]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
FIX: @matrix https://github.com/matrix/proxmark3/commit/869a03c2c6267db16cd1418b9e5f...
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
8ce3e4b4 4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Implements a card only attack based on crypto text (encrypted nonces
9// received during a nested authentication) only. Unlike other card only
10// attacks this doesn't rely on implementation errors but only on the
11// inherent weaknesses of the crypto1 cypher. Described in
12// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14// Computer and Communications Security, 2015
15//-----------------------------------------------------------------------------
2dcf60f3 16#include "cmdhfmfhard.h"
8ce3e4b4 17
f8ada309 18#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f
GG
19#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
20#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
21#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
236e8f7c 22#define CRACKING_THRESHOLD 39.00f // as 2^39
81ba7ee8 23
24#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 25
26static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
27 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0290 };
8ce3e4b4 60
61typedef struct noncelistentry {
62 uint32_t nonce_enc;
63 uint8_t par_enc;
64 void *next;
65} noncelistentry_t;
66
67typedef struct noncelist {
68 uint16_t num;
69 uint16_t Sum;
70 uint16_t Sum8_guess;
71 uint8_t BitFlip[2];
72 float Sum8_prob;
73 bool updated;
74 noncelistentry_t *first;
a531720a 75 float score1, score2;
8ce3e4b4 76} noncelist_t;
77
3130ba4b 78static size_t nonces_to_bruteforce = 0;
79static noncelistentry_t *brute_force_nonces[256];
810f5379 80static uint32_t cuid = 0;
8ce3e4b4 81static noncelist_t nonces[256];
fe8042f2 82static uint8_t best_first_bytes[256];
8ce3e4b4 83static uint16_t first_byte_Sum = 0;
84static uint16_t first_byte_num = 0;
85static uint16_t num_good_first_bytes = 0;
f8ada309 86static uint64_t maximum_states = 0;
87static uint64_t known_target_key;
0d5ee8e2 88static bool write_stats = false;
89static FILE *fstats = NULL;
8ce3e4b4 90
91
92typedef enum {
93 EVEN_STATE = 0,
94 ODD_STATE = 1
95} odd_even_t;
96
97#define STATELIST_INDEX_WIDTH 16
98#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
99
100typedef struct {
101 uint32_t *states[2];
102 uint32_t len[2];
103 uint32_t *index[2][STATELIST_INDEX_SIZE];
104} partial_indexed_statelist_t;
105
106typedef struct {
107 uint32_t *states[2];
108 uint32_t len[2];
109 void* next;
110} statelist_t;
111
112
f8ada309 113static partial_indexed_statelist_t partial_statelist[17];
114static partial_indexed_statelist_t statelist_bitflip;
f8ada309 115static statelist_t *candidates = NULL;
8ce3e4b4 116
383a1fb3
GG
117bool thread_check_started = false;
118bool thread_check_done = false;
383a1fb3
GG
119bool field_off = false;
120
121pthread_t thread_check;
383a1fb3 122
057d2e91
GG
123static bool generate_candidates(uint16_t, uint16_t);
124static bool brute_force(void);
125
8ce3e4b4 126static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
127{
128 uint8_t first_byte = nonce_enc >> 24;
129 noncelistentry_t *p1 = nonces[first_byte].first;
130 noncelistentry_t *p2 = NULL;
131
132 if (p1 == NULL) { // first nonce with this 1st byte
133 first_byte_num++;
f8ada309 134 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 135 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
136 // nonce_enc,
137 // par_enc,
138 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 139 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 140 }
141
142 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
143 p2 = p1;
144 p1 = p1->next;
145 }
146
147 if (p1 == NULL) { // need to add at the end of the list
148 if (p2 == NULL) { // list is empty yet. Add first entry.
149 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
150 } else { // add new entry at end of existing list.
151 p2 = p2->next = malloc(sizeof(noncelistentry_t));
152 }
153 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
154 if (p2 == NULL) { // need to insert at start of list
155 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
156 } else {
157 p2 = p2->next = malloc(sizeof(noncelistentry_t));
158 }
159 } else { // we have seen this 2nd byte before. Nothing to add or insert.
160 return (0);
161 }
162
163 // add or insert new data
164 p2->next = p1;
165 p2->nonce_enc = nonce_enc;
166 p2->par_enc = par_enc;
167
3130ba4b 168 if(nonces_to_bruteforce < 256){
169 brute_force_nonces[nonces_to_bruteforce] = p2;
170 nonces_to_bruteforce++;
171 }
172
8ce3e4b4 173 nonces[first_byte].num++;
f8ada309 174 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 175 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
176
177 return (1); // new nonce added
178}
179
0d5ee8e2 180static void init_nonce_memory(void)
181{
182 for (uint16_t i = 0; i < 256; i++) {
183 nonces[i].num = 0;
184 nonces[i].Sum = 0;
185 nonces[i].Sum8_guess = 0;
186 nonces[i].Sum8_prob = 0.0;
187 nonces[i].updated = true;
188 nonces[i].first = NULL;
189 }
190 first_byte_num = 0;
191 first_byte_Sum = 0;
192 num_good_first_bytes = 0;
193}
194
0d5ee8e2 195static void free_nonce_list(noncelistentry_t *p)
196{
197 if (p == NULL) {
198 return;
199 } else {
200 free_nonce_list(p->next);
201 free(p);
202 }
203}
204
0d5ee8e2 205static void free_nonces_memory(void)
206{
207 for (uint16_t i = 0; i < 256; i++) {
208 free_nonce_list(nonces[i].first);
209 }
210}
211
8ce3e4b4 212static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
213{
214 uint16_t sum = 0;
215 for (uint16_t j = 0; j < 16; j++) {
216 uint32_t st = state;
217 uint16_t part_sum = 0;
218 if (odd_even == ODD_STATE) {
219 for (uint16_t i = 0; i < 5; i++) {
220 part_sum ^= filter(st);
221 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
222 }
f8ada309 223 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 224 } else {
225 for (uint16_t i = 0; i < 4; i++) {
226 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
227 part_sum ^= filter(st);
228 }
229 }
230 sum += part_sum;
231 }
232 return sum;
233}
234
fe8042f2 235// static uint16_t SumProperty(struct Crypto1State *s)
236// {
237 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
238 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
239 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
240// }
8ce3e4b4 241
8ce3e4b4 242static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
243{
244 // for efficient computation we are using the recursive definition
245 // (K-k+1) * (n-k+1)
246 // P(X=k) = P(X=k-1) * --------------------
247 // k * (N-K-n+k)
248 // and
249 // (N-K)*(N-K-1)*...*(N-K-n+1)
250 // P(X=0) = -----------------------------
251 // N*(N-1)*...*(N-n+1)
252
253 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
254 if (k == 0) {
255 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
256 double log_result = 0.0;
257 for (int16_t i = N-K; i >= N-K-n+1; i--) {
258 log_result += log(i);
259 }
260 for (int16_t i = N; i >= N-n+1; i--) {
261 log_result -= log(i);
262 }
7fd676db 263 return (log_result > 0) ? exp(log_result) : 0.0;
8ce3e4b4 264 } else {
265 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
266 double log_result = 0.0;
267 for (int16_t i = k+1; i <= n; i++) {
268 log_result += log(i);
269 }
270 for (int16_t i = K+1; i <= N; i++) {
271 log_result -= log(i);
272 }
7fd676db 273 return (log_result > 0) ? exp(log_result) : 0.0;
8ce3e4b4 274 } else { // recursion
275 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
276 }
277 }
278}
3130ba4b 279
8ce3e4b4 280static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
281{
282 const uint16_t N = 256;
8ce3e4b4 283
4b2e63be 284 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 285
4b2e63be 286 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
7fd676db 287
288 if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
289
4b2e63be 290 double p_S_is_K = p_K[K];
291 double p_T_is_k = 0;
292 for (uint16_t i = 0; i <= 256; i++) {
293 if (p_K[i] != 0.0) {
7fd676db 294 double tmp = p_hypergeometric(N, i, n, k);
295 if (tmp != 0.0)
296 p_T_is_k += p_K[i] * tmp;
8ce3e4b4 297 }
4b2e63be 298 }
299 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 300}
301
a531720a 302
303static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
304{
305 static const uint_fast8_t common_bits_LUT[256] = {
306 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
322 };
323
324 return common_bits_LUT[bytes_diff];
325}
326
8ce3e4b4 327static void Tests()
328{
fe8042f2 329 // printf("Tests: Partial Statelist sizes\n");
330 // for (uint16_t i = 0; i <= 16; i+=2) {
331 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
332 // }
333 // for (uint16_t i = 0; i <= 16; i+=2) {
334 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
335 // }
8ce3e4b4 336
337 // #define NUM_STATISTICS 100000
8ce3e4b4 338 // uint32_t statistics_odd[17];
f8ada309 339 // uint64_t statistics[257];
8ce3e4b4 340 // uint32_t statistics_even[17];
341 // struct Crypto1State cs;
342 // time_t time1 = clock();
343
344 // for (uint16_t i = 0; i < 257; i++) {
345 // statistics[i] = 0;
346 // }
347 // for (uint16_t i = 0; i < 17; i++) {
348 // statistics_odd[i] = 0;
349 // statistics_even[i] = 0;
350 // }
351
352 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
353 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
354 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
355 // uint16_t sum_property = SumProperty(&cs);
356 // statistics[sum_property] += 1;
357 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
358 // statistics_even[sum_property]++;
359 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
360 // statistics_odd[sum_property]++;
361 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
362 // }
363
364 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
365 // for (uint16_t i = 0; i < 257; i++) {
366 // if (statistics[i] != 0) {
367 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
368 // }
369 // }
370 // for (uint16_t i = 0; i <= 16; i++) {
371 // if (statistics_odd[i] != 0) {
372 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
373 // }
374 // }
375 // for (uint16_t i = 0; i <= 16; i++) {
376 // if (statistics_odd[i] != 0) {
377 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
378 // }
379 // }
380
381 // printf("Tests: Sum Probabilities based on Partial Sums\n");
382 // for (uint16_t i = 0; i < 257; i++) {
383 // statistics[i] = 0;
384 // }
385 // uint64_t num_states = 0;
386 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
387 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
388 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
389 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
390 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
391 // }
392 // }
393 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
394 // for (uint16_t i = 0; i < 257; i++) {
395 // if (statistics[i] != 0) {
396 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
397 // }
398 // }
399
400 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
401 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
402 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
403 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
404 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
405 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
406 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
407
fe8042f2 408 // struct Crypto1State *pcs;
409 // pcs = crypto1_create(0xffffffffffff);
410 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
411 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
412 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
413 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
414 // best_first_bytes[0],
415 // SumProperty(pcs),
416 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
417 // //test_state_odd = pcs->odd & 0x00ffffff;
418 // //test_state_even = pcs->even & 0x00ffffff;
419 // crypto1_destroy(pcs);
420 // pcs = crypto1_create(0xa0a1a2a3a4a5);
421 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
422 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
423 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
424 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
425 // best_first_bytes[0],
426 // SumProperty(pcs),
427 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
428 // //test_state_odd = pcs->odd & 0x00ffffff;
429 // //test_state_even = pcs->even & 0x00ffffff;
430 // crypto1_destroy(pcs);
431 // pcs = crypto1_create(0xa6b9aa97b955);
432 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
433 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
434 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
435 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
436 // best_first_bytes[0],
437 // SumProperty(pcs),
438 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 439 //test_state_odd = pcs->odd & 0x00ffffff;
440 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 441 // crypto1_destroy(pcs);
8ce3e4b4 442
443
fe8042f2 444 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 445
cd777a05 446 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
447 // for (uint16_t i = 0; i < 256; i++) {
448 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
449 // if (i % 8 == 7) {
450 // printf("\n");
451 // }
452 // }
8ce3e4b4 453
cd777a05 454 // printf("\nTests: Sorted First Bytes:\n");
455 // for (uint16_t i = 0; i < 256; i++) {
456 // uint8_t best_byte = best_first_bytes[i];
457 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
458 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
459 // i, best_byte,
460 // nonces[best_byte].num,
461 // nonces[best_byte].Sum,
462 // nonces[best_byte].Sum8_guess,
463 // nonces[best_byte].Sum8_prob * 100,
464 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
465 // //nonces[best_byte].score1,
466 // //nonces[best_byte].score2
467 // );
468 // }
f8ada309 469
470 // printf("\nTests: parity performance\n");
471 // time_t time1p = clock();
472 // uint32_t par_sum = 0;
473 // for (uint32_t i = 0; i < 100000000; i++) {
474 // par_sum += parity(i);
475 // }
476 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
477
478 // time1p = clock();
479 // par_sum = 0;
480 // for (uint32_t i = 0; i < 100000000; i++) {
481 // par_sum += evenparity32(i);
482 // }
483 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
484
8ce3e4b4 485
f8ada309 486}
487
f8ada309 488static void sort_best_first_bytes(void)
489{
fe8042f2 490 // sort based on probability for correct guess
8ce3e4b4 491 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 492 uint16_t j = 0;
8ce3e4b4 493 float prob1 = nonces[i].Sum8_prob;
f8ada309 494 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 495 while (prob1 < prob2 && j < i) {
8ce3e4b4 496 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
497 }
fe8042f2 498 if (j < i) {
499 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 500 best_first_bytes[k] = best_first_bytes[k-1];
501 }
fe8042f2 502 }
8ce3e4b4 503 best_first_bytes[j] = i;
7fd676db 504 }
f8ada309 505
fe8042f2 506 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 507 uint16_t num_good_nonces = 0;
fe8042f2 508 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 509 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 510 ++num_good_nonces;
511 }
512 }
513
514 uint16_t best_first_byte = 0;
515
516 // select the best possible first byte based on number of common bits with all {b'}
517 // uint16_t max_common_bits = 0;
518 // for (uint16_t i = 0; i < num_good_nonces; i++) {
519 // uint16_t sum_common_bits = 0;
520 // for (uint16_t j = 0; j < num_good_nonces; j++) {
521 // if (i != j) {
522 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
523 // }
524 // }
525 // if (sum_common_bits > max_common_bits) {
526 // max_common_bits = sum_common_bits;
527 // best_first_byte = i;
528 // }
529 // }
530
531 // select best possible first byte {b} based on least likely sum/bitflip property
532 float min_p_K = 1.0;
533 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
534 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
535 float bitflip_prob = 1.0;
536 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
537 bitflip_prob = 0.09375;
538 }
a531720a 539 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
f8ada309 540 if (p_K[sum8] * bitflip_prob <= min_p_K) {
541 min_p_K = p_K[sum8] * bitflip_prob;
f8ada309 542 }
543 }
544
a531720a 545
f8ada309 546 // use number of commmon bits as a tie breaker
547 uint16_t max_common_bits = 0;
548 for (uint16_t i = 0; i < num_good_nonces; i++) {
549 float bitflip_prob = 1.0;
550 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
551 bitflip_prob = 0.09375;
552 }
553 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
554 uint16_t sum_common_bits = 0;
555 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 556 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 557 }
a531720a 558 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 559 if (sum_common_bits > max_common_bits) {
560 max_common_bits = sum_common_bits;
561 best_first_byte = i;
562 }
563 }
564 }
565
a531720a 566 // swap best possible first byte to the pole position
f8ada309 567 uint16_t temp = best_first_bytes[0];
568 best_first_bytes[0] = best_first_bytes[best_first_byte];
569 best_first_bytes[best_first_byte] = temp;
570
8ce3e4b4 571}
572
8ce3e4b4 573static uint16_t estimate_second_byte_sum(void)
574{
8ce3e4b4 575
576 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
577 float Sum8_prob = 0.0;
578 uint16_t Sum8 = 0;
579 if (nonces[first_byte].updated) {
580 for (uint16_t sum = 0; sum <= 256; sum++) {
581 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
582 if (prob > Sum8_prob) {
583 Sum8_prob = prob;
584 Sum8 = sum;
585 }
586 }
587 nonces[first_byte].Sum8_guess = Sum8;
588 nonces[first_byte].Sum8_prob = Sum8_prob;
589 nonces[first_byte].updated = false;
590 }
591 }
592
593 sort_best_first_bytes();
594
595 uint16_t num_good_nonces = 0;
fe8042f2 596 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 597 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
8ce3e4b4 598 ++num_good_nonces;
599 }
600 }
601
602 return num_good_nonces;
603}
604
8ce3e4b4 605static int read_nonce_file(void)
606{
607 FILE *fnonces = NULL;
ddaecc08 608 uint8_t trgBlockNo = 0;
609 uint8_t trgKeyType = 0;
8ce3e4b4 610 uint8_t read_buf[9];
ddaecc08 611 uint32_t nt_enc1 = 0, nt_enc2 = 0;
612 uint8_t par_enc = 0;
8ce3e4b4 613 int total_num_nonces = 0;
614
615 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
616 PrintAndLog("Could not open file nonces.bin");
617 return 1;
618 }
619
620 PrintAndLog("Reading nonces from file nonces.bin...");
841d7af0 621 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
622 if ( bytes_read == 0) {
8ce3e4b4 623 PrintAndLog("File reading error.");
624 fclose(fnonces);
625 return 1;
626 }
627 cuid = bytes_to_num(read_buf, 4);
628 trgBlockNo = bytes_to_num(read_buf+4, 1);
629 trgKeyType = bytes_to_num(read_buf+5, 1);
630
631 while (fread(read_buf, 1, 9, fnonces) == 9) {
632 nt_enc1 = bytes_to_num(read_buf, 4);
633 nt_enc2 = bytes_to_num(read_buf+4, 4);
634 par_enc = bytes_to_num(read_buf+8, 1);
635 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
636 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
637 add_nonce(nt_enc1, par_enc >> 4);
638 add_nonce(nt_enc2, par_enc & 0x0f);
639 total_num_nonces += 2;
640 }
641 fclose(fnonces);
642 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 643 return 0;
644}
645
a531720a 646static void Check_for_FilterFlipProperties(void)
647{
648 printf("Checking for Filter Flip Properties...\n");
649
0d5ee8e2 650 uint16_t num_bitflips = 0;
651
a531720a 652 for (uint16_t i = 0; i < 256; i++) {
653 nonces[i].BitFlip[ODD_STATE] = false;
654 nonces[i].BitFlip[EVEN_STATE] = false;
655 }
656
657 for (uint16_t i = 0; i < 256; i++) {
658 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
659 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
660 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
661
662 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
663 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 664 num_bitflips++;
a531720a 665 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
666 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 667 num_bitflips++;
a531720a 668 }
669 }
0d5ee8e2 670
671 if (write_stats) {
672 fprintf(fstats, "%d;", num_bitflips);
673 }
674}
675
0d5ee8e2 676static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
677{
1f1929a4 678 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 679 // init cryptostate with key:
680 for(int8_t i = 47; i > 0; i -= 2) {
681 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
682 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
683 }
684
685 *par_enc = 0;
686 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
687 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
688 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
689 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
690 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
691 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
692 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
693 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
694 }
695
696}
697
0d5ee8e2 698static void simulate_acquire_nonces()
699{
700 clock_t time1 = clock();
701 bool filter_flip_checked = false;
702 uint32_t total_num_nonces = 0;
703 uint32_t next_fivehundred = 500;
704 uint32_t total_added_nonces = 0;
705
706 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
707 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
708
709 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
710 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
711
712 do {
713 uint32_t nt_enc = 0;
714 uint8_t par_enc = 0;
715
716 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
717 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
718 total_added_nonces += add_nonce(nt_enc, par_enc);
719 total_num_nonces++;
720
721 if (first_byte_num == 256 ) {
722 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
723 if (!filter_flip_checked) {
724 Check_for_FilterFlipProperties();
725 filter_flip_checked = true;
726 }
727 num_good_first_bytes = estimate_second_byte_sum();
728 if (total_num_nonces > next_fivehundred) {
729 next_fivehundred = (total_num_nonces/500+1) * 500;
730 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 731 total_num_nonces,
0d5ee8e2 732 total_added_nonces,
733 CONFIDENCE_THRESHOLD * 100.0,
734 num_good_first_bytes);
735 }
736 }
737
738 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
739
b112787d 740 time1 = clock() - time1;
741 if ( time1 > 0 ) {
0d5ee8e2 742 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
743 total_num_nonces,
b112787d 744 ((float)time1)/CLOCKS_PER_SEC,
745 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
746 }
0d5ee8e2 747 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
748
a531720a 749}
750
f8ada309 751static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 752{
753 clock_t time1 = clock();
754 bool initialize = true;
8ce3e4b4 755 bool finished = false;
a531720a 756 bool filter_flip_checked = false;
8ce3e4b4 757 uint32_t flags = 0;
758 uint8_t write_buf[9];
759 uint32_t total_num_nonces = 0;
760 uint32_t next_fivehundred = 500;
761 uint32_t total_added_nonces = 0;
057d2e91 762 uint32_t idx = 1;
8ce3e4b4 763 FILE *fnonces = NULL;
764 UsbCommand resp;
765
383a1fb3 766 field_off = false;
383a1fb3 767
8ce3e4b4 768 printf("Acquiring nonces...\n");
383a1fb3 769
8ce3e4b4 770 do {
771 flags = 0;
772 flags |= initialize ? 0x0001 : 0;
773 flags |= slow ? 0x0002 : 0;
774 flags |= field_off ? 0x0004 : 0;
775 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
776 memcpy(c.d.asBytes, key, 6);
7fd676db 777 clearCommandBuffer();
8ce3e4b4 778 SendCommand(&c);
779
780 if (field_off) finished = true;
781
782 if (initialize) {
783 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
784 if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
785
786 cuid = resp.arg[1];
787 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
788 if (nonce_file_write && fnonces == NULL) {
789 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
790 PrintAndLog("Could not create file nonces.bin");
791 return 3;
792 }
793 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
794 num_to_bytes(cuid, 4, write_buf);
795 fwrite(write_buf, 1, 4, fnonces);
796 fwrite(&trgBlockNo, 1, 1, fnonces);
797 fwrite(&trgKeyType, 1, 1, fnonces);
7fd676db 798 fflush(fnonces);
8ce3e4b4 799 }
800 }
801
802 if (!initialize) {
803 uint32_t nt_enc1, nt_enc2;
804 uint8_t par_enc;
805 uint16_t num_acquired_nonces = resp.arg[2];
806 uint8_t *bufp = resp.d.asBytes;
807 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
808 nt_enc1 = bytes_to_num(bufp, 4);
809 nt_enc2 = bytes_to_num(bufp+4, 4);
810 par_enc = bytes_to_num(bufp+8, 1);
811
812 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
813 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
814 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
815 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
816
0325c12f 817 if (nonce_file_write && fnonces) {
8ce3e4b4 818 fwrite(bufp, 1, 9, fnonces);
7fd676db 819 fflush(fnonces);
8ce3e4b4 820 }
7fd676db 821
8ce3e4b4 822 bufp += 9;
823 }
824
825 total_num_nonces += num_acquired_nonces;
826 }
7fd676db 827
383a1fb3 828 if (first_byte_num == 256 && !field_off) {
8ce3e4b4 829 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
a531720a 830 if (!filter_flip_checked) {
831 Check_for_FilterFlipProperties();
832 filter_flip_checked = true;
833 }
383a1fb3 834
8ce3e4b4 835 num_good_first_bytes = estimate_second_byte_sum();
836 if (total_num_nonces > next_fivehundred) {
837 next_fivehundred = (total_num_nonces/500+1) * 500;
7fd676db 838 printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
839 total_num_nonces,
8ce3e4b4 840 total_added_nonces,
7fd676db 841 (total_added_nonces < MIN_NONCES_REQUIRED) ? MIN_NONCES_REQUIRED : (NONCES_TRIGGER*idx),
8ce3e4b4 842 CONFIDENCE_THRESHOLD * 100.0,
843 num_good_first_bytes);
383a1fb3 844 }
057d2e91 845
7fd676db 846 if (total_added_nonces >= MIN_NONCES_REQUIRED) {
847 num_good_first_bytes = estimate_second_byte_sum();
848 if (total_added_nonces > (NONCES_TRIGGER * idx)) {
849
850 clock_t time1 = clock();
851 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
852 time1 = clock() - time1;
853 if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
854
855 if (cracking || known_target_key != -1) {
856 field_off = brute_force(); // switch off field with next SendCommand and then finish
857 }
858
859 idx++;
bbcd41a6 860 }
057d2e91 861 }
8ce3e4b4 862
7fd676db 863 }
864
8ce3e4b4 865 if (!initialize) {
1a4b6738 866 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
7fd676db 867 if (fnonces) fclose(fnonces);
1a4b6738 868 return 1;
869 }
383a1fb3 870
1a4b6738 871 if (resp.arg[0]) {
7fd676db 872 if (fnonces) fclose(fnonces);
1a4b6738 873 return resp.arg[0]; // error during nested_hard
874 }
8ce3e4b4 875 }
876
877 initialize = false;
878
879 } while (!finished);
880
7fd676db 881 if (nonce_file_write && fnonces)
8ce3e4b4 882 fclose(fnonces);
8ce3e4b4 883
b112787d 884 time1 = clock() - time1;
885 if ( time1 > 0 ) {
81ba7ee8 886 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
887 total_num_nonces,
888 ((float)time1)/CLOCKS_PER_SEC,
889 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 890 );
891 }
8ce3e4b4 892 return 0;
893}
894
8ce3e4b4 895static int init_partial_statelists(void)
896{
f8ada309 897 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
898// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
899 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 900
901 printf("Allocating memory for partial statelists...\n");
902 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
903 for (uint16_t i = 0; i <= 16; i+=2) {
904 partial_statelist[i].len[odd_even] = 0;
905 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
906 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
907 if (partial_statelist[i].states[odd_even] == NULL) {
908 PrintAndLog("Cannot allocate enough memory. Aborting");
909 return 4;
910 }
911 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
912 partial_statelist[i].index[odd_even][j] = NULL;
913 }
914 }
915 }
916
917 printf("Generating partial statelists...\n");
918 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
919 uint32_t index = -1;
920 uint32_t num_of_states = 1<<20;
921 for (uint32_t state = 0; state < num_of_states; state++) {
922 uint16_t sum_property = PartialSumProperty(state, odd_even);
923 uint32_t *p = partial_statelist[sum_property].states[odd_even];
924 p += partial_statelist[sum_property].len[odd_even];
925 *p = state;
926 partial_statelist[sum_property].len[odd_even]++;
927 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
928 if ((state & index_mask) != index) {
929 index = state & index_mask;
930 }
931 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
932 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
933 }
934 }
935 // add End Of List markers
936 for (uint16_t i = 0; i <= 16; i += 2) {
937 uint32_t *p = partial_statelist[i].states[odd_even];
938 p += partial_statelist[i].len[odd_even];
81ba7ee8 939 *p = END_OF_LIST_MARKER;
8ce3e4b4 940 }
941 }
942
943 return 0;
944}
8ce3e4b4 945
946static void init_BitFlip_statelist(void)
947{
948 printf("Generating bitflip statelist...\n");
949 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
950 uint32_t index = -1;
951 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
952 for (uint32_t state = 0; state < (1 << 20); state++) {
953 if (filter(state) != filter(state^1)) {
954 if ((state & index_mask) != index) {
955 index = state & index_mask;
956 }
957 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
958 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
959 }
960 *p++ = state;
961 }
962 }
963 // set len and add End Of List marker
964 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 965 *p = END_OF_LIST_MARKER;
8ce3e4b4 966 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
967}
8ce3e4b4 968
a531720a 969static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 970{
971 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
972
973 if (p == NULL) return NULL;
a531720a 974 while (*p < (state & mask)) p++;
81ba7ee8 975 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 976 if ((*p & mask) == (state & mask)) return p; // found a match.
977 return NULL; // no match
978}
979
a531720a 980static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 981{
a531720a 982 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
983 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
984 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
985 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
986 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
987 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
988 return !all_diff;
989}
990
a531720a 991static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
992{
993 uint_fast8_t j_bit_mask = 0x01 << bit;
994 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
995 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
996 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
997 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
998 return all_diff;
999}
1000
a531720a 1001static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1002{
1003 if (odd_even) {
1004 // odd bits
1005 switch (num_common_bits) {
1006 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1007 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1008 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1009 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1010 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1011 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1012 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1013 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1014 }
a531720a 1015 } else {
1016 // even bits
1017 switch (num_common_bits) {
1018 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1019 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1020 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1021 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1022 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1023 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1024 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1025 }
8ce3e4b4 1026 }
1027
1028 return true; // valid state
1029}
1030
8ce3e4b4 1031static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1032{
1033 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1034 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1035 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1036 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1037 uint32_t mask = 0xfffffff0;
1038 if (odd_even == ODD_STATE) {
a531720a 1039 mask >>= j/2;
8ce3e4b4 1040 } else {
a531720a 1041 mask >>= (j+1)/2;
8ce3e4b4 1042 }
1043 mask &= 0x000fffff;
1044 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1045 bool found_match = false;
1046 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1047 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1048 if (r*(16-s) + (16-r)*s == sum_a8) {
1049 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1050 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1051 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1052 if (p != NULL) {
81ba7ee8 1053 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1054 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1055 found_match = true;
1056 // if ((odd_even == ODD_STATE && state == test_state_odd)
1057 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1058 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1059 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1060 // }
1061 break;
1062 } else {
1063 // if ((odd_even == ODD_STATE && state == test_state_odd)
1064 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1065 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1066 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1067 // }
1068 }
1069 p++;
1070 }
1071 } else {
1072 // if ((odd_even == ODD_STATE && state == test_state_odd)
1073 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1074 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1075 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1076 // }
1077 }
1078 }
1079 }
1080 }
1081
1082 if (!found_match) {
1083 // if ((odd_even == ODD_STATE && state == test_state_odd)
1084 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1085 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1086 // }
1087 return false;
1088 }
1089 }
1090
1091 return true;
1092}
1093
f8ada309 1094static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1095{
1096 for (uint16_t i = 0; i < 256; i++) {
1097 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1098 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1099 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1100 uint32_t mask = 0xfffffff0;
1101 if (odd_even == ODD_STATE) {
a531720a 1102 mask >>= j/2;
f8ada309 1103 } else {
a531720a 1104 mask >>= (j+1)/2;
f8ada309 1105 }
1106 mask &= 0x000fffff;
1107 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1108 bool found_match = false;
1109 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1110 if (p != NULL) {
81ba7ee8 1111 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1112 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1113 found_match = true;
1114 // if ((odd_even == ODD_STATE && state == test_state_odd)
1115 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1116 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1117 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1118 // }
1119 break;
1120 } else {
1121 // if ((odd_even == ODD_STATE && state == test_state_odd)
1122 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1123 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1124 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1125 // }
1126 }
1127 p++;
1128 }
1129 } else {
1130 // if ((odd_even == ODD_STATE && state == test_state_odd)
1131 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1132 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1133 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1134 // }
1135 }
1136 if (!found_match) {
1137 // if ((odd_even == ODD_STATE && state == test_state_odd)
1138 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1139 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1140 // }
1141 return false;
1142 }
1143 }
1144
1145 }
1146
1147 return true;
1148}
1149
a531720a 1150static struct sl_cache_entry {
1151 uint32_t *sl;
1152 uint32_t len;
1153 } sl_cache[17][17][2];
1154
a531720a 1155static void init_statelist_cache(void)
1156{
a531720a 1157 for (uint16_t i = 0; i < 17; i+=2) {
1158 for (uint16_t j = 0; j < 17; j+=2) {
1159 for (uint16_t k = 0; k < 2; k++) {
1160 sl_cache[i][j][k].sl = NULL;
1161 sl_cache[i][j][k].len = 0;
1162 }
1163 }
1164 }
1165}
1166
8ce3e4b4 1167static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1168{
1169 uint32_t worstcase_size = 1<<20;
1170
a531720a 1171 // check cache for existing results
1172 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1173 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1174 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1175 return 0;
1176 }
1177
8ce3e4b4 1178 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1179 if (candidates->states[odd_even] == NULL) {
1180 PrintAndLog("Out of memory error.\n");
1181 return 4;
1182 }
a531720a 1183 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1184 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1185 uint32_t search_mask = 0x000ffff0;
1186 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1187 if (p2 != NULL) {
81ba7ee8 1188 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1189 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1190 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1191 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1192 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1193 *add_p++ = (*p1 << 4) | *p2;
1194 }
8ce3e4b4 1195 }
f8ada309 1196 }
8ce3e4b4 1197 p2++;
1198 }
1199 }
8ce3e4b4 1200 }
f8ada309 1201
a531720a 1202 // set end of list marker and len
81ba7ee8 1203 *add_p = END_OF_LIST_MARKER;
a531720a 1204 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1205
8ce3e4b4 1206 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1207
a531720a 1208 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1209 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1210
8ce3e4b4 1211 return 0;
1212}
1213
8ce3e4b4 1214static statelist_t *add_more_candidates(statelist_t *current_candidates)
1215{
1216 statelist_t *new_candidates = NULL;
1217 if (current_candidates == NULL) {
1218 if (candidates == NULL) {
1219 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1220 }
1221 new_candidates = candidates;
1222 } else {
1223 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1224 }
1225 new_candidates->next = NULL;
1226 new_candidates->len[ODD_STATE] = 0;
1227 new_candidates->len[EVEN_STATE] = 0;
1228 new_candidates->states[ODD_STATE] = NULL;
1229 new_candidates->states[EVEN_STATE] = NULL;
1230 return new_candidates;
1231}
1232
057d2e91 1233static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1234{
1235 struct Crypto1State *pcs;
1236 pcs = crypto1_create(key);
1237 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1238
1239 uint32_t state_odd = pcs->odd & 0x00ffffff;
1240 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1241 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
8ce3e4b4 1242
f8ada309 1243 uint64_t count = 0;
8ce3e4b4 1244 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1245 bool found_odd = false;
1246 bool found_even = false;
8ce3e4b4 1247 uint32_t *p_odd = p->states[ODD_STATE];
1248 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1249 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1250 if ((*p_odd & 0x00ffffff) == state_odd) {
1251 found_odd = true;
1252 break;
1253 }
8ce3e4b4 1254 p_odd++;
1255 }
81ba7ee8 1256 while (*p_even != END_OF_LIST_MARKER) {
f8ada309 1257 if ((*p_even & 0x00ffffff) == state_even) {
1258 found_even = true;
1259 }
8ce3e4b4 1260 p_even++;
1261 }
f8ada309 1262 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1263 if (found_odd && found_even) {
b403c300 1264 PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
81ba7ee8 1265 count,
1266 log(count)/log(2),
1267 maximum_states,
1268 log(maximum_states)/log(2)
1269 );
0d5ee8e2 1270 if (write_stats) {
1271 fprintf(fstats, "1\n");
1272 }
f8ada309 1273 crypto1_destroy(pcs);
057d2e91 1274 return true;
f8ada309 1275 }
8ce3e4b4 1276 }
f8ada309 1277
1278 printf("Key NOT found!\n");
0d5ee8e2 1279 if (write_stats) {
1280 fprintf(fstats, "0\n");
1281 }
8ce3e4b4 1282 crypto1_destroy(pcs);
057d2e91
GG
1283
1284 return false;
8ce3e4b4 1285}
1286
057d2e91 1287static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1288{
1289 printf("Generating crypto1 state candidates... \n");
1290
1291 statelist_t *current_candidates = NULL;
1292 // estimate maximum candidate states
f8ada309 1293 maximum_states = 0;
8ce3e4b4 1294 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1295 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1296 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1297 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1298 }
1299 }
1300 }
057d2e91 1301
0325c12f 1302 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1303
ba39db37 1304 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
8ce3e4b4 1305
a531720a 1306 init_statelist_cache();
1307
8ce3e4b4 1308 for (uint16_t p = 0; p <= 16; p += 2) {
1309 for (uint16_t q = 0; q <= 16; q += 2) {
1310 if (p*(16-q) + (16-p)*q == sum_a0) {
2dcf60f3 1311 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1312 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
8ce3e4b4 1313 for (uint16_t r = 0; r <= 16; r += 2) {
1314 for (uint16_t s = 0; s <= 16; s += 2) {
1315 if (r*(16-s) + (16-r)*s == sum_a8) {
1316 current_candidates = add_more_candidates(current_candidates);
a531720a 1317 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1318 // and eliminate the need to calculate the other part
1319 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1320 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
ba39db37 1321 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1322 if(current_candidates->len[ODD_STATE]) {
ba39db37 1323 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1324 } else {
1325 current_candidates->len[EVEN_STATE] = 0;
1326 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1327 *p = END_OF_LIST_MARKER;
a531720a 1328 }
1329 } else {
1330 add_matching_states(current_candidates, q, s, EVEN_STATE);
1331 if(current_candidates->len[EVEN_STATE]) {
1332 add_matching_states(current_candidates, p, r, ODD_STATE);
1333 } else {
1334 current_candidates->len[ODD_STATE] = 0;
1335 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1336 *p = END_OF_LIST_MARKER;
a531720a 1337 }
1338 }
1c38049b 1339 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1340 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1341 }
1342 }
1343 }
1344 }
1345 }
1346 }
1347
8ce3e4b4 1348 maximum_states = 0;
1349 for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
1350 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1351 }
0325c12f
GG
1352
1353 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1354
ba39db37 1355 float kcalc = log(maximum_states)/log(2);
057d2e91 1356 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1357 if (write_stats) {
1358 if (maximum_states != 0) {
057d2e91 1359 fprintf(fstats, "%1.1f;", kcalc);
0d5ee8e2 1360 } else {
1361 fprintf(fstats, "%1.1f;", 0.0);
1362 }
1363 }
236e8f7c 1364 if (kcalc < CRACKING_THRESHOLD) return true;
057d2e91
GG
1365
1366 return false;
0d5ee8e2 1367}
1368
0d5ee8e2 1369static void free_candidates_memory(statelist_t *sl)
1370{
1371 if (sl == NULL) {
1372 return;
1373 } else {
1374 free_candidates_memory(sl->next);
1375 free(sl);
1376 }
1377}
1378
0d5ee8e2 1379static void free_statelist_cache(void)
1380{
1381 for (uint16_t i = 0; i < 17; i+=2) {
1382 for (uint16_t j = 0; j < 17; j+=2) {
1383 for (uint16_t k = 0; k < 2; k++) {
1384 free(sl_cache[i][j][k].sl);
1385 }
1386 }
1387 }
8ce3e4b4 1388}
1389
45c0c48c 1390uint64_t foundkey = 0;
3130ba4b 1391size_t keys_found = 0;
1392size_t bucket_count = 0;
1393statelist_t* buckets[128];
1394size_t total_states_tested = 0;
1395size_t thread_count = 4;
1396
1397// these bitsliced states will hold identical states in all slices
1398bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1399
1400// arrays of bitsliced states with identical values in all slices
1401bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1402bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1403
1404#define EXACT_COUNT
1405
1406static const uint64_t crack_states_bitsliced(statelist_t *p){
1407 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1408 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1409 uint64_t key = -1;
1410 uint8_t bSize = sizeof(bitslice_t);
1411
1412#ifdef EXACT_COUNT
1413 size_t bucket_states_tested = 0;
1414 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1415#else
1416 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1417#endif
1418
1419 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1420 size_t bitsliced_blocks = 0;
1421 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1422
1423 // bitslice all the even states
1424 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1425
1426#ifdef __WIN32
1427 #ifdef __MINGW32__
1428 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1429 #else
1430 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1431 #endif
1432#else
b01e7d20 1433 #ifdef __APPLE__
9d590832 1434 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1435 #else
3130ba4b 1436 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1437 #endif
3130ba4b 1438#endif
1439
1440 if ( !lstate_p ) {
1441 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1442 return key;
1443 }
1444
1445 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1446
1447 // bitslice even half-states
1448 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1449#ifdef EXACT_COUNT
1450 bucket_size[bitsliced_blocks] = max_slices;
1451#endif
1452 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1453 uint32_t e = *(p_even+slice_idx);
1454 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1455 // set even bits
1456 if(e&1){
1457 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1458 }
1459 }
1460 }
1461 // compute the rollback bits
1462 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1463 // inlined crypto1_bs_lfsr_rollback
1464 const bitslice_value_t feedout = lstate_p[0].value;
1465 ++lstate_p;
1466 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1467 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1468 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1469 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1470 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1471 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1472 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1473 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1474 }
1475 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1476 }
1477
1478 // bitslice every odd state to every block of even half-states with half-finished rollback
1479 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1480 // early abort
1481 if(keys_found){
1482 goto out;
1483 }
1484
1485 // set the odd bits and compute rollback
1486 uint64_t o = (uint64_t) *p_odd;
1487 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1488 // pre-compute part of the odd feedback bits (minus rollback)
1489 bool odd_feedback_bit = parity(o&0x9ce5c);
1490
1491 crypto1_bs_rewind_a0();
1492 // set odd bits
1493 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1494 if(o & 1){
1495 state_p[state_idx] = bs_ones;
1496 } else {
1497 state_p[state_idx] = bs_zeroes;
1498 }
1499 }
1500 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1501
1502 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1503 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1504 size_t state_idx;
1505 // set even bits
1506 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1507 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1508 }
1509 // set rollback bits
1510 uint64_t lo = o;
1511 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1512 // set the odd bits and take in the odd rollback bits from the even states
1513 if(lo & 1){
1514 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1515 } else {
1516 state_p[state_idx] = bitsliced_even_state[state_idx];
1517 }
1518
1519 // set the even bits and take in the even rollback bits from the odd states
1520 if((lo >> 32) & 1){
1521 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1522 } else {
1523 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1524 }
1525 }
1526
1527#ifdef EXACT_COUNT
1528 bucket_states_tested += bucket_size[block_idx];
1529#endif
1530 // pre-compute first keystream and feedback bit vectors
1531 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1532 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1533 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1534 state_p[47-24].value ^ state_p[47-42].value);
1535
1536 // vector to contain test results (1 = passed, 0 = failed)
1537 bitslice_t results = bs_ones;
1538
1539 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1540 size_t parity_bit_idx = 0;
1541 bitslice_value_t fb_bits = fbb;
1542 bitslice_value_t ks_bits = ksb;
1543 state_p = &states[KEYSTREAM_SIZE-1];
1544 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1545
1546 // highest bit is transmitted/received first
1547 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1548 // decrypt nonce bits
1549 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1550 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1551
1552 // compute real parity bits on the fly
1553 parity_bit_vector ^= decrypted_nonce_bit_vector;
1554
1555 // update state
1556 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1557
1558 // compute next keystream bit
1559 ks_bits = crypto1_bs_f20(state_p);
1560
1561 // for each byte:
1562 if((ks_idx&7) == 0){
1563 // get encrypted parity bits
1564 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1565
1566 // decrypt parity bits
1567 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1568
1569 // compare actual parity bits with decrypted parity bits and take count in results vector
1570 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1571
1572 // make sure we still have a match in our set
1573 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1574
1575 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1576 // the short-circuiting also helps
1577 if(results.bytes64[0] == 0
1578#if MAX_BITSLICES > 64
1579 && results.bytes64[1] == 0
1580#endif
1581#if MAX_BITSLICES > 128
1582 && results.bytes64[2] == 0
1583 && results.bytes64[3] == 0
1584#endif
1585 ){
1586 goto stop_tests;
1587 }
1588 // this is about as fast but less portable (requires -std=gnu99)
1589 // asm goto ("ptest %1, %0\n\t"
1590 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1591 parity_bit_vector = bs_zeroes.value;
1592 }
1593 // compute next feedback bit vector
1594 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1595 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1596 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1597 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1598 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1599 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1600 }
1601 }
1602 // all nonce tests were successful: we've found the key in this block!
1603 state_t keys[MAX_BITSLICES];
1604 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1605 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1606 if(get_vector_bit(results_idx, results)){
1607 key = keys[results_idx].value;
1608 goto out;
1609 }
1610 }
1611stop_tests:
1612 // prepare to set new states
1613 crypto1_bs_rewind_a0();
1614 continue;
1615 }
1616 }
1617
1618out:
1619 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1620
1621#ifdef __WIN32
1622 #ifdef __MINGW32__
1623 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1624 #else
1625 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1626 #endif
1627#else
2e350b19 1628 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1629#endif
1630
1631 }
1632 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1633 return key;
1634}
8ce3e4b4 1635
3130ba4b 1636static void* crack_states_thread(void* x){
1637 const size_t thread_id = (size_t)x;
1638 size_t current_bucket = thread_id;
1639 while(current_bucket < bucket_count){
1640 statelist_t * bucket = buckets[current_bucket];
1641 if(bucket){
1642 const uint64_t key = crack_states_bitsliced(bucket);
1643 if(key != -1){
3130ba4b 1644 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1645 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1646 break;
1647 } else if(keys_found){
1648 break;
1649 } else {
1650 printf(".");
1651 fflush(stdout);
1652 }
1653 }
1654 current_bucket += thread_count;
1655 }
1656 return NULL;
1657}
cd777a05 1658
057d2e91 1659static bool brute_force(void)
8ce3e4b4 1660{
057d2e91 1661 bool ret = false;
f8ada309 1662 if (known_target_key != -1) {
1663 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1664 ret = TestIfKeyExists(known_target_key);
f8ada309 1665 } else {
0325c12f 1666 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1667
057d2e91 1668 PrintAndLog("Brute force phase starting.");
b403c300 1669
7fd676db 1670 clock_t time1 = clock();
057d2e91 1671 keys_found = 0;
ddaecc08 1672 foundkey = 0;
3130ba4b 1673
057d2e91
GG
1674 crypto1_bs_init();
1675
1676 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
ba39db37 1677 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
057d2e91 1678 // convert to 32 bit little-endian
ed69e099 1679 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1680
1681 PrintAndLog("Bitslicing nonces...");
1682 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1683 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1684 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1685 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1686 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1687 // convert to 32 bit little-endian
1688 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1689 }
057d2e91 1690 total_states_tested = 0;
3130ba4b 1691
057d2e91
GG
1692 // count number of states to go
1693 bucket_count = 0;
1694 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1695 buckets[bucket_count] = p;
1696 bucket_count++;
1697 }
3130ba4b 1698
1699#ifndef __WIN32
057d2e91 1700 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1701 if ( thread_count < 1)
1702 thread_count = 1;
3130ba4b 1703#endif /* _WIN32 */
fd3be901 1704
057d2e91 1705 pthread_t threads[thread_count];
3130ba4b 1706
057d2e91
GG
1707 // enumerate states using all hardware threads, each thread handles one bucket
1708 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1709
057d2e91
GG
1710 for(size_t i = 0; i < thread_count; i++){
1711 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1712 }
1713 for(size_t i = 0; i < thread_count; i++){
1714 pthread_join(threads[i], 0);
1715 }
1716
7fd676db 1717 time1 = clock() - time1;
1718 if ( time1 < 0 ) time1 = -1;
1719
383a1fb3 1720 if (keys_found && TestIfKeyExists(foundkey)) {
7fd676db 1721 PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found, ((float)time1)/CLOCKS_PER_SEC);
45c0c48c 1722 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91
GG
1723 ret = true;
1724 } else {
7fd676db 1725 PrintAndLog("Fail! Tested %"PRIu32" states, in %0.0f seconds", total_states_tested, ((float)time1)/CLOCKS_PER_SEC);
21d359f6 1726 }
057d2e91
GG
1727
1728 // reset this counter for the next call
1729 nonces_to_bruteforce = 0;
f8ada309 1730 }
057d2e91
GG
1731
1732 return ret;
f8ada309 1733}
1734
0d5ee8e2 1735int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1736{
0d5ee8e2 1737 // initialize Random number generator
1738 time_t t;
1739 srand((unsigned) time(&t));
1740
f8ada309 1741 if (trgkey != NULL) {
1742 known_target_key = bytes_to_num(trgkey, 6);
1743 } else {
1744 known_target_key = -1;
1745 }
8ce3e4b4 1746
8ce3e4b4 1747 init_partial_statelists();
1748 init_BitFlip_statelist();
0d5ee8e2 1749 write_stats = false;
8ce3e4b4 1750
0d5ee8e2 1751 if (tests) {
1752 // set the correct locale for the stats printing
1753 setlocale(LC_ALL, "");
1754 write_stats = true;
1755 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1756 PrintAndLog("Could not create/open file hardnested_stats.txt");
1757 return 3;
1758 }
1759 for (uint32_t i = 0; i < tests; i++) {
1760 init_nonce_memory();
1761 simulate_acquire_nonces();
1762 Tests();
1763 printf("Sum(a0) = %d\n", first_byte_Sum);
1764 fprintf(fstats, "%d;", first_byte_Sum);
1765 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1766 brute_force();
1767 free_nonces_memory();
1768 free_statelist_cache();
1769 free_candidates_memory(candidates);
1770 candidates = NULL;
1771 }
1772 fclose(fstats);
0325c12f 1773 fstats = NULL;
0d5ee8e2 1774 } else {
1775 init_nonce_memory();
236e8f7c 1776 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
b112787d 1777 if (read_nonce_file() != 0) {
1778 return 3;
1779 }
1780 Check_for_FilterFlipProperties();
1781 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
236e8f7c
GG
1782 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1783
1784 clock_t time1 = clock();
1785 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1786 time1 = clock() - time1;
1787 if (time1 > 0)
1788 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1789
1790 if (cracking)
1791 brute_force();
1792 } else { // acquire nonces.
b112787d 1793 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1794 if (is_OK != 0) {
1795 return is_OK;
1796 }
8ce3e4b4 1797 }
8ce3e4b4 1798
45c0c48c 1799 //Tests();
b112787d 1800
9d590832 1801 //PrintAndLog("");
1802 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
b112787d 1803 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1804 // best_first_bytes[0],
1805 // best_first_bytes[1],
1806 // best_first_bytes[2],
1807 // best_first_bytes[3],
1808 // best_first_bytes[4],
1809 // best_first_bytes[5],
1810 // best_first_bytes[6],
1811 // best_first_bytes[7],
1812 // best_first_bytes[8],
1813 // best_first_bytes[9] );
b112787d 1814
b112787d 1815 free_nonces_memory();
1816 free_statelist_cache();
1817 free_candidates_memory(candidates);
1818 candidates = NULL;
057d2e91 1819 }
8ce3e4b4 1820 return 0;
7fd676db 1821}
Impressum, Datenschutz