward prng time based */
153 if(skip == -1) {
c71c5ee1 154 i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
edaf10af 155 i -= legic_prng_count(); /* substract cycles of finished frames */
c71c5ee1 156 i -= count; /* substract current frame length, rewind to beginning */
edaf10af 157 legic_prng_forward(i);
158 } else {
159 legic_prng_forward(skip);
160 }
161
edaf10af 162 i = (count == 6) ? -1 : legic_read_count;
163
c71c5ee1 164 /* Write Time Data into LOG */
165 // uint8_t *BigBuf = BigBuf_get_addr();
166 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
167 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
168 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
169 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
170 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
171 // BigBuf[OFFSET_LOG+384+i] = count;
edaf10af 172
173 /* Generate KeyStream */
174 for(i=0; i<count; i++) {
175 key |= legic_prng_get_bit() << i;
176 legic_prng_forward(1);
177 }
178 return key;
3612a8a8 179}
180
181/* Send a frame in tag mode, the FPGA must have been set up by
182 * LegicRfSimulate
183 */
22f4dca8 184void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
ad5bc8cc 185 /* Bitbang the response */
186 LOW(GPIO_SSC_DOUT);
187 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
188 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
3612a8a8 189
ad5bc8cc 190 /* Use time to crypt frame */
191 if(crypt) {
111c6934 192 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
ad5bc8cc 193 response ^= legic_prng_get_bits(bits);
194 }
c71c5ee1 195
ad5bc8cc 196 /* Wait for the frame start */
22f4dca8 197 WaitUS( TAG_FRAME_WAIT );
e30c654b 198
ad5bc8cc 199 uint8_t bit = 0;
f7b42573 200 for(int i = 0; i < bits; i++) {
c71c5ee1 201
ad5bc8cc 202 bit = response & 1;
203 response >>= 1;
8e220a91 204
ad5bc8cc 205 if (bit)
206 HIGH(GPIO_SSC_DOUT);
edaf10af 207 else
ad5bc8cc 208 LOW(GPIO_SSC_DOUT);
209
22f4dca8 210 WaitUS(100);
ad5bc8cc 211 }
212 LOW(GPIO_SSC_DOUT);
213}
c71c5ee1 214
ad5bc8cc 215/* Send a frame in reader mode, the FPGA must have been set up by
216 * LegicRfReader
217 */
22f4dca8 218void frame_sendAsReader(uint32_t data, uint8_t bits){
c71c5ee1 219
111c6934 220 uint32_t starttime = GET_TICKS, send = 0;
ad5bc8cc 221 uint16_t mask = 1;
111c6934 222
223 // xor lsfr onto data.
224 send = data ^ legic_prng_get_bits(bits);
ad5bc8cc 225
226 for (; mask < BITMASK(bits); mask <<= 1) {
fabef615 227 if (send & mask)
76471e5d 228 COIL_PULSE(RWD_TIME_1);
fabef615 229 else
76471e5d 230 COIL_PULSE(RWD_TIME_0);
dcc10e5e 231 }
e30c654b 232
76471e5d 233 // Final pause to mark the end of the frame
76471e5d 234 COIL_PULSE(0);
b4a6775b 235
fabef615 236 // log
237 uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1), BYTEx(send, 0), BYTEx(send, 1)};
238 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
dcc10e5e 239}
240
241/* Receive a frame from the card in reader emulation mode, the FPGA and
ad5bc8cc 242 * timer must have been set up by LegicRfReader and frame_sendAsReader.
e30c654b 243 *
dcc10e5e 244 * The LEGIC RF protocol from card to reader does not include explicit
245 * frame start/stop information or length information. The reader must
246 * know beforehand how many bits it wants to receive. (Notably: a card
247 * sending a stream of 0-bits is indistinguishable from no card present.)
e30c654b 248 *
dcc10e5e 249 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
250 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
251 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
252 * for edges. Count the edges in each bit interval. If they are approximately
253 * 0 this was a 0-bit, if they are approximately equal to the number of edges
254 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
ad5bc8cc 255 * timer that's still running from frame_sendAsReader in order to get a synchronization
dcc10e5e 256 * with the frame that we just sent.
e30c654b 257 *
258 * FIXME: Because we're relying on the hysteresis to just do the right thing
dcc10e5e 259 * the range is severely reduced (and you'll probably also need a good antenna).
e30c654b 260 * So this should be fixed some time in the future for a proper receiver.
dcc10e5e 261 */
111c6934 262static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
ad5bc8cc 263
22f4dca8 264 if ( bits > 32 ) return;
3612a8a8 265
22f4dca8 266 uint8_t i = bits, edges = 0;
d7e24e7c 267 uint32_t the_bit = 1, next_bit_at = 0, data = 0;
fabef615 268 uint32_t old_level = 0;
269 volatile uint32_t level = 0;
25d52dd2 270
fabef615 271 frame_clean(f);
272
db44e049 273 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
274 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
275
faabfafe 276 // calibrate the prng.
b4a6775b 277 legic_prng_forward(2);
c649c433 278 data = legic_prng_get_bits(bits);
b4a6775b 279
b4a6775b 280 //FIXED time between sending frame and now listening frame. 330us
111c6934 281 uint32_t starttime = GET_TICKS;
0b0b182f 282 // its about 9+9 ticks delay from end-send to here.
0b0b182f 283 WaitTicks( 477 );
faabfafe 284
c649c433 285 next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
25d52dd2 286
22f4dca8 287 while ( i-- ){
dcc10e5e 288 edges = 0;
111c6934 289 while ( GET_TICKS < next_bit_at) {
ad5bc8cc 290
b4a6775b 291 level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
ad5bc8cc 292
293 if (level != old_level)
b4a6775b 294 ++edges;
295
dcc10e5e 296 old_level = level;
25d52dd2 297 }
298
ad5bc8cc 299 next_bit_at += TAG_BIT_PERIOD;
3612a8a8 300
fabef615 301 // We expect 42 edges (ONE)
faabfafe 302 if ( edges > 20 )
8e220a91 303 data ^= the_bit;
87342aad 304
305 the_bit <<= 1;
dcc10e5e 306 }
e30c654b 307
b4a6775b 308 // output
dcc10e5e 309 f->data = data;
310 f->bits = bits;
db44e049 311
fabef615 312 // log
cb7902cd 313 uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
faabfafe 314 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
a7247d85 315}
316
c71c5ee1 317// Setup pm3 as a Legic Reader
87342aad 318static uint32_t setup_phase_reader(uint8_t iv) {
22f4dca8 319
f7b42573 320 // Switch on carrier and let the tag charge for 1ms
ad5bc8cc 321 HIGH(GPIO_SSC_DOUT);
77a689db 322 WaitUS(5000);
ad5bc8cc 323
22f4dca8 324 ResetTicks();
ad5bc8cc 325
f7b42573 326 // no keystream yet
c71c5ee1 327 legic_prng_init(0);
f7b42573 328
ad5bc8cc 329 // send IV handshake
330 frame_sendAsReader(iv, 7);
331
332 // Now both tag and reader has same IV. Prng can start.
3612a8a8 333 legic_prng_init(iv);
e30c654b 334
111c6934 335 frame_receiveAsReader(&current_frame, 6);
f7b42573 336
d7e24e7c 337 // 292us (438t) - fixed delay before sending ack.
338 // minus log and stuff 100tick?
339 WaitTicks(338);
340 legic_prng_forward(3);
ad5bc8cc 341
f7b42573 342 // Send obsfuscated acknowledgment frame.
ad5bc8cc 343 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
344 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
345 switch ( current_frame.data ) {
87342aad 346 case 0x0D: frame_sendAsReader(0x19, 6); break;
347 case 0x1D:
348 case 0x3D: frame_sendAsReader(0x39, 6); break;
349 default: break;
f7b42573 350 }
d7e24e7c 351
352 legic_prng_forward(2);
8e220a91 353 return current_frame.data;
2561caa2 354}
355
22f4dca8 356static void LegicCommonInit(void) {
357
7cc204bf 358 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
b4a6775b 359 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
dcc10e5e 360 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 361
dcc10e5e 362 /* Bitbang the transmitter */
ad5bc8cc 363 LOW(GPIO_SSC_DOUT);
dcc10e5e 364 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
365 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
e30c654b 366
c71c5ee1 367 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
0b0b182f 368 cardmem = BigBuf_get_EM_addr();
c71c5ee1 369 memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
370
371 clear_trace();
372 set_tracing(TRUE);
8e220a91 373 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
ad5bc8cc 374
22f4dca8 375 StartTicks();
8e220a91 376}
377
111c6934 378// Switch off carrier, make sure tag is reset
c71c5ee1 379static void switch_off_tag_rwd(void) {
ad5bc8cc 380 LOW(GPIO_SSC_DOUT);
3e750be3 381 WaitUS(20);
8e220a91 382 WDT_HIT();
383}
c71c5ee1 384
f7b42573 385// calculate crc4 for a legic READ command
fabef615 386static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
ad5bc8cc 387 crc_clear(&legic_crc);
fabef615 388 uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd;
cb7902cd 389 crc_update(&legic_crc, temp, cmd_sz + 8 );
8e220a91 390 return crc_finish(&legic_crc);
391}
392
fabef615 393int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
8e220a91 394
fabef615 395 uint8_t byte, crc, calcCrc = 0;
396 uint32_t cmd = (index << 1) | LEGIC_READ;
cb7902cd 397
c649c433 398 //WaitTicks(366);
399 WaitTicks(330);
3e750be3 400
ad5bc8cc 401 frame_sendAsReader(cmd, cmd_sz);
111c6934 402 frame_receiveAsReader(&current_frame, 12);
c71c5ee1 403
c649c433 404 // CRC check.
111c6934 405 byte = BYTEx(current_frame.data, 0);
cb7902cd 406 crc = BYTEx(current_frame.data, 1);
fabef615 407 calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
65c2d21d 408
cb7902cd 409 if( calcCrc != crc ) {
410 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc);
411 return -1;
412 }
d7e24e7c 413
414 legic_prng_forward(4);
8e220a91 415 return byte;
416}
417
c71c5ee1 418/*
419 * - assemble a write_cmd_frame with crc and send it
420 * - wait until the tag sends back an ACK ('1' bit unencrypted)
421 * - forward the prng based on the timing
8e220a91 422 */
3e134b4c 423//int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
111c6934 424int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
c71c5ee1 425
426 //do not write UID, CRC at offset 0-4.
111c6934 427 if (addr <= 4) return 0;
c71c5ee1 428
429 // crc
3612a8a8 430 crc_clear(&legic_crc);
431 crc_update(&legic_crc, 0, 1); /* CMD_WRITE */
432 crc_update(&legic_crc, addr, addr_sz);
433 crc_update(&legic_crc, byte, 8);
3612a8a8 434 uint32_t crc = crc_finish(&legic_crc);
111c6934 435 uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1);
7bc3c99e 436 if ( crc != crc2 ) {
111c6934 437 Dbprintf("crc is missmatch");
7bc3c99e 438 return 1;
439 }
c71c5ee1 440 // send write command
3612a8a8 441 uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC
442 |(byte <<(addr_sz+1)) //Data
443 |(addr <<1) //Address
111c6934 444 | LEGIC_WRITE); //CMD = Write
445
3612a8a8 446 uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd
447
cc708897 448 legic_prng_forward(2); /* we wait anyways */
c71c5ee1 449
7bc3c99e 450 WaitTicks(330);
c71c5ee1 451
ad5bc8cc 452 frame_sendAsReader(cmd, cmd_sz);
7bc3c99e 453
111c6934 454 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
455 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
3612a8a8 456
c71c5ee1 457 // wait for ack
458 int t, old_level = 0, edges = 0;
459 int next_bit_at = 0;
3e134b4c 460
22f4dca8 461 WaitUS(TAG_FRAME_WAIT);
c71c5ee1 462
111c6934 463 for( t = 0; t < 80; ++t) {
3612a8a8 464 edges = 0;
ad5bc8cc 465 next_bit_at += TAG_BIT_PERIOD;
3612a8a8 466 while(timer->TC_CV < next_bit_at) {
0b0b182f 467 volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
111c6934 468 if(level != old_level)
3612a8a8 469 edges++;
111c6934 470
3612a8a8 471 old_level = level;
472 }
0b0b182f 473 if(edges > 20 ) { /* expected are 42 edges */
3612a8a8 474 int t = timer->TC_CV;
ad5bc8cc 475 int c = t / TAG_BIT_PERIOD;
c71c5ee1 476
22f4dca8 477 ResetTimer(timer);
cc708897 478 legic_prng_forward(c);
3612a8a8 479 return 0;
480 }
481 }
c71c5ee1 482
22f4dca8 483 ResetTimer(timer);
3612a8a8 484 return -1;
485}
8e220a91 486
fabef615 487int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
3e134b4c 488
fabef615 489 uint16_t i = 0;
a3994421 490 uint8_t isOK = 1;
491 legic_card_select_t card;
492
8e220a91 493 LegicCommonInit();
faabfafe 494
fabef615 495 if ( legic_select_card_iv(&card, iv) ) {
a3994421 496 isOK = 0;
497 goto OUT;
498 }
cb7902cd 499
c71c5ee1 500 switch_off_tag_rwd();
cb7902cd 501
fabef615 502 if (len + offset >= card.cardsize)
503 len = card.cardsize - offset;
a2b1414f 504
87342aad 505 setup_phase_reader(iv);
d7e24e7c 506
3612a8a8 507 LED_B_ON();
7a8db2f6 508 while (i <= len) {
fabef615 509 int r = legic_read_byte(offset + i, card.cmdsize);
ad5bc8cc 510
511 if (r == -1 || BUTTON_PRESS()) {
fabef615 512 if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
87342aad 513 isOK = 0;
514 goto OUT;
a2b1414f 515 }
fabef615 516 cardmem[i++] = r;
3612a8a8 517 WDT_HIT();
2561caa2 518 }
c71c5ee1 519
87342aad 520OUT:
faabfafe 521 WDT_HIT();
3612a8a8 522 switch_off_tag_rwd();
c71c5ee1 523 LEDsoff();
86087eba 524 cmd_send(CMD_ACK, isOK, len, 0, cardmem, len);
3612a8a8 525 return 0;
526}
527
cc708897 528/*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
3e134b4c 529 int byte_index=0;
530
531 LED_B_ON();
87342aad 532 setup_phase_reader(iv);
3e134b4c 533 //legic_prng_forward(2);
534 while(byte_index < bytes) {
535 int r;
536
537 //check if the DCF should be changed
538 if ( (offset == 0x05) && (bytes == 0x02) ) {
539 //write DCF in reverse order (addr 0x06 before 0x05)
540 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
541 //legic_prng_forward(1);
542 if(r == 0) {
543 byte_index++;
544 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
545 }
546 //legic_prng_forward(1);
547 }
548 else {
549 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
550 }
551 if((r != 0) || BUTTON_PRESS()) {
552 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
553 switch_off_tag_rwd();
554 LED_B_OFF();
555 LED_C_OFF();
556 return -1;
557 }
558
559 WDT_HIT();
560 byte_index++;
561 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
562 }
563 LED_B_OFF();
564 LED_C_OFF();
565 DbpString("write successful");
566 return 0;
567}*/
568
fabef615 569void LegicRfWriter(uint16_t offset, uint16_t bytes, uint8_t iv) {
117d9ec2 570
fabef615 571 int byte_index = 0;
572 uint8_t isOK = 1;
573 legic_card_select_t card;
3612a8a8 574
fabef615 575 LegicCommonInit();
c71c5ee1 576
fabef615 577 if ( legic_select_card_iv(&card, iv) ) {
578 isOK = 0;
579 goto OUT;
580 }
c71c5ee1 581
8e220a91 582 switch_off_tag_rwd();
c71c5ee1 583
fabef615 584 switch(card.tagtype) {
3e134b4c 585 case 0x0d:
586 if(offset+bytes > 22) {
111c6934 587 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes);
3e134b4c 588 return;
589 }
111c6934 590 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
3e134b4c 591 break;
3612a8a8 592 case 0x1d:
593 if(offset+bytes > 0x100) {
111c6934 594 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes);
3612a8a8 595 return;
596 }
111c6934 597 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
3612a8a8 598 break;
599 case 0x3d:
600 if(offset+bytes > 0x400) {
111c6934 601 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes);
3612a8a8 602 return;
603 }
111c6934 604 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes);
3612a8a8 605 break;
606 default:
3612a8a8 607 return;
608 }
609
610 LED_B_ON();
87342aad 611 setup_phase_reader(iv);
0b0b182f 612
111c6934 613 int r = 0;
3612a8a8 614 while(byte_index < bytes) {
3e134b4c 615
616 //check if the DCF should be changed
617 if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) {
618 //write DCF in reverse order (addr 0x06 before 0x05)
fabef615 619 r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize);
3e134b4c 620
fabef615 621 // write second byte on success
3e134b4c 622 if(r == 0) {
623 byte_index++;
fabef615 624 r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize);
3e134b4c 625 }
626 }
627 else {
fabef615 628 r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, card.addrsize);
3e134b4c 629 }
c71c5ee1 630
111c6934 631 if ((r != 0) || BUTTON_PRESS()) {
3612a8a8 632 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
fabef615 633 isOK = 0;
634 goto OUT;
3612a8a8 635 }
3e134b4c 636
637 WDT_HIT();
638 byte_index++;
3e134b4c 639 }
fabef615 640
641OUT:
642 cmd_send(CMD_ACK, isOK, 0,0,0,0);
643 switch_off_tag_rwd();
644 LEDsoff();
3e134b4c 645}
646
fabef615 647void LegicRfRawWriter(int address, int byte, uint8_t iv) {
c71c5ee1 648
649 int byte_index = 0, addr_sz = 0;
3e134b4c 650
651 LegicCommonInit();
652
c71c5ee1 653 if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card");
654
87342aad 655 uint32_t tag_type = setup_phase_reader(iv);
c71c5ee1 656
3e134b4c 657 switch_off_tag_rwd();
c71c5ee1 658
3e134b4c 659 switch(tag_type) {
660 case 0x0d:
cc708897 661 if(address > 22) {
662 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address);
3e134b4c 663 return;
664 }
665 addr_sz = 5;
c71c5ee1 666 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
3e134b4c 667 break;
668 case 0x1d:
cc708897 669 if(address > 0x100) {
670 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address);
3e134b4c 671 return;
672 }
673 addr_sz = 8;
c71c5ee1 674 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
3e134b4c 675 break;
676 case 0x3d:
cc708897 677 if(address > 0x400) {
678 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address);
3e134b4c 679 return;
680 }
681 addr_sz = 10;
c71c5ee1 682 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte);
3e134b4c 683 break;
684 default:
685 Dbprintf("No or unknown card found, aborting");
686 return;
687 }
c71c5ee1 688
cc708897 689 Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz);
3e134b4c 690 LED_B_ON();
c71c5ee1 691
87342aad 692 setup_phase_reader(iv);
111c6934 693
cc708897 694 int r = legic_write_byte(byte, address, addr_sz);
3e134b4c 695
696 if((r != 0) || BUTTON_PRESS()) {
697 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r);
698 switch_off_tag_rwd();
c71c5ee1 699 LEDsoff();
3e134b4c 700 return;
3612a8a8 701 }
3612a8a8 702
c71c5ee1 703 LEDsoff();
704 if ( MF_DBGLEVEL >= 1) DbpString("write successful");
705}
3612a8a8 706
fabef615 707int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
3e750be3 708
a3994421 709 if ( p_card == NULL ) return 1;
3e750be3 710
fabef615 711 p_card->tagtype = setup_phase_reader(iv);
a3994421 712
713 switch(p_card->tagtype) {
3e750be3 714 case 0x0d:
a3994421 715 p_card->cmdsize = 6;
fabef615 716 p_card->addrsize = 5;
a3994421 717 p_card->cardsize = 22;
3e750be3 718 break;
719 case 0x1d:
a3994421 720 p_card->cmdsize = 9;
fabef615 721 p_card->addrsize = 8;
a3994421 722 p_card->cardsize = 256;
3e750be3 723 break;
724 case 0x3d:
a3994421 725 p_card->cmdsize = 11;
fabef615 726 p_card->addrsize = 10;
a3994421 727 p_card->cardsize = 1024;
3e750be3 728 break;
729 default:
a3994421 730 p_card->cmdsize = 0;
fabef615 731 p_card->addrsize = 0;
a3994421 732 p_card->cardsize = 0;
733 return 2;
a3994421 734 }
735 return 0;
736}
fabef615 737int legic_select_card(legic_card_select_t *p_card){
738 return legic_select_card_iv(p_card, 0x01);
739}
a3994421 740
741void LegicRfInfo(void){
742
743 uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
744 legic_card_select_t *card = (legic_card_select_t*) buf;
745
746 LegicCommonInit();
c649c433 747
a3994421 748 if ( legic_select_card(card) ) {
749 cmd_send(CMD_ACK,0,0,0,0,0);
750 goto OUT;
3e750be3 751 }
752
fabef615 753 // read UID bytes
a3994421 754 for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
755 int r = legic_read_byte(i, card->cmdsize);
3e750be3 756 if ( r == -1 ) {
757 cmd_send(CMD_ACK,0,0,0,0,0);
758 goto OUT;
759 }
a3994421 760 card->uid[i] = r & 0xFF;
3e750be3 761 }
762
fabef615 763 cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
a3994421 764
765OUT:
3e750be3 766 switch_off_tag_rwd();
767 LEDsoff();
3e750be3 768}
769
c71c5ee1 770/* Handle (whether to respond) a frame in tag mode
771 * Only called when simulating a tag.
772 */
3612a8a8 773static void frame_handle_tag(struct legic_frame const * const f)
774{
117d9ec2 775 uint8_t *BigBuf = BigBuf_get_addr();
776
3612a8a8 777 /* First Part of Handshake (IV) */
778 if(f->bits == 7) {
c71c5ee1 779
3612a8a8 780 LED_C_ON();
c71c5ee1 781
ad5bc8cc 782 // Reset prng timer
22f4dca8 783 ResetTimer(prng_timer);
c71c5ee1 784
3612a8a8 785 legic_prng_init(f->data);
ad5bc8cc 786 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
3612a8a8 787 legic_state = STATE_IV;
788 legic_read_count = 0;
789 legic_prng_bc = 0;
790 legic_prng_iv = f->data;
791
111c6934 792
22f4dca8 793 ResetTimer(timer);
794 WaitUS(280);
3612a8a8 795 return;
3612a8a8 796 }
797
798 /* 0x19==??? */
799 if(legic_state == STATE_IV) {
cc708897 800 int local_key = get_key_stream(3, 6);
801 int xored = 0x39 ^ local_key;
802 if((f->bits == 6) && (f->data == xored)) {
3612a8a8 803 legic_state = STATE_CON;
804
22f4dca8 805 ResetTimer(timer);
806 WaitUS(200);
3612a8a8 807 return;
111c6934 808
809 } else {
3612a8a8 810 legic_state = STATE_DISCON;
811 LED_C_OFF();
cc708897 812 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
3612a8a8 813 return;
814 }
815 }
816
817 /* Read */
818 if(f->bits == 11) {
819 if(legic_state == STATE_CON) {
cc708897 820 int key = get_key_stream(2, 11); //legic_phase_drift, 11);
3612a8a8 821 int addr = f->data ^ key; addr = addr >> 1;
117d9ec2 822 int data = BigBuf[addr];
111c6934 823 int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
117d9ec2 824 BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr;
3612a8a8 825 legic_read_count++;
826
827 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
828 legic_prng_forward(legic_reqresp_drift);
829
830 frame_send_tag(hash | data, 12, 1);
831
22f4dca8 832 ResetTimer(timer);
cc708897 833 legic_prng_forward(2);
22f4dca8 834 WaitUS(180);
3612a8a8 835 return;
836 }
837 }
838
839 /* Write */
840 if(f->bits == 23) {
841 int key = get_key_stream(-1, 23); //legic_frame_drift, 23);
842 int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff;
843 int data = f->data ^ key; data = data >> 11; data = data & 0xff;
844
845 /* write command */
846 legic_state = STATE_DISCON;
847 LED_C_OFF();
848 Dbprintf("write - addr: %x, data: %x", addr, data);
849 return;
850 }
851
852 if(legic_state != STATE_DISCON) {
853 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
854 int i;
855 Dbprintf("IV: %03.3x", legic_prng_iv);
856 for(i = 0; i<legic_read_count; i++) {
117d9ec2 857 Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]);
3612a8a8 858 }
859
860 for(i = -1; i<legic_read_count; i++) {
861 uint32_t t;
117d9ec2 862 t = BigBuf[OFFSET_LOG+256+i*4];
863 t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8;
864 t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16;
865 t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24;
3612a8a8 866
867 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
117d9ec2 868 BigBuf[OFFSET_LOG+128+i],
869 BigBuf[OFFSET_LOG+384+i],
3612a8a8 870 t);
871 }
872 }
873 legic_state = STATE_DISCON;
874 legic_read_count = 0;
875 SpinDelay(10);
876 LED_C_OFF();
877 return;
878}
879
880/* Read bit by bit untill full frame is received
881 * Call to process frame end answer
882 */
c71c5ee1 883static void emit(int bit) {
884
885 switch (bit) {
886 case 1:
887 frame_append_bit(&current_frame, 1);
888 break;
889 case 0:
890 frame_append_bit(&current_frame, 0);
891 break;
892 default:
893 if(current_frame.bits <= 4) {
894 frame_clean(&current_frame);
895 } else {
896 frame_handle_tag(&current_frame);
897 frame_clean(&current_frame);
898 }
899 WDT_HIT();
900 break;
901 }
3612a8a8 902}
903
904void LegicRfSimulate(int phase, int frame, int reqresp)
905{
906 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
907 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
908 * envelope waveform on DIN and should send our response on DOUT.
909 *
910 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
911 * measure the time between two rising edges on DIN, and no encoding on the
912 * subcarrier from card to reader, so we'll just shift out our verbatim data
913 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
914 * seems to be 300us-ish.
915 */
916
c71c5ee1 917 legic_phase_drift = phase;
918 legic_frame_drift = frame;
919 legic_reqresp_drift = reqresp;
920
921 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
922 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
923 FpgaSetupSsc();
924 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
925
926 /* Bitbang the receiver */
927 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
928 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
929
ad5bc8cc 930 //setup_timer();
c71c5ee1 931 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
932
933 int old_level = 0;
934 int active = 0;
935 legic_state = STATE_DISCON;
936
937 LED_B_ON();
938 DbpString("Starting Legic emulator, press button to end");
3612a8a8 939
c71c5ee1 940 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
941 int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
942 int time = timer->TC_CV;
943
944 if(level != old_level) {
945 if(level == 1) {
946 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
947
948 if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
949 /* 1 bit */
950 emit(1);
951 active = 1;
952 LED_A_ON();
953 } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
954 /* 0 bit */
955 emit(0);
956 active = 1;
957 LED_A_ON();
958 } else if (active) {
959 /* invalid */
960 emit(-1);
961 active = 0;
962 LED_A_OFF();
963 }
964 }
965 }
3612a8a8 966
c71c5ee1 967 /* Frame end */
968 if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
969 emit(-1);
970 active = 0;
971 LED_A_OFF();
972 }
a2b1414f 973
c71c5ee1 974 if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) {
975 timer->TC_CCR = AT91C_TC_CLKDIS;
976 }
977
978 old_level = level;
979 WDT_HIT();
980 }
981 if ( MF_DBGLEVEL >= 1) DbpString("Stopped");
982 LEDsoff();
983}
3e134b4c 984
3e134b4c 985//-----------------------------------------------------------------------------
986// Code up a string of octets at layer 2 (including CRC, we don't generate
987// that here) so that they can be transmitted to the reader. Doesn't transmit
988// them yet, just leaves them ready to send in ToSend[].
989//-----------------------------------------------------------------------------
990// static void CodeLegicAsTag(const uint8_t *cmd, int len)
991// {
992 // int i;
993
994 // ToSendReset();
995
996 // // Transmit a burst of ones, as the initial thing that lets the
997 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
998 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
999 // // so I will too.
1000 // for(i = 0; i < 20; i++) {
1001 // ToSendStuffBit(1);
1002 // ToSendStuffBit(1);
1003 // ToSendStuffBit(1);
1004 // ToSendStuffBit(1);
1005 // }
1006
1007 // // Send SOF.
1008 // for(i = 0; i < 10; i++) {
1009 // ToSendStuffBit(0);
1010 // ToSendStuffBit(0);
1011 // ToSendStuffBit(0);
1012 // ToSendStuffBit(0);
1013 // }
1014 // for(i = 0; i < 2; i++) {
1015 // ToSendStuffBit(1);
1016 // ToSendStuffBit(1);
1017 // ToSendStuffBit(1);
1018 // ToSendStuffBit(1);
1019 // }
1020
1021 // for(i = 0; i < len; i++) {
1022 // int j;
1023 // uint8_t b = cmd[i];
1024
1025 // // Start bit
1026 // ToSendStuffBit(0);
1027 // ToSendStuffBit(0);
1028 // ToSendStuffBit(0);
1029 // ToSendStuffBit(0);
1030
1031 // // Data bits
1032 // for(j = 0; j < 8; j++) {
1033 // if(b & 1) {
1034 // ToSendStuffBit(1);
1035 // ToSendStuffBit(1);
1036 // ToSendStuffBit(1);
1037 // ToSendStuffBit(1);
1038 // } else {
1039 // ToSendStuffBit(0);
1040 // ToSendStuffBit(0);
1041 // ToSendStuffBit(0);
1042 // ToSendStuffBit(0);
1043 // }
1044 // b >>= 1;
1045 // }
1046
1047 // // Stop bit
1048 // ToSendStuffBit(1);
1049 // ToSendStuffBit(1);
1050 // ToSendStuffBit(1);
1051 // ToSendStuffBit(1);
1052 // }
1053
1054 // // Send EOF.
1055 // for(i = 0; i < 10; i++) {
1056 // ToSendStuffBit(0);
1057 // ToSendStuffBit(0);
1058 // ToSendStuffBit(0);
1059 // ToSendStuffBit(0);
1060 // }
1061 // for(i = 0; i < 2; i++) {
1062 // ToSendStuffBit(1);
1063 // ToSendStuffBit(1);
1064 // ToSendStuffBit(1);
1065 // ToSendStuffBit(1);
1066 // }
1067
1068 // // Convert from last byte pos to length
1069 // ToSendMax++;
1070// }
1071
1072//-----------------------------------------------------------------------------
1073// The software UART that receives commands from the reader, and its state
1074// variables.
1075//-----------------------------------------------------------------------------
62577a62 1076/*
3e134b4c 1077static struct {
1078 enum {
1079 STATE_UNSYNCD,
1080 STATE_GOT_FALLING_EDGE_OF_SOF,
1081 STATE_AWAITING_START_BIT,
1082 STATE_RECEIVING_DATA
1083 } state;
1084 uint16_t shiftReg;
1085 int bitCnt;
1086 int byteCnt;
1087 int byteCntMax;
1088 int posCnt;
1089 uint8_t *output;
1090} Uart;
62577a62 1091*/
3e134b4c 1092/* Receive & handle a bit coming from the reader.
1093 *
1094 * This function is called 4 times per bit (every 2 subcarrier cycles).
1095 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1096 *
1097 * LED handling:
1098 * LED A -> ON once we have received the SOF and are expecting the rest.
1099 * LED A -> OFF once we have received EOF or are in error state or unsynced
1100 *
1101 * Returns: true if we received a EOF
1102 * false if we are still waiting for some more
1103 */
1104// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1105// {
1106 // switch(Uart.state) {
1107 // case STATE_UNSYNCD:
1108 // if(!bit) {
1109 // // we went low, so this could be the beginning of an SOF
1110 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1111 // Uart.posCnt = 0;
1112 // Uart.bitCnt = 0;
1113 // }
1114 // break;
1115
1116 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1117 // Uart.posCnt++;
1118 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1119 // if(bit) {
1120 // if(Uart.bitCnt > 9) {
1121 // // we've seen enough consecutive
1122 // // zeros that it's a valid SOF
1123 // Uart.posCnt = 0;
1124 // Uart.byteCnt = 0;
1125 // Uart.state = STATE_AWAITING_START_BIT;
1126 // LED_A_ON(); // Indicate we got a valid SOF
1127 // } else {
1128 // // didn't stay down long enough
1129 // // before going high, error
1130 // Uart.state = STATE_UNSYNCD;
1131 // }
1132 // } else {
1133 // // do nothing, keep waiting
1134 // }
1135 // Uart.bitCnt++;
1136 // }
1137 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1138 // if(Uart.bitCnt > 12) {
1139 // // Give up if we see too many zeros without
1140 // // a one, too.
1141 // LED_A_OFF();
1142 // Uart.state = STATE_UNSYNCD;
1143 // }
1144 // break;
1145
1146 // case STATE_AWAITING_START_BIT:
1147 // Uart.posCnt++;
1148 // if(bit) {
1149 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1150 // // stayed high for too long between
1151 // // characters, error
1152 // Uart.state = STATE_UNSYNCD;
1153 // }
1154 // } else {
1155 // // falling edge, this starts the data byte
1156 // Uart.posCnt = 0;
1157 // Uart.bitCnt = 0;
1158 // Uart.shiftReg = 0;
1159 // Uart.state = STATE_RECEIVING_DATA;
1160 // }
1161 // break;
1162
1163 // case STATE_RECEIVING_DATA:
1164 // Uart.posCnt++;
1165 // if(Uart.posCnt == 2) {
1166 // // time to sample a bit
1167 // Uart.shiftReg >>= 1;
1168 // if(bit) {
1169 // Uart.shiftReg |= 0x200;
1170 // }
1171 // Uart.bitCnt++;
1172 // }
1173 // if(Uart.posCnt >= 4) {
1174 // Uart.posCnt = 0;
1175 // }
1176 // if(Uart.bitCnt == 10) {
1177 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1178 // {
1179 // // this is a data byte, with correct
1180 // // start and stop bits
1181 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1182 // Uart.byteCnt++;
1183
1184 // if(Uart.byteCnt >= Uart.byteCntMax) {
1185 // // Buffer overflowed, give up
1186 // LED_A_OFF();
1187 // Uart.state = STATE_UNSYNCD;
1188 // } else {
1189 // // so get the next byte now
1190 // Uart.posCnt = 0;
1191 // Uart.state = STATE_AWAITING_START_BIT;
1192 // }
1193 // } else if (Uart.shiftReg == 0x000) {
1194 // // this is an EOF byte
1195 // LED_A_OFF(); // Finished receiving
1196 // Uart.state = STATE_UNSYNCD;
1197 // if (Uart.byteCnt != 0) {
1198 // return TRUE;
1199 // }
1200 // } else {
1201 // // this is an error
1202 // LED_A_OFF();
1203 // Uart.state = STATE_UNSYNCD;
1204 // }
1205 // }
1206 // break;
1207
1208 // default:
1209 // LED_A_OFF();
1210 // Uart.state = STATE_UNSYNCD;
1211 // break;
1212 // }
1213
1214 // return FALSE;
1215// }
62577a62 1216/*
3e134b4c 1217
f7b42573 1218static void UartReset() {
1219 Uart.byteCntMax = 3;
3e134b4c 1220 Uart.state = STATE_UNSYNCD;
1221 Uart.byteCnt = 0;
1222 Uart.bitCnt = 0;
1223 Uart.posCnt = 0;
f7b42573 1224 memset(Uart.output, 0x00, 3);
3e134b4c 1225}
62577a62 1226*/
f7b42573 1227// static void UartInit(uint8_t *data) {
3e134b4c 1228 // Uart.output = data;
1229 // UartReset();
1230// }
1231
1232//=============================================================================
1233// An LEGIC reader. We take layer two commands, code them
1234// appropriately, and then send them to the tag. We then listen for the
1235// tag's response, which we leave in the buffer to be demodulated on the
1236// PC side.
1237//=============================================================================
62577a62 1238/*
3e134b4c 1239static struct {
1240 enum {
1241 DEMOD_UNSYNCD,
1242 DEMOD_PHASE_REF_TRAINING,
1243 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1244 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1245 DEMOD_AWAITING_START_BIT,
1246 DEMOD_RECEIVING_DATA
1247 } state;
1248 int bitCount;
1249 int posCount;
1250 int thisBit;
1251 uint16_t shiftReg;
1252 uint8_t *output;
1253 int len;
1254 int sumI;
1255 int sumQ;
1256} Demod;
62577a62 1257*/
3e134b4c 1258/*
1259 * Handles reception of a bit from the tag
1260 *
1261 * This function is called 2 times per bit (every 4 subcarrier cycles).
1262 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1263 *
1264 * LED handling:
1265 * LED C -> ON once we have received the SOF and are expecting the rest.
1266 * LED C -> OFF once we have received EOF or are unsynced
1267 *
1268 * Returns: true if we received a EOF
1269 * false if we are still waiting for some more
1270 *
1271 */
3e134b4c 1272
62577a62 1273/*
3e134b4c 1274static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1275{
1276 int v = 0;
1277 int ai = ABS(ci);
1278 int aq = ABS(cq);
1279 int halfci = (ai >> 1);
1280 int halfcq = (aq >> 1);
1281
1282 switch(Demod.state) {
1283 case DEMOD_UNSYNCD:
1284
1285 CHECK_FOR_SUBCARRIER()
1286
1287 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1288 Demod.state = DEMOD_PHASE_REF_TRAINING;
1289 Demod.sumI = ci;
1290 Demod.sumQ = cq;
1291 Demod.posCount = 1;
1292 }
1293 break;
1294
1295 case DEMOD_PHASE_REF_TRAINING:
1296 if(Demod.posCount < 8) {
1297
1298 CHECK_FOR_SUBCARRIER()
1299
1300 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1301 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1302 // note: synchronization time > 80 1/fs
1303 Demod.sumI += ci;
1304 Demod.sumQ += cq;
1305 ++Demod.posCount;
1306 } else {
1307 // subcarrier lost
1308 Demod.state = DEMOD_UNSYNCD;
1309 }
1310 } else {
1311 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1312 }
1313 break;
1314
1315 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1316
1317 MAKE_SOFT_DECISION()
1318
1319 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1320 // logic '0' detected
1321 if (v <= 0) {
1322
1323 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1324
1325 // start of SOF sequence
1326 Demod.posCount = 0;
1327 } else {
1328 // maximum length of TR1 = 200 1/fs
1329 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1330 }
1331 ++Demod.posCount;
1332 break;
1333
1334 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1335 ++Demod.posCount;
1336
1337 MAKE_SOFT_DECISION()
1338
1339 if(v > 0) {
1340 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1341 if(Demod.posCount < 10*2) {
1342 Demod.state = DEMOD_UNSYNCD;
1343 } else {
1344 LED_C_ON(); // Got SOF
1345 Demod.state = DEMOD_AWAITING_START_BIT;
1346 Demod.posCount = 0;
1347 Demod.len = 0;
1348 }
1349 } else {
1350 // low phase of SOF too long (> 12 etu)
1351 if(Demod.posCount > 13*2) {
1352 Demod.state = DEMOD_UNSYNCD;
1353 LED_C_OFF();
1354 }
1355 }
1356 break;
1357
1358 case DEMOD_AWAITING_START_BIT:
1359 ++Demod.posCount;
1360
1361 MAKE_SOFT_DECISION()
1362
1363 if(v > 0) {
1364 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1365 if(Demod.posCount > 3*2) {
1366 Demod.state = DEMOD_UNSYNCD;
1367 LED_C_OFF();
1368 }
1369 } else {
1370 // start bit detected
1371 Demod.bitCount = 0;
1372 Demod.posCount = 1; // this was the first half
1373 Demod.thisBit = v;
1374 Demod.shiftReg = 0;
1375 Demod.state = DEMOD_RECEIVING_DATA;
1376 }
1377 break;
1378
1379 case DEMOD_RECEIVING_DATA:
1380
1381 MAKE_SOFT_DECISION()
1382
1383 if(Demod.posCount == 0) {
1384 // first half of bit
1385 Demod.thisBit = v;
1386 Demod.posCount = 1;
1387 } else {
1388 // second half of bit
1389 Demod.thisBit += v;
1390 Demod.shiftReg >>= 1;
1391 // logic '1'
1392 if(Demod.thisBit > 0)
1393 Demod.shiftReg |= 0x200;
1394
1395 ++Demod.bitCount;
1396
1397 if(Demod.bitCount == 10) {
1398
1399 uint16_t s = Demod.shiftReg;
1400
1401 if((s & 0x200) && !(s & 0x001)) {
1402 // stop bit == '1', start bit == '0'
1403 uint8_t b = (s >> 1);
1404 Demod.output[Demod.len] = b;
1405 ++Demod.len;
1406 Demod.state = DEMOD_AWAITING_START_BIT;
1407 } else {
1408 Demod.state = DEMOD_UNSYNCD;
1409 LED_C_OFF();
1410
1411 if(s == 0x000) {
1412 // This is EOF (start, stop and all data bits == '0'
1413 return TRUE;
1414 }
1415 }
1416 }
1417 Demod.posCount = 0;
1418 }
1419 break;
1420
1421 default:
1422 Demod.state = DEMOD_UNSYNCD;
1423 LED_C_OFF();
1424 break;
1425 }
1426 return FALSE;
1427}
62577a62 1428*/
1429/*
3e134b4c 1430// Clear out the state of the "UART" that receives from the tag.
1431static void DemodReset() {
1432 Demod.len = 0;
1433 Demod.state = DEMOD_UNSYNCD;
1434 Demod.posCount = 0;
1435 Demod.sumI = 0;
1436 Demod.sumQ = 0;
1437 Demod.bitCount = 0;
1438 Demod.thisBit = 0;
1439 Demod.shiftReg = 0;
f7b42573 1440 memset(Demod.output, 0x00, 3);
3e134b4c 1441}
1442
1443static void DemodInit(uint8_t *data) {
1444 Demod.output = data;
1445 DemodReset();
1446}
62577a62 1447*/
3e134b4c 1448
1449/*
1450 * Demodulate the samples we received from the tag, also log to tracebuffer
1451 * quiet: set to 'TRUE' to disable debug output
1452 */
62577a62 1453
1454 /*
3e134b4c 1455 #define LEGIC_DMA_BUFFER_SIZE 256
62577a62 1456
1457 static void GetSamplesForLegicDemod(int n, bool quiet)
3e134b4c 1458{
1459 int max = 0;
1460 bool gotFrame = FALSE;
1461 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1462 int ci, cq, samples = 0;
1463
1464 BigBuf_free();
1465
1466 // And put the FPGA in the appropriate mode
1467 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1468
1469 // The response (tag -> reader) that we're receiving.
1470 // Set up the demodulator for tag -> reader responses.
1471 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1472
1473 // The DMA buffer, used to stream samples from the FPGA
1474 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1475 int8_t *upTo = dmaBuf;
1476
1477 // Setup and start DMA.
1478 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1479 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1480 return;
1481 }
1482
1483 // Signal field is ON with the appropriate LED:
1484 LED_D_ON();
1485 for(;;) {
1486 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1487 if(behindBy > max) max = behindBy;
1488
1489 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1490 ci = upTo[0];
1491 cq = upTo[1];
1492 upTo += 2;
1493 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1494 upTo = dmaBuf;
1495 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1496 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1497 }
1498 lastRxCounter -= 2;
1499 if(lastRxCounter <= 0)
1500 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1501
1502 samples += 2;
1503
1504 gotFrame = HandleLegicSamplesDemod(ci , cq );
1505 if ( gotFrame )
1506 break;
1507 }
1508
1509 if(samples > n || gotFrame)
1510 break;
1511 }
1512
1513 FpgaDisableSscDma();
1514
1515 if (!quiet && Demod.len == 0) {
1516 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1517 max,
1518 samples,
1519 gotFrame,
1520 Demod.len,
1521 Demod.sumI,
1522 Demod.sumQ
1523 );
1524 }
1525
1526 //Tracing
1527 if (Demod.len > 0) {
1528 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1529 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1530 }
1531}
62577a62 1532
1533*/
1534
3e134b4c 1535//-----------------------------------------------------------------------------
1536// Transmit the command (to the tag) that was placed in ToSend[].
1537//-----------------------------------------------------------------------------
62577a62 1538/*
3e134b4c 1539static void TransmitForLegic(void)
1540{
1541 int c;
1542
1543 FpgaSetupSsc();
1544
1545 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1546 AT91C_BASE_SSC->SSC_THR = 0xff;
1547
1548 // Signal field is ON with the appropriate Red LED
1549 LED_D_ON();
1550
1551 // Signal we are transmitting with the Green LED
1552 LED_B_ON();
1553 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1554
1555 for(c = 0; c < 10;) {
1556 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1557 AT91C_BASE_SSC->SSC_THR = 0xff;
1558 c++;
1559 }
1560 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1561 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1562 (void)r;
1563 }
1564 WDT_HIT();
1565 }
1566
1567 c = 0;
1568 for(;;) {
1569 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1570 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1571 legic_prng_forward(1); // forward the lfsr
1572 c++;
1573 if(c >= ToSendMax) {
1574 break;
1575 }
1576 }
1577 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1578 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1579 (void)r;
1580 }
1581 WDT_HIT();
1582 }
1583 LED_B_OFF();
1584}
62577a62 1585*/
3e134b4c 1586
1587//-----------------------------------------------------------------------------
1588// Code a layer 2 command (string of octets, including CRC) into ToSend[],
1589// so that it is ready to transmit to the tag using TransmitForLegic().
1590//-----------------------------------------------------------------------------
62577a62 1591/*
bf2cd644 1592static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
3e134b4c 1593{
1594 int i, j;
1595 uint8_t b;
1596
1597 ToSendReset();
1598
1599 // Send SOF
bf2cd644 1600 for(i = 0; i < 7; i++)
3e134b4c 1601 ToSendStuffBit(1);
3e134b4c 1602
bf2cd644 1603
1604 for(i = 0; i < cmdlen; i++) {
3e134b4c 1605 // Start bit
1606 ToSendStuffBit(0);
1607
1608 // Data bits
1609 b = cmd[i];
bf2cd644 1610 for(j = 0; j < bits; j++) {
3e134b4c 1611 if(b & 1) {
1612 ToSendStuffBit(1);
1613 } else {
1614 ToSendStuffBit(0);
1615 }
1616 b >>= 1;
1617 }
1618 }
1619
1620 // Convert from last character reference to length
1621 ++ToSendMax;
1622}
62577a62 1623*/
3e134b4c 1624/**
1625 Convenience function to encode, transmit and trace Legic comms
1626 **/
62577a62 1627/*
1628 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
3e134b4c 1629{
bf2cd644 1630 CodeLegicBitsAsReader(cmd, cmdlen, bits);
3e134b4c 1631 TransmitForLegic();
1632 if (tracing) {
1633 uint8_t parity[1] = {0x00};
3e82f956 1634 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
3e134b4c 1635 }
1636}
1637
62577a62 1638*/
3e134b4c 1639// Set up LEGIC communication
62577a62 1640/*
3e134b4c 1641void ice_legic_setup() {
1642
1643 // standard things.
1644 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1645 BigBuf_free(); BigBuf_Clear_ext(false);
1646 clear_trace();
1647 set_tracing(TRUE);
1648 DemodReset();
1649 UartReset();
1650
1651 // Set up the synchronous serial port
1652 FpgaSetupSsc();
1653
1654 // connect Demodulated Signal to ADC:
1655 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1656
1657 // Signal field is on with the appropriate LED
1658 LED_D_ON();
1659 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
f7b42573 1660 SpinDelay(20);
3e134b4c 1661 // Start the timer
1662 //StartCountSspClk();
1663
1664 // initalize CRC
1665 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
1666
1667 // initalize prng
1668 legic_prng_init(0);
62577a62 1669}
1670*/
Impressum, Datenschutz