]>
Commit | Line | Data |
---|---|---|
eb191de6 | 1 | //----------------------------------------------------------------------------- |
ba1a299c | 2 | // Copyright (C) 2014 |
eb191de6 | 3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
1e090a61 | 8 | // Low frequency demod/decode commands |
eb191de6 | 9 | //----------------------------------------------------------------------------- |
eb191de6 | 10 | #include "lfdemod.h" |
6426f6ba | 11 | |
a126332a | 12 | //un_comment to allow debug print calls when used not on device |
6426f6ba | 13 | void dummy(char *fmt, ...){} |
14 | ||
e977fb0d | 15 | |
6426f6ba | 16 | #ifndef ON_DEVICE |
e977fb0d | 17 | # include "ui.h" |
18 | # include "cmdparser.h" | |
19 | # include "cmddata.h" | |
20 | # define prnt PrintAndLog | |
6426f6ba | 21 | #else |
a126332a | 22 | uint8_t g_debugMode=0; |
e977fb0d | 23 | # define prnt dummy |
6426f6ba | 24 | #endif |
6426f6ba | 25 | |
2dcf60f3 | 26 | //test samples are not just noise |
27 | uint8_t justNoise(uint8_t *bits, size_t size) { | |
28 | #define THRESHOLD 123 | |
29 | uint8_t val = 1; | |
30 | for(size_t idx=0; idx < size && val ;idx++) | |
31 | val = bits[idx] < THRESHOLD; | |
32 | return val; | |
a1d17964 | 33 | } |
34 | ||
1e090a61 | 35 | //by marshmellow |
872e3d4d | 36 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 | 37 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
38 | { | |
39 | *high=0; | |
40 | *low=255; | |
41 | // get high and low thresholds | |
2eec55c8 | 42 | for (size_t i=0; i < size; i++){ |
1e090a61 | 43 | if (BitStream[i] > *high) *high = BitStream[i]; |
44 | if (BitStream[i] < *low) *low = BitStream[i]; | |
45 | } | |
46 | if (*high < 123) return -1; // just noise | |
75cbbe9a | 47 | *high = ((*high-128)*fuzzHi + 12800)/100; |
48 | *low = ((*low-128)*fuzzLo + 12800)/100; | |
1e090a61 | 49 | return 1; |
50 | } | |
51 | ||
a1d17964 | 52 | // by marshmellow |
53 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
54 | // returns 1 if passed | |
55 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) | |
56 | { | |
57 | uint8_t ans = 0; | |
58 | for (uint8_t i = 0; i < bitLen; i++){ | |
59 | ans ^= ((bits >> i) & 1); | |
60 | } | |
4ac9f078 | 61 | if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits); |
a1d17964 | 62 | return (ans == pType); |
63 | } | |
64 | ||
a126332a | 65 | //by marshmellow |
66 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), | |
c728b2b4 | 67 | // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) |
a126332a | 68 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) |
69 | { | |
70 | uint32_t parityWd = 0; | |
71 | size_t j = 0, bitCnt = 0; | |
c08c796e | 72 | for (int word = 0; word < (bLen); word += pLen){ |
a126332a | 73 | for (int bit=0; bit < pLen; bit++){ |
74 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; | |
75 | BitStream[j++] = (BitStream[startIdx+word+bit]); | |
76 | } | |
4ac9f078 | 77 | if (word+pLen >= bLen) break; |
78 | ||
a126332a | 79 | j--; // overwrite parity with next data |
80 | // if parity fails then return 0 | |
c728b2b4 | 81 | switch (pType) { |
11dee3d5 | 82 | case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit |
83 | case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit | |
3c654208 | 84 | default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity |
a126332a | 85 | } |
c08c796e | 86 | bitCnt += (pLen-1); |
a126332a | 87 | parityWd = 0; |
88 | } | |
89 | // if we got here then all the parities passed | |
90 | //return ID start index and size | |
91 | return bitCnt; | |
92 | } | |
93 | ||
94 | // by marshmellow | |
95 | // takes a array of binary values, length of bits per parity (includes parity bit), | |
0d2c5909 | 96 | // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) |
c728b2b4 | 97 | // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added |
a126332a | 98 | size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) |
99 | { | |
100 | uint32_t parityWd = 0; | |
101 | size_t j = 0, bitCnt = 0; | |
102 | for (int word = 0; word < sourceLen; word+=pLen-1) { | |
103 | for (int bit=0; bit < pLen-1; bit++){ | |
104 | parityWd = (parityWd << 1) | BitSource[word+bit]; | |
105 | dest[j++] = (BitSource[word+bit]); | |
106 | } | |
0d2c5909 | 107 | |
a126332a | 108 | // if parity fails then return 0 |
0d2c5909 | 109 | switch (pType) { |
110 | case 3: dest[j++]=0; break; // marker bit which should be a 0 | |
111 | case 2: dest[j++]=1; break; // marker bit which should be a 1 | |
112 | default: | |
113 | dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; | |
114 | break; | |
a126332a | 115 | } |
116 | bitCnt += pLen; | |
117 | parityWd = 0; | |
118 | } | |
119 | // if we got here then all the parities passed | |
120 | //return ID start index and size | |
121 | return bitCnt; | |
122 | } | |
123 | ||
124 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) | |
125 | { | |
126 | uint32_t num = 0; | |
0d2c5909 | 127 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 128 | num = (num << 1) | (*src); |
129 | src++; | |
130 | } | |
131 | return num; | |
132 | } | |
133 | ||
134 | //least significant bit first | |
135 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) | |
136 | { | |
137 | uint32_t num = 0; | |
6b6815bc | 138 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 139 | num = (num << 1) | *(src + (numbits-(i+1))); |
140 | } | |
141 | return num; | |
142 | } | |
143 | ||
8ad1e731 | 144 | //by marshmellow |
145 | // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) | |
146 | bool preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx){ | |
147 | return preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false); | |
148 | } | |
a1d17964 | 149 | //by marshmellow |
2147c307 | 150 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
8ad1e731 | 151 | // param @findone: look for a repeating preamble or only the first. |
152 | // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits | |
153 | bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) | |
a1d17964 | 154 | { |
5735cfa5 | 155 | // Sanity check. If preamble length is bigger than bitstream length. |
8ad1e731 | 156 | if ( *size <= pLen ) return false; |
5735cfa5 | 157 | |
56d0fb8e | 158 | uint8_t foundCnt = 0; |
159 | for (int idx = 0; idx < *size - pLen; idx++){ | |
e0165dcf | 160 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ |
8ad1e731 | 161 | if (g_debugMode) prnt("DEBUG: preamble found at %u", idx); |
e0165dcf | 162 | //first index found |
163 | foundCnt++; | |
164 | if (foundCnt == 1){ | |
165 | *startIdx = idx; | |
8ad1e731 | 166 | if (findone) return true; |
e0165dcf | 167 | } |
168 | if (foundCnt == 2){ | |
169 | *size = idx - *startIdx; | |
8ad1e731 | 170 | return true; |
e0165dcf | 171 | } |
172 | } | |
173 | } | |
8ad1e731 | 174 | return false; |
175 | } | |
176 | ||
177 | // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup. | |
178 | size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) { | |
179 | size_t i = 0; | |
180 | size_t waveSizeCnt = 0; | |
181 | uint8_t thresholdCnt = 0; | |
182 | bool isAboveThreshold = dest[i++] >= threshold_value; | |
183 | for (; i < size-20; i++ ) { | |
184 | if(dest[i] < threshold_value && isAboveThreshold) { | |
185 | thresholdCnt++; | |
186 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
187 | isAboveThreshold = false; | |
188 | waveSizeCnt = 0; | |
189 | } else if (dest[i] >= threshold_value && !isAboveThreshold) { | |
190 | thresholdCnt++; | |
191 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
192 | isAboveThreshold = true; | |
193 | waveSizeCnt = 0; | |
194 | } else { | |
195 | waveSizeCnt++; | |
196 | } | |
197 | if (thresholdCnt > 10) break; | |
198 | } | |
199 | if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt); | |
200 | return i; | |
a1d17964 | 201 | } |
202 | ||
2147c307 | 203 | //by marshmellow |
204 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
8ad1e731 | 205 | // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future |
206 | uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) | |
2147c307 | 207 | { |
8ad1e731 | 208 | //allow only 1s and 0s |
209 | // only checking first bitvalue?! | |
210 | if (BitStream[1] > 1) return 0; | |
211 | ||
212 | uint32_t i = 0, idx = 0, parityBits = 0; | |
213 | uint8_t fmtlen = 0; | |
e0165dcf | 214 | *startIdx = 0; |
8ad1e731 | 215 | |
216 | // preamble 0111111111 | |
217 | // include 0 in front to help get start pos | |
218 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
219 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx)) | |
220 | return 0; | |
221 | if (*size < 64) return 0; | |
222 | ||
223 | fmtlen = (*size > 64) ? 22 : 10; | |
224 | ||
225 | idx = *startIdx + sizeof(preamble); | |
226 | ||
227 | //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits) | |
228 | for (i=0; i < fmtlen; i++){ | |
229 | parityBits = bytebits_to_byte(BitStream + (i*5) + idx, 5); | |
230 | //check even parity | |
231 | if (parityTest(parityBits, 5, 0) == 0) return 0; | |
e0165dcf | 232 | //set uint64 with ID from BitStream |
8ad1e731 | 233 | for (uint8_t j = 0; j < 4; j++){ |
e0165dcf | 234 | *hi = (*hi << 1) | (*lo >> 63); |
8ad1e731 | 235 | *lo = (*lo << 1) | (BitStream[(i*5) + j + idx]); |
e0165dcf | 236 | } |
237 | } | |
e0165dcf | 238 | //skip last 5 bit parity test for simplicity. |
239 | // *size = 64 | 128; | |
8ad1e731 | 240 | return 1; |
2147c307 | 241 | } |
242 | ||
fef74fdc | 243 | //by marshmellow |
244 | //demodulates strong heavily clipped samples | |
23f0a7d8 | 245 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) |
246 | { | |
247 | size_t bitCnt=0, smplCnt=0, errCnt=0; | |
248 | uint8_t waveHigh = 0; | |
23f0a7d8 | 249 | for (size_t i=0; i < *size; i++){ |
250 | if (BinStream[i] >= high && waveHigh){ | |
251 | smplCnt++; | |
252 | } else if (BinStream[i] <= low && !waveHigh){ | |
253 | smplCnt++; | |
254 | } else { //transition | |
255 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
81e82dfe | 256 | |
23f0a7d8 | 257 | if (smplCnt > clk-(clk/4)-1) { //full clock |
a38f5a07 | 258 | if (smplCnt > clk + (clk/4)+1) { //too many samples |
23f0a7d8 | 259 | errCnt++; |
05164399 | 260 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
81e82dfe | 261 | BinStream[bitCnt++] = 7; |
23f0a7d8 | 262 | } else if (waveHigh) { |
263 | BinStream[bitCnt++] = invert; | |
264 | BinStream[bitCnt++] = invert; | |
265 | } else if (!waveHigh) { | |
266 | BinStream[bitCnt++] = invert ^ 1; | |
267 | BinStream[bitCnt++] = invert ^ 1; | |
268 | } | |
269 | waveHigh ^= 1; | |
270 | smplCnt = 0; | |
271 | } else if (smplCnt > (clk/2) - (clk/4)-1) { | |
272 | if (waveHigh) { | |
273 | BinStream[bitCnt++] = invert; | |
274 | } else if (!waveHigh) { | |
275 | BinStream[bitCnt++] = invert ^ 1; | |
276 | } | |
277 | waveHigh ^= 1; | |
278 | smplCnt = 0; | |
279 | } else if (!bitCnt) { | |
280 | //first bit | |
281 | waveHigh = (BinStream[i] >= high); | |
282 | smplCnt = 1; | |
283 | } else { | |
284 | smplCnt++; | |
285 | //transition bit oops | |
286 | } | |
287 | } else { //haven't hit new high or new low yet | |
288 | smplCnt++; | |
289 | } | |
290 | } | |
291 | } | |
292 | *size = bitCnt; | |
293 | return errCnt; | |
294 | } | |
295 | ||
eb191de6 | 296 | //by marshmellow |
fef74fdc | 297 | void askAmp(uint8_t *BitStream, size_t size) |
298 | { | |
9686a8d4 | 299 | uint8_t last = 128; |
300 | for(size_t i = 1; i < size; ++i){ | |
301 | if (BitStream[i]-BitStream[i-1] >= 30) //large jump up | |
302 | last = 255; | |
303 | else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down | |
304 | last = 0; | |
305 | ||
306 | BitStream[i] = last; | |
fef74fdc | 307 | } |
fef74fdc | 308 | } |
309 | ||
310 | //by marshmellow | |
311 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester | |
312 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) | |
eb191de6 | 313 | { |
fef74fdc | 314 | if (*size==0) return -1; |
6e984446 | 315 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
bd09006a | 316 | |
2eec55c8 | 317 | if (*clk==0 || start < 0) return -3; |
fef74fdc | 318 | if (*invert != 1) *invert = 0; |
319 | if (amp==1) askAmp(BinStream, *size); | |
a38f5a07 | 320 | if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); |
fef74fdc | 321 | |
2eec55c8 | 322 | uint8_t initLoopMax = 255; |
323 | if (initLoopMax > *size) initLoopMax = *size; | |
ba1a299c | 324 | // Detect high and lows |
fef74fdc | 325 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 | 326 | int high, low; |
fef74fdc | 327 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) |
328 | return -2; //just noise | |
ba1a299c | 329 | |
fef74fdc | 330 | size_t errCnt = 0; |
23f0a7d8 | 331 | // if clean clipped waves detected run alternate demod |
332 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
05164399 | 333 | if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); |
fef74fdc | 334 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); |
335 | if (askType) //askman | |
336 | return manrawdecode(BinStream, size, 0); | |
81e82dfe | 337 | //askraw |
338 | return errCnt; | |
23f0a7d8 | 339 | } |
05164399 | 340 | if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); |
23f0a7d8 | 341 | |
fef74fdc | 342 | int lastBit; //set first clock check - can go negative |
343 | size_t i, bitnum = 0; //output counter | |
344 | uint8_t midBit = 0; | |
2eec55c8 | 345 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
fef74fdc | 346 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely |
05164399 | 347 | size_t MaxBits = 3072; //max bits to collect |
6e984446 | 348 | lastBit = start - *clk; |
fef74fdc | 349 | |
6e984446 | 350 | for (i = start; i < *size; ++i) { |
fef74fdc | 351 | if (i-lastBit >= *clk-tol){ |
352 | if (BinStream[i] >= high) { | |
353 | BinStream[bitnum++] = *invert; | |
354 | } else if (BinStream[i] <= low) { | |
355 | BinStream[bitnum++] = *invert ^ 1; | |
356 | } else if (i-lastBit >= *clk+tol) { | |
357 | if (bitnum > 0) { | |
05164399 | 358 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
fef74fdc | 359 | BinStream[bitnum++]=7; |
360 | errCnt++; | |
361 | } | |
362 | } else { //in tolerance - looking for peak | |
363 | continue; | |
364 | } | |
365 | midBit = 0; | |
2eec55c8 | 366 | lastBit += *clk; |
fef74fdc | 367 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ |
368 | if (BinStream[i] >= high) { | |
369 | BinStream[bitnum++] = *invert; | |
370 | } else if (BinStream[i] <= low) { | |
371 | BinStream[bitnum++] = *invert ^ 1; | |
372 | } else if (i-lastBit >= *clk/2+tol) { | |
373 | BinStream[bitnum] = BinStream[bitnum-1]; | |
374 | bitnum++; | |
375 | } else { //in tolerance - looking for peak | |
376 | continue; | |
377 | } | |
378 | midBit = 1; | |
2eec55c8 | 379 | } |
380 | if (bitnum >= MaxBits) break; | |
ba1a299c | 381 | } |
2eec55c8 | 382 | *size = bitnum; |
6e984446 | 383 | return errCnt; |
eb191de6 | 384 | } |
eb191de6 | 385 | //by marshmellow |
386 | //take 10 and 01 and manchester decode | |
387 | //run through 2 times and take least errCnt | |
81e82dfe | 388 | int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert){ |
5f5b83b7 | 389 | int errCnt = 0, bestErr = 1000; |
390 | uint16_t bitnum = 0, MaxBits = 512, bestRun = 0; | |
81e82dfe | 391 | size_t i, k; |
fef74fdc | 392 | if (*size < 16) return -1; |
2767fc02 | 393 | //find correct start position [alignment] |
81e82dfe | 394 | for (k=0; k < 2; ++k){ |
395 | for (i=k; i<*size-3; i += 2) | |
396 | if (BitStream[i] == BitStream[i+1]) | |
ba1a299c | 397 | errCnt++; |
2eec55c8 | 398 | |
81e82dfe | 399 | if (bestErr > errCnt){ |
400 | bestErr = errCnt; | |
401 | bestRun = k; | |
ba1a299c | 402 | } |
403 | errCnt=0; | |
404 | } | |
2767fc02 | 405 | //decode |
81e82dfe | 406 | for (i=bestRun; i < *size-3; i += 2){ |
407 | if (BitStream[i] == 1 && (BitStream[i+1] == 0)){ | |
408 | BitStream[bitnum++] = invert; | |
409 | } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
410 | BitStream[bitnum++] = invert^1; | |
23f0a7d8 | 411 | } else { |
81e82dfe | 412 | BitStream[bitnum++] = 7; |
ba1a299c | 413 | } |
81e82dfe | 414 | if (bitnum>MaxBits) break; |
ba1a299c | 415 | } |
23f0a7d8 | 416 | *size=bitnum; |
2eec55c8 | 417 | return bestErr; |
f822a063 | 418 | } |
419 | ||
1d0ccbe0 | 420 | uint32_t manchesterEncode2Bytes(uint16_t datain) { |
421 | uint32_t output = 0; | |
422 | uint8_t curBit = 0; | |
423 | for (uint8_t i=0; i<16; i++) { | |
424 | curBit = (datain >> (15-i) & 1); | |
425 | output |= (1<<(((15-i)*2)+curBit)); | |
426 | } | |
427 | return output; | |
428 | } | |
429 | ||
fef74fdc | 430 | //by marshmellow |
431 | //encode binary data into binary manchester | |
432 | int ManchesterEncode(uint8_t *BitStream, size_t size) | |
433 | { | |
434 | size_t modIdx=20000, i=0; | |
435 | if (size>modIdx) return -1; | |
436 | for (size_t idx=0; idx < size; idx++){ | |
437 | BitStream[idx+modIdx++] = BitStream[idx]; | |
438 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
439 | } | |
440 | for (; i<(size*2); i++){ | |
441 | BitStream[i] = BitStream[i+20000]; | |
442 | } | |
443 | return i; | |
444 | } | |
445 | ||
f822a063 | 446 | //by marshmellow |
2147c307 | 447 | //take 01 or 10 = 1 and 11 or 00 = 0 |
448 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
13d77ef9 | 449 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 | 450 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 | 451 | { |
2eec55c8 | 452 | uint16_t bitnum = 0; |
453 | uint16_t errCnt = 0; | |
454 | size_t i = offset; | |
2147c307 | 455 | uint16_t MaxBits=512; |
456 | //if not enough samples - error | |
457 | if (*size < 51) return -1; | |
458 | //check for phase change faults - skip one sample if faulty | |
459 | uint8_t offsetA = 1, offsetB = 1; | |
460 | for (; i<48; i+=2){ | |
461 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
462 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
463 | } | |
464 | if (!offsetA && offsetB) offset++; | |
465 | for (i=offset; i<*size-3; i+=2){ | |
466 | //check for phase error | |
13d77ef9 | 467 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 | 468 | BitStream[bitnum++]=7; |
2147c307 | 469 | errCnt++; |
470 | } | |
ba1a299c | 471 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 | 472 | BitStream[bitnum++]=1^invert; |
ba1a299c | 473 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 | 474 | BitStream[bitnum++]=invert; |
ba1a299c | 475 | } else { |
2767fc02 | 476 | BitStream[bitnum++]=7; |
ba1a299c | 477 | errCnt++; |
478 | } | |
6de43508 | 479 | if(bitnum>MaxBits) break; |
ba1a299c | 480 | } |
481 | *size=bitnum; | |
482 | return errCnt; | |
eb191de6 | 483 | } |
484 | ||
fef74fdc | 485 | // by marshmellow |
11081e04 | 486 | // demod gProxIIDemod |
487 | // error returns as -x | |
488 | // success returns start position in BitStream | |
489 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
490 | int gProxII_Demod(uint8_t BitStream[], size_t *size) | |
491 | { | |
492 | size_t startIdx=0; | |
493 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
494 | ||
8ad1e731 | 495 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx)) |
496 | return -3; //preamble not found | |
497 | ||
11081e04 | 498 | if (*size != 96) return -2; //should have found 96 bits |
8ad1e731 | 499 | |
11081e04 | 500 | //check first 6 spacer bits to verify format |
501 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
502 | //confirmed proper separator bits found | |
503 | //return start position | |
504 | return (int) startIdx; | |
505 | } | |
7fa7e812 | 506 | return -5; //spacer bits not found - not a valid gproxII |
11081e04 | 507 | } |
508 | ||
7fa7e812 | 509 | //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) |
f822a063 | 510 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 511 | { |
2eec55c8 | 512 | size_t last_transition = 0; |
513 | size_t idx = 1; | |
ba1a299c | 514 | if (fchigh==0) fchigh=10; |
515 | if (fclow==0) fclow=8; | |
84871873 | 516 | //set the threshold close to 0 (graph) or 128 std to avoid static |
517 | uint8_t threshold_value = 123; | |
ac2df346 | 518 | size_t preLastSample = 0; |
519 | size_t LastSample = 0; | |
520 | size_t currSample = 0; | |
4ac9f078 | 521 | if ( size < 1024 ) return 0; // not enough samples |
522 | ||
8ad1e731 | 523 | //find start of modulating data in trace |
524 | idx = findModStart(dest, size, threshold_value, fchigh); | |
ba1a299c | 525 | |
526 | // Need to threshold first sample | |
4ac9f078 | 527 | if(dest[idx] < threshold_value) dest[0] = 0; |
ba1a299c | 528 | else dest[0] = 1; |
4ac9f078 | 529 | idx++; |
ba1a299c | 530 | |
531 | size_t numBits = 0; | |
532 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
cd0bed3c | 533 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere |
ba1a299c | 534 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
7fa7e812 | 535 | // (could also be fc/5 && fc/7 for fsk1 = 4-9) |
4ac9f078 | 536 | for(; idx < size-20; idx++) { |
ba1a299c | 537 | // threshold current value |
538 | ||
539 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
540 | else dest[idx] = 1; | |
541 | ||
542 | // Check for 0->1 transition | |
7fa7e812 | 543 | if (dest[idx-1] < dest[idx]) { |
ac2df346 | 544 | preLastSample = LastSample; |
545 | LastSample = currSample; | |
546 | currSample = idx-last_transition; | |
6426f6ba | 547 | if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3) |
ba1a299c | 548 | //do nothing with extra garbage |
7fa7e812 | 549 | } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) |
550 | //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) | |
4ac9f078 | 551 | if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){ |
7fa7e812 | 552 | dest[numBits-1]=1; |
ac2df346 | 553 | } |
2eec55c8 | 554 | dest[numBits++]=1; |
ac2df346 | 555 | |
4ac9f078 | 556 | } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage |
557 | //do nothing with beginning garbage and reset.. should be rare.. | |
558 | numBits = 0; | |
7fa7e812 | 559 | } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) |
ac2df346 | 560 | dest[numBits++]=1; |
7fa7e812 | 561 | } else { //9+ = 10 sample waves (or 6+ = 7) |
2eec55c8 | 562 | dest[numBits++]=0; |
ba1a299c | 563 | } |
564 | last_transition = idx; | |
ba1a299c | 565 | } |
566 | } | |
567 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
eb191de6 | 568 | } |
569 | ||
ba1a299c | 570 | //translate 11111100000 to 10 |
7fa7e812 | 571 | //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock |
2eec55c8 | 572 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
e0165dcf | 573 | uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 574 | { |
ba1a299c | 575 | uint8_t lastval=dest[0]; |
2eec55c8 | 576 | size_t idx=0; |
ba1a299c | 577 | size_t numBits=0; |
578 | uint32_t n=1; | |
ba1a299c | 579 | for( idx=1; idx < size; idx++) { |
13d77ef9 | 580 | n++; |
a38f5a07 | 581 | if (dest[idx]==lastval) continue; //skip until we hit a transition |
2eec55c8 | 582 | |
7fa7e812 | 583 | //find out how many bits (n) we collected |
ba1a299c | 584 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 | 585 | if (dest[idx-1]==1) { |
75cbbe9a | 586 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 587 | } else {// 0->1 crossing |
75cbbe9a | 588 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c | 589 | } |
590 | if (n == 0) n = 1; | |
591 | ||
7fa7e812 | 592 | //add to our destination the bits we collected |
2eec55c8 | 593 | memset(dest+numBits, dest[idx-1]^invert , n); |
594 | numBits += n; | |
ba1a299c | 595 | n=0; |
596 | lastval=dest[idx]; | |
597 | }//end for | |
13d77ef9 | 598 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a | 599 | if (n > rfLen/fchigh) { |
13d77ef9 | 600 | if (dest[idx-2]==1) { |
75cbbe9a | 601 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 602 | } else { |
75cbbe9a | 603 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 | 604 | } |
2eec55c8 | 605 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 | 606 | numBits += n; |
607 | } | |
ba1a299c | 608 | return numBits; |
eb191de6 | 609 | } |
6426f6ba | 610 | |
eb191de6 | 611 | //by marshmellow (from holiman's base) |
612 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
f822a063 | 613 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 614 | { |
ba1a299c | 615 | // FSK demodulator |
616 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
2eec55c8 | 617 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); |
ba1a299c | 618 | return size; |
eb191de6 | 619 | } |
a1d17964 | 620 | |
eb191de6 | 621 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 | 622 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 | 623 | { |
e0165dcf | 624 | if (justNoise(dest, *size)) return -1; |
625 | ||
337f7036 | 626 | size_t numStart=0, size2 = *size, startIdx=0; |
e0165dcf | 627 | // FSK demodulator |
628 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
2eec55c8 | 629 | if (*size < 96*2) return -2; |
e0165dcf | 630 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
631 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
8ad1e731 | 632 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
633 | return -3; //preamble not found | |
e0165dcf | 634 | |
635 | numStart = startIdx + sizeof(preamble); | |
636 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
637 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
638 | if (dest[idx] == dest[idx+1]){ | |
639 | return -4; //not manchester data | |
640 | } | |
641 | *hi2 = (*hi2<<1)|(*hi>>31); | |
642 | *hi = (*hi<<1)|(*lo>>31); | |
643 | //Then, shift in a 0 or one into low | |
81b7e894 | 644 | *lo <<= 1; |
e0165dcf | 645 | if (dest[idx] && !dest[idx+1]) // 1 0 |
81b7e894 | 646 | *lo |= 1; |
e0165dcf | 647 | else // 0 1 |
81b7e894 | 648 | *lo |= 0; |
e0165dcf | 649 | } |
650 | return (int)startIdx; | |
eb191de6 | 651 | } |
652 | ||
ec75f5c1 | 653 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 | 654 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 | 655 | { |
a1d17964 | 656 | if (justNoise(dest, *size)) return -1; |
657 | ||
337f7036 | 658 | size_t numStart=0, size2 = *size, startIdx=0; |
ec75f5c1 | 659 | // FSK demodulator |
a1d17964 | 660 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
661 | if (*size < 96) return -2; | |
ec75f5c1 | 662 | |
a1d17964 | 663 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
664 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
8ad1e731 | 665 | if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
666 | return -3; //preamble not found | |
a1d17964 | 667 | |
668 | numStart = startIdx + sizeof(preamble); | |
669 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
670 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
671 | if (dest[idx] == dest[idx+1]) | |
672 | return -4; //not manchester data | |
673 | *hi2 = (*hi2<<1)|(*hi>>31); | |
674 | *hi = (*hi<<1)|(*lo>>31); | |
675 | //Then, shift in a 0 or one into low | |
676 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
677 | *lo=(*lo<<1)|1; | |
678 | else // 0 1 | |
679 | *lo=(*lo<<1)|0; | |
ec75f5c1 | 680 | } |
a1d17964 | 681 | return (int)startIdx; |
ec75f5c1 | 682 | } |
683 | ||
eb191de6 | 684 | int IOdemodFSK(uint8_t *dest, size_t size) |
685 | { | |
a1d17964 | 686 | if (justNoise(dest, size)) return -1; |
ba1a299c | 687 | //make sure buffer has data |
a1d17964 | 688 | if (size < 66*64) return -2; |
ba1a299c | 689 | // FSK demodulator |
a1d17964 | 690 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
691 | if (size < 65) return -3; //did we get a good demod? | |
ba1a299c | 692 | //Index map |
693 | //0 10 20 30 40 50 60 | |
694 | //| | | | | | | | |
695 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
696 | //----------------------------------------------------------------------------- | |
697 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
698 | // | |
699 | //XSF(version)facility:codeone+codetwo | |
700 | //Handle the data | |
a1d17964 | 701 | size_t startIdx = 0; |
702 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
8ad1e731 | 703 | if (! preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx)) |
704 | return -4; //preamble not found | |
eb191de6 | 705 | |
a1d17964 | 706 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
707 | //confirmed proper separator bits found | |
708 | //return start position | |
709 | return (int) startIdx; | |
1e090a61 | 710 | } |
a1d17964 | 711 | return -5; |
1e090a61 | 712 | } |
713 | ||
70459879 | 714 | // by marshmellow |
715 | // find viking preamble 0xF200 in already demoded data | |
716 | int VikingDemod_AM(uint8_t *dest, size_t *size) { | |
70459879 | 717 | //make sure buffer has data |
718 | if (*size < 64*2) return -2; | |
70459879 | 719 | size_t startIdx = 0; |
720 | uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
8ad1e731 | 721 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
722 | return -4; //preamble not found | |
723 | ||
c0afa86f | 724 | uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ |
725 | bytebits_to_byte(dest+startIdx+8,8) ^ | |
726 | bytebits_to_byte(dest+startIdx+16,8) ^ | |
727 | bytebits_to_byte(dest+startIdx+24,8) ^ | |
728 | bytebits_to_byte(dest+startIdx+32,8) ^ | |
729 | bytebits_to_byte(dest+startIdx+40,8) ^ | |
730 | bytebits_to_byte(dest+startIdx+48,8) ^ | |
731 | bytebits_to_byte(dest+startIdx+56,8); | |
732 | if ( checkCalc != 0xA8 ) return -5; | |
57c7b44b | 733 | if (*size != 64) return -6; |
70459879 | 734 | //return start position |
deba67ab | 735 | return (int)startIdx; |
70459879 | 736 | } |
737 | ||
5daad826 | 738 | // by iceman |
739 | // find Visa2000 preamble in already demoded data | |
740 | int Visa2kDemod_AM(uint8_t *dest, size_t *size) { | |
371a40bf | 741 | if (*size < 96) return -1; //make sure buffer has data |
5daad826 | 742 | size_t startIdx = 0; |
743 | uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; | |
8ad1e731 | 744 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
745 | return -2; //preamble not found | |
5daad826 | 746 | if (*size != 96) return -3; //wrong demoded size |
747 | //return start position | |
deba67ab | 748 | return (int)startIdx; |
5daad826 | 749 | } |
207fc33a | 750 | // by iceman |
751 | // find Noralsy preamble in already demoded data | |
752 | int NoralsyDemod_AM(uint8_t *dest, size_t *size) { | |
7d269265 | 753 | if (*size < 96) return -1; //make sure buffer has data |
207fc33a | 754 | size_t startIdx = 0; |
755 | uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0}; | |
8ad1e731 | 756 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
757 | return -2; //preamble not found | |
207fc33a | 758 | if (*size != 96) return -3; //wrong demoded size |
759 | //return start position | |
deba67ab | 760 | return (int)startIdx; |
207fc33a | 761 | } |
4469412e | 762 | // find presco preamble 0x10D in already demoded data |
763 | int PrescoDemod(uint8_t *dest, size_t *size) { | |
d48175d4 | 764 | if (*size < 128*2) return -1; //make sure buffer has data |
4469412e | 765 | size_t startIdx = 0; |
d48175d4 | 766 | uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; |
8ad1e731 | 767 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
768 | return -2; //preamble not found | |
d48175d4 | 769 | if (*size != 128) return -3; //wrong demoded size |
4469412e | 770 | //return start position |
deba67ab | 771 | return (int)startIdx; |
4469412e | 772 | } |
773 | ||
615f21dd | 774 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID |
0df669a2 | 775 | // BitStream must contain previously askrawdemod and biphasedemoded data |
deba67ab | 776 | int FDXBdemodBI(uint8_t *dest, size_t *size) { |
777 | if (*size < 128*2) return -1; //make sure buffer has enough data | |
615f21dd | 778 | size_t startIdx = 0; |
0df669a2 | 779 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; |
8ad1e731 | 780 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
781 | return -2; //preamble not found | |
deba67ab | 782 | if (*size != 128) return -3; //wrong demoded size |
783 | //return start position | |
615f21dd | 784 | return (int)startIdx; |
785 | } | |
1e090a61 | 786 | |
6c283951 | 787 | // ASK/Diphase fc/64 (inverted Biphase) |
788 | // Note: this i s not a demod, this is only a detection | |
789 | // the parameter *dest needs to be demoded before call | |
deba67ab | 790 | // 0xFFFF preamble, 64bits |
6c283951 | 791 | int JablotronDemod(uint8_t *dest, size_t *size){ |
deba67ab | 792 | if (*size < 64*2) return -1; //make sure buffer has enough data |
6c283951 | 793 | size_t startIdx = 0; |
deba67ab | 794 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; |
8ad1e731 | 795 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
796 | return -2; //preamble not found | |
deba67ab | 797 | if (*size != 64) return -3; // wrong demoded size |
6c283951 | 798 | |
29ce214c | 799 | uint8_t checkchksum = 0; |
6c283951 | 800 | for (int i=16; i < 56; i += 8) { |
29ce214c | 801 | checkchksum += bytebits_to_byte(dest+startIdx+i,8); |
6c283951 | 802 | } |
29ce214c | 803 | checkchksum ^= 0x3A; |
29ce214c | 804 | uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8); |
deba67ab | 805 | if ( checkchksum != crc ) return -5; |
6c283951 | 806 | return (int)startIdx; |
807 | } | |
808 | ||
1e090a61 | 809 | // by marshmellow |
810 | // FSK Demod then try to locate an AWID ID | |
a1d17964 | 811 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 812 | { |
a1d17964 | 813 | //make sure buffer has enough data |
814 | if (*size < 96*50) return -1; | |
815 | ||
816 | if (justNoise(dest, *size)) return -2; | |
1e090a61 | 817 | |
818 | // FSK demodulator | |
a1d17964 | 819 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
820 | if (*size < 96) return -3; //did we get a good demod? | |
821 | ||
822 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
823 | size_t startIdx = 0; | |
8ad1e731 | 824 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
825 | return -4; //preamble not found | |
a1d17964 | 826 | if (*size != 96) return -5; |
827 | return (int)startIdx; | |
1e090a61 | 828 | } |
829 | ||
830 | // by marshmellow | |
6426f6ba | 831 | // FSK Demod then try to locate a Farpointe Data (pyramid) ID |
a1d17964 | 832 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 833 | { |
f3bf15e4 | 834 | //make sure buffer has data |
835 | if (*size < 128*50) return -5; | |
a1d17964 | 836 | |
f3bf15e4 | 837 | //test samples are not just noise |
838 | if (justNoise(dest, *size)) return -1; | |
1e090a61 | 839 | |
f3bf15e4 | 840 | // FSK demodulator |
841 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
842 | if (*size < 128) return -2; //did we get a good demod? | |
a1d17964 | 843 | size_t startIdx = 0; |
8ad1e731 | 844 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}; |
845 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) | |
846 | return -4; //preamble not found | |
a1d17964 | 847 | if (*size != 128) return -3; |
848 | return (int)startIdx; | |
1e090a61 | 849 | } |
850 | ||
0cbe0cb8 | 851 | // find nedap preamble in already demoded data |
56bbb25a | 852 | int NedapDemod(uint8_t *dest, size_t *size) { |
853 | //make sure buffer has data | |
854 | if (*size < 128) return -3; | |
96faed21 | 855 | |
56bbb25a | 856 | size_t startIdx = 0; |
15d49e82 | 857 | //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1}; |
858 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0}; | |
8ad1e731 | 859 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
860 | return -4; //preamble not found | |
56bbb25a | 861 | return (int) startIdx; |
862 | } | |
863 | ||
3acac886 | 864 | // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits |
865 | // by iceman | |
866 | int IdteckDemodPSK(uint8_t *dest, size_t *size) { | |
867 | //make sure buffer has data | |
868 | if (*size < 64*2) return -1; | |
869 | size_t startIdx = 0; | |
870 | uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1}; | |
8ad1e731 | 871 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
872 | return -2; //preamble not found | |
3acac886 | 873 | if (*size != 64) return -3; // wrong demoded size |
874 | return (int) startIdx; | |
875 | } | |
876 | ||
fef74fdc | 877 | // by marshmellow |
878 | // to detect a wave that has heavily clipped (clean) samples | |
cc15a118 | 879 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
6de43508 | 880 | { |
6426f6ba | 881 | bool allArePeaks = true; |
6de43508 | 882 | uint16_t cntPeaks=0; |
6426f6ba | 883 | size_t loopEnd = 512+160; |
1fbf8956 | 884 | if (loopEnd > size) loopEnd = size; |
6426f6ba | 885 | for (size_t i=160; i<loopEnd; i++){ |
6de43508 | 886 | if (dest[i]>low && dest[i]<high) |
6426f6ba | 887 | allArePeaks = false; |
6de43508 | 888 | else |
889 | cntPeaks++; | |
890 | } | |
6426f6ba | 891 | if (!allArePeaks){ |
892 | if (cntPeaks > 300) return true; | |
6de43508 | 893 | } |
6426f6ba | 894 | return allArePeaks; |
6de43508 | 895 | } |
2eec55c8 | 896 | // by marshmellow |
897 | // to help detect clocks on heavily clipped samples | |
cc15a118 | 898 | // based on count of low to low |
899 | int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low) | |
13d77ef9 | 900 | { |
cc15a118 | 901 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
902 | size_t startwave; | |
6426f6ba | 903 | size_t i = 100; |
cc15a118 | 904 | size_t minClk = 255; |
905 | // get to first full low to prime loop and skip incomplete first pulse | |
906 | while ((dest[i] < high) && (i < size)) | |
907 | ++i; | |
908 | while ((dest[i] > low) && (i < size)) | |
909 | ++i; | |
910 | ||
911 | // loop through all samples | |
912 | while (i < size) { | |
913 | // measure from low to low | |
914 | while ((dest[i] > low) && (i < size)) | |
915 | ++i; | |
916 | startwave= i; | |
917 | while ((dest[i] < high) && (i < size)) | |
918 | ++i; | |
919 | while ((dest[i] > low) && (i < size)) | |
920 | ++i; | |
921 | //get minimum measured distance | |
922 | if (i-startwave < minClk && i < size) | |
923 | minClk = i - startwave; | |
13d77ef9 | 924 | } |
cc15a118 | 925 | // set clock |
a126332a | 926 | if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk); |
cc15a118 | 927 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
928 | if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1) | |
929 | return fndClk[clkCnt]; | |
13d77ef9 | 930 | } |
cc15a118 | 931 | return 0; |
13d77ef9 | 932 | } |
933 | ||
eb191de6 | 934 | // by marshmellow |
935 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
936 | // maybe somehow adjust peak trimming value based on samples to fix? | |
6de43508 | 937 | // return start index of best starting position for that clock and return clock (by reference) |
938 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) | |
eb191de6 | 939 | { |
6e984446 | 940 | size_t i=1; |
cc15a118 | 941 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; |
942 | uint8_t clkEnd = 9; | |
2eec55c8 | 943 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
6426f6ba | 944 | if (size <= loopCnt+60) return -1; //not enough samples |
945 | size -= 60; //sometimes there is a strange end wave - filter out this.... | |
6e984446 | 946 | //if we already have a valid clock |
947 | uint8_t clockFnd=0; | |
cc15a118 | 948 | for (;i<clkEnd;++i) |
949 | if (clk[i] == *clock) clockFnd = i; | |
6e984446 | 950 | //clock found but continue to find best startpos |
e0165dcf | 951 | |
952 | //get high and low peak | |
953 | int peak, low; | |
2eec55c8 | 954 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf | 955 | |
956 | //test for large clean peaks | |
cc15a118 | 957 | if (!clockFnd){ |
958 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
959 | int ans = DetectStrongAskClock(dest, size, peak, low); | |
a126332a | 960 | if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans); |
cc15a118 | 961 | for (i=clkEnd-1; i>0; i--){ |
962 | if (clk[i] == ans) { | |
963 | *clock = ans; | |
964 | //clockFnd = i; | |
965 | return 0; // for strong waves i don't use the 'best start position' yet... | |
966 | //break; //clock found but continue to find best startpos [not yet] | |
967 | } | |
e0165dcf | 968 | } |
969 | } | |
970 | } | |
2eec55c8 | 971 | uint8_t ii; |
972 | uint8_t clkCnt, tol = 0; | |
973 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
974 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
975 | size_t errCnt = 0; | |
976 | size_t arrLoc, loopEnd; | |
6e984446 | 977 | |
cc15a118 | 978 | if (clockFnd>0) { |
979 | clkCnt = clockFnd; | |
980 | clkEnd = clockFnd+1; | |
81e82dfe | 981 | } else { |
982 | clkCnt=1; | |
cc15a118 | 983 | } |
cc15a118 | 984 | |
985 | //test each valid clock from smallest to greatest to see which lines up | |
81e82dfe | 986 | for(; clkCnt < clkEnd; clkCnt++) { |
987 | if (clk[clkCnt] <= 32) { | |
e0165dcf | 988 | tol=1; |
81e82dfe | 989 | } else { |
e0165dcf | 990 | tol=0; |
991 | } | |
2767fc02 | 992 | //if no errors allowed - keep start within the first clock |
81e82dfe | 993 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) |
994 | loopCnt = clk[clkCnt] * 2; | |
995 | ||
996 | bestErr[clkCnt] = 1000; | |
997 | ||
6e984446 | 998 | //try lining up the peaks by moving starting point (try first few clocks) |
cc15a118 | 999 | for (ii=0; ii < loopCnt; ii++){ |
2eec55c8 | 1000 | if (dest[ii] < peak && dest[ii] > low) continue; |
1001 | ||
81e82dfe | 1002 | errCnt = 0; |
2eec55c8 | 1003 | // now that we have the first one lined up test rest of wave array |
1004 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; | |
1005 | for (i=0; i < loopEnd; ++i){ | |
1006 | arrLoc = ii + (i * clk[clkCnt]); | |
1007 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ | |
1008 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ | |
1009 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ | |
1010 | }else{ //error no peak detected | |
1011 | errCnt++; | |
e0165dcf | 1012 | } |
1013 | } | |
cc15a118 | 1014 | //if we found no errors then we can stop here and a low clock (common clocks) |
2eec55c8 | 1015 | // this is correct one - return this clock |
81e82dfe | 1016 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i); |
1017 | if (errCnt==0 && clkCnt<7) { | |
cc15a118 | 1018 | if (!clockFnd) *clock = clk[clkCnt]; |
2eec55c8 | 1019 | return ii; |
1020 | } | |
1021 | //if we found errors see if it is lowest so far and save it as best run | |
81e82dfe | 1022 | if (errCnt < bestErr[clkCnt]) { |
1023 | bestErr[clkCnt] = errCnt; | |
1024 | bestStart[clkCnt] = ii; | |
2eec55c8 | 1025 | } |
e0165dcf | 1026 | } |
1027 | } | |
81e82dfe | 1028 | uint8_t k; |
1029 | uint8_t best = 0; | |
1030 | for (k=1; k < clkEnd; ++k){ | |
1031 | if (bestErr[k] < bestErr[best]){ | |
1032 | if (bestErr[k] == 0) bestErr[k]=1; | |
e0165dcf | 1033 | // current best bit to error ratio vs new bit to error ratio |
81e82dfe | 1034 | if ( (size/clk[best])/bestErr[best] < (size/clk[k])/bestErr[k] ){ |
1035 | best = k; | |
e0165dcf | 1036 | } |
1037 | } | |
81e82dfe | 1038 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]); |
e0165dcf | 1039 | } |
cc15a118 | 1040 | if (!clockFnd) *clock = clk[best]; |
e0165dcf | 1041 | return bestStart[best]; |
eb191de6 | 1042 | } |
ba1a299c | 1043 | |
1044 | //by marshmellow | |
6de43508 | 1045 | //detect psk clock by reading each phase shift |
1046 | // a phase shift is determined by measuring the sample length of each wave | |
1047 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) | |
ba1a299c | 1048 | { |
e0165dcf | 1049 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
1050 | uint16_t loopCnt = 4096; //don't need to loop through entire array... | |
1051 | if (size == 0) return 0; | |
6426f6ba | 1052 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf | 1053 | |
1054 | //if we already have a valid clock quit | |
1055 | size_t i=1; | |
1056 | for (; i < 8; ++i) | |
1057 | if (clk[i] == clock) return clock; | |
1058 | ||
1059 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1060 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; | |
1061 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; | |
1062 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
1063 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
2eec55c8 | 1064 | fc = countFC(dest, size, 0); |
1065 | if (fc!=2 && fc!=4 && fc!=8) return -1; | |
a126332a | 1066 | if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc); |
e0165dcf | 1067 | |
1068 | //find first full wave | |
6426f6ba | 1069 | for (i=160; i<loopCnt; i++){ |
e0165dcf | 1070 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1071 | if (waveStart == 0) { | |
1072 | waveStart = i+1; | |
6426f6ba | 1073 | //prnt("DEBUG: waveStart: %d",waveStart); |
e0165dcf | 1074 | } else { |
1075 | waveEnd = i+1; | |
6426f6ba | 1076 | //prnt("DEBUG: waveEnd: %d",waveEnd); |
e0165dcf | 1077 | waveLenCnt = waveEnd-waveStart; |
1078 | if (waveLenCnt > fc){ | |
1079 | firstFullWave = waveStart; | |
1080 | fullWaveLen=waveLenCnt; | |
1081 | break; | |
1082 | } | |
1083 | waveStart=0; | |
1084 | } | |
1085 | } | |
1086 | } | |
a126332a | 1087 | if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
e0165dcf | 1088 | |
1089 | //test each valid clock from greatest to smallest to see which lines up | |
1090 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ | |
1091 | lastClkBit = firstFullWave; //set end of wave as clock align | |
1092 | waveStart = 0; | |
1093 | errCnt=0; | |
1094 | peakcnt=0; | |
a126332a | 1095 | if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); |
e0165dcf | 1096 | |
1097 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
1098 | //top edge of wave = start of new wave | |
1099 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1100 | if (waveStart == 0) { | |
1101 | waveStart = i+1; | |
1102 | waveLenCnt=0; | |
1103 | } else { //waveEnd | |
1104 | waveEnd = i+1; | |
1105 | waveLenCnt = waveEnd-waveStart; | |
1106 | if (waveLenCnt > fc){ | |
1107 | //if this wave is a phase shift | |
a126332a | 1108 | if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc); |
e0165dcf | 1109 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit |
1110 | peakcnt++; | |
1111 | lastClkBit+=clk[clkCnt]; | |
1112 | } else if (i<lastClkBit+8){ | |
1113 | //noise after a phase shift - ignore | |
1114 | } else { //phase shift before supposed to based on clock | |
1115 | errCnt++; | |
1116 | } | |
1117 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ | |
1118 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
1119 | } | |
1120 | waveStart=i+1; | |
1121 | } | |
1122 | } | |
1123 | } | |
1124 | if (errCnt == 0){ | |
1125 | return clk[clkCnt]; | |
1126 | } | |
1127 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
1128 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; | |
1129 | } | |
1130 | //all tested with errors | |
1131 | //return the highest clk with the most peaks found | |
1132 | uint8_t best=7; | |
1133 | for (i=7; i>=1; i--){ | |
1134 | if (peaksdet[i] > peaksdet[best]) { | |
1135 | best = i; | |
1136 | } | |
a126332a | 1137 | if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); |
e0165dcf | 1138 | } |
1139 | return clk[best]; | |
ba1a299c | 1140 | } |
1141 | ||
6426f6ba | 1142 | int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){ |
1143 | //find shortest transition from high to low | |
1144 | size_t i = 0; | |
1145 | size_t transition1 = 0; | |
1146 | int lowestTransition = 255; | |
1147 | bool lastWasHigh = false; | |
1148 | ||
1149 | //find first valid beginning of a high or low wave | |
1150 | while ((dest[i] >= peak || dest[i] <= low) && (i < size)) | |
1151 | ++i; | |
1152 | while ((dest[i] < peak && dest[i] > low) && (i < size)) | |
1153 | ++i; | |
1154 | lastWasHigh = (dest[i] >= peak); | |
1155 | ||
1156 | if (i==size) return 0; | |
1157 | transition1 = i; | |
1158 | ||
1159 | for (;i < size; i++) { | |
1160 | if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { | |
1161 | lastWasHigh = (dest[i] >= peak); | |
1162 | if (i-transition1 < lowestTransition) lowestTransition = i-transition1; | |
1163 | transition1 = i; | |
1164 | } | |
1165 | } | |
6426f6ba | 1166 | if (lowestTransition == 255) lowestTransition = 0; |
a126332a | 1167 | if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); |
6426f6ba | 1168 | return lowestTransition; |
1169 | } | |
1170 | ||
6de43508 | 1171 | //by marshmellow |
1172 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
1173 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) | |
ba1a299c | 1174 | { |
2eec55c8 | 1175 | size_t i=0; |
1176 | uint8_t clk[]={8,16,32,40,50,64,100,128,255}; | |
1177 | size_t loopCnt = 4096; //don't need to loop through entire array... | |
e0165dcf | 1178 | if (size == 0) return 0; |
6426f6ba | 1179 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf | 1180 | //if we already have a valid clock quit |
1181 | for (; i < 8; ++i) | |
1182 | if (clk[i] == clock) return clock; | |
1183 | ||
1184 | //get high and low peak | |
1185 | int peak, low; | |
2eec55c8 | 1186 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf | 1187 | |
6426f6ba | 1188 | int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low); |
2eec55c8 | 1189 | size_t ii; |
e0165dcf | 1190 | uint8_t clkCnt; |
1191 | uint8_t tol = 0; | |
6426f6ba | 1192 | uint16_t smplCnt = 0; |
1193 | int16_t peakcnt = 0; | |
1194 | int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; | |
1195 | uint16_t maxPeak = 255; | |
1196 | bool firstpeak = false; | |
e0165dcf | 1197 | //test for large clipped waves |
1198 | for (i=0; i<loopCnt; i++){ | |
1199 | if (dest[i] >= peak || dest[i] <= low){ | |
6426f6ba | 1200 | if (!firstpeak) continue; |
1201 | smplCnt++; | |
e0165dcf | 1202 | } else { |
6426f6ba | 1203 | firstpeak=true; |
1204 | if (smplCnt > 6 ){ | |
1205 | if (maxPeak > smplCnt){ | |
1206 | maxPeak = smplCnt; | |
1207 | //prnt("maxPk: %d",maxPeak); | |
1208 | } | |
1209 | peakcnt++; | |
1210 | //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt); | |
1211 | smplCnt=0; | |
e0165dcf | 1212 | } |
e0165dcf | 1213 | } |
1214 | } | |
6426f6ba | 1215 | bool errBitHigh = 0; |
1216 | bool bitHigh = 0; | |
1217 | uint8_t ignoreCnt = 0; | |
1218 | uint8_t ignoreWindow = 4; | |
1219 | bool lastPeakHigh = 0; | |
1220 | int lastBit = 0; | |
e0165dcf | 1221 | peakcnt=0; |
1222 | //test each valid clock from smallest to greatest to see which lines up | |
1223 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ | |
6426f6ba | 1224 | //ignore clocks smaller than smallest peak |
1225 | if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue; | |
e0165dcf | 1226 | //try lining up the peaks by moving starting point (try first 256) |
6426f6ba | 1227 | for (ii=20; ii < loopCnt; ++ii){ |
e0165dcf | 1228 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ |
1229 | peakcnt=0; | |
6426f6ba | 1230 | bitHigh = false; |
1231 | ignoreCnt = 0; | |
1232 | lastBit = ii-clk[clkCnt]; | |
1233 | //loop through to see if this start location works | |
1234 | for (i = ii; i < size-20; ++i) { | |
1235 | //if we are at a clock bit | |
1236 | if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { | |
1237 | //test high/low | |
1238 | if (dest[i] >= peak || dest[i] <= low) { | |
1239 | //if same peak don't count it | |
1240 | if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { | |
e0165dcf | 1241 | peakcnt++; |
6426f6ba | 1242 | } |
1243 | lastPeakHigh = (dest[i] >= peak); | |
1244 | bitHigh = true; | |
1245 | errBitHigh = false; | |
1246 | ignoreCnt = ignoreWindow; | |
1247 | lastBit += clk[clkCnt]; | |
1248 | } else if (i == lastBit + clk[clkCnt] + tol) { | |
1249 | lastBit += clk[clkCnt]; | |
1250 | } | |
1251 | //else if not a clock bit and no peaks | |
1252 | } else if (dest[i] < peak && dest[i] > low){ | |
1253 | if (ignoreCnt==0){ | |
1254 | bitHigh=false; | |
1255 | if (errBitHigh==true) peakcnt--; | |
1256 | errBitHigh=false; | |
1257 | } else { | |
1258 | ignoreCnt--; | |
1259 | } | |
1260 | // else if not a clock bit but we have a peak | |
1261 | } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { | |
1262 | //error bar found no clock... | |
1263 | errBitHigh=true; | |
e0165dcf | 1264 | } |
1265 | } | |
1266 | if(peakcnt>peaksdet[clkCnt]) { | |
1267 | peaksdet[clkCnt]=peakcnt; | |
1268 | } | |
1269 | } | |
1270 | } | |
1271 | } | |
1272 | int iii=7; | |
2eec55c8 | 1273 | uint8_t best=0; |
e0165dcf | 1274 | for (iii=7; iii > 0; iii--){ |
6426f6ba | 1275 | if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) { |
1276 | if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) { | |
1277 | best = iii; | |
1278 | } | |
1279 | } else if (peaksdet[iii] > peaksdet[best]){ | |
e0165dcf | 1280 | best = iii; |
1281 | } | |
a126332a | 1282 | if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition); |
e0165dcf | 1283 | } |
6426f6ba | 1284 | |
e0165dcf | 1285 | return clk[best]; |
ba1a299c | 1286 | } |
1287 | ||
04d2721b | 1288 | // by marshmellow |
1289 | // convert psk1 demod to psk2 demod | |
1290 | // only transition waves are 1s | |
4ac9f078 | 1291 | void psk1TOpsk2(uint8_t *bits, size_t size) { |
1292 | uint8_t lastBit = bits[0]; | |
1293 | for (size_t i = 1; i < size; i++){ | |
1294 | //ignore errors | |
1295 | if (bits[i] == 7) continue; | |
1296 | ||
1297 | if (lastBit != bits[i]){ | |
1298 | lastBit = bits[i]; | |
1299 | bits[i] = 1; | |
04d2721b | 1300 | } else { |
4ac9f078 | 1301 | bits[i] = 0; |
04d2721b | 1302 | } |
1303 | } | |
04d2721b | 1304 | } |
ba1a299c | 1305 | |
3bc66a96 | 1306 | // by marshmellow |
1307 | // convert psk2 demod to psk1 demod | |
1308 | // from only transition waves are 1s to phase shifts change bit | |
4ac9f078 | 1309 | void psk2TOpsk1(uint8_t *bits, size_t size) { |
1310 | uint8_t phase = 0; | |
1311 | for (size_t i = 0; i < size; i++){ | |
1312 | if (bits[i] == 1){ | |
1313 | phase ^= 1; | |
3bc66a96 | 1314 | } |
4ac9f078 | 1315 | bits[i] = phase; |
3bc66a96 | 1316 | } |
3bc66a96 | 1317 | } |
1318 | ||
04d2721b | 1319 | // redesigned by marshmellow adjusted from existing decode functions |
1320 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
ba1a299c | 1321 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1322 | { | |
1323 | //26 bit 40134 format (don't know other formats) | |
57c7b44b | 1324 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
1325 | uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; | |
1326 | size_t startidx = 0; | |
1327 | if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){ | |
1328 | // if didn't find preamble try again inverting | |
1329 | if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1; | |
1330 | *invert ^= 1; | |
1331 | } | |
1332 | if (*size != 64 && *size != 224) return -2; | |
1333 | if (*invert==1) | |
1334 | for (size_t i = startidx; i < *size; i++) | |
1335 | bitStream[i] ^= 1; | |
ba1a299c | 1336 | |
57c7b44b | 1337 | return (int) startidx; |
ba1a299c | 1338 | } |
1339 | ||
05164399 | 1340 | // by marshmellow - demodulate NRZ wave - requires a read with strong signal |
04d2721b | 1341 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
6426f6ba | 1342 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){ |
e0165dcf | 1343 | if (justNoise(dest, *size)) return -1; |
1344 | *clk = DetectNRZClock(dest, *size, *clk); | |
1345 | if (*clk==0) return -2; | |
2eec55c8 | 1346 | size_t i, gLen = 4096; |
6426f6ba | 1347 | if (gLen>*size) gLen = *size-20; |
e0165dcf | 1348 | int high, low; |
1349 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
6426f6ba | 1350 | |
1351 | uint8_t bit=0; | |
1352 | //convert wave samples to 1's and 0's | |
1353 | for(i=20; i < *size-20; i++){ | |
1354 | if (dest[i] >= high) bit = 1; | |
1355 | if (dest[i] <= low) bit = 0; | |
1356 | dest[i] = bit; | |
e0165dcf | 1357 | } |
6426f6ba | 1358 | //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) |
1359 | size_t lastBit = 0; | |
1360 | size_t numBits = 0; | |
1361 | for(i=21; i < *size-20; i++) { | |
1362 | //if transition detected or large number of same bits - store the passed bits | |
1363 | if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { | |
1364 | memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); | |
1365 | numBits += (i - lastBit + (*clk/4)) / *clk; | |
1366 | lastBit = i-1; | |
e0165dcf | 1367 | } |
e0165dcf | 1368 | } |
6426f6ba | 1369 | *size = numBits; |
1370 | return 0; | |
ba1a299c | 1371 | } |
1372 | ||
1e090a61 | 1373 | //by marshmellow |
03e6bb4a | 1374 | //detects the bit clock for FSK given the high and low Field Clocks |
1375 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) | |
1e090a61 | 1376 | { |
e0165dcf | 1377 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1378 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1379 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1380 | uint8_t rfLensFnd = 0; | |
2eec55c8 | 1381 | uint8_t lastFCcnt = 0; |
1382 | uint16_t fcCounter = 0; | |
e0165dcf | 1383 | uint16_t rfCounter = 0; |
1384 | uint8_t firstBitFnd = 0; | |
1385 | size_t i; | |
1386 | if (size == 0) return 0; | |
1387 | ||
6426f6ba | 1388 | uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); |
e0165dcf | 1389 | rfLensFnd=0; |
1390 | fcCounter=0; | |
1391 | rfCounter=0; | |
1392 | firstBitFnd=0; | |
a38f5a07 | 1393 | //prnt("DEBUG: fcTol: %d",fcTol); |
6426f6ba | 1394 | // prime i to first peak / up transition |
1395 | for (i = 160; i < size-20; i++) | |
e0165dcf | 1396 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) |
1397 | break; | |
1398 | ||
6426f6ba | 1399 | for (; i < size-20; i++){ |
2eec55c8 | 1400 | fcCounter++; |
1401 | rfCounter++; | |
1402 | ||
1403 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) | |
1404 | continue; | |
1405 | // else new peak | |
1406 | // if we got less than the small fc + tolerance then set it to the small fc | |
8ad1e731 | 1407 | // if it is inbetween set it to the last counter |
1408 | if (fcCounter < fcHigh && fcCounter > fcLow) | |
1409 | fcCounter = lastFCcnt; | |
1410 | else if (fcCounter < fcLow+fcTol) | |
2eec55c8 | 1411 | fcCounter = fcLow; |
1412 | else //set it to the large fc | |
1413 | fcCounter = fcHigh; | |
1414 | ||
1415 | //look for bit clock (rf/xx) | |
1416 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ | |
1417 | //not the same size as the last wave - start of new bit sequence | |
1418 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit | |
1419 | for (int ii=0; ii<15; ii++){ | |
6426f6ba | 1420 | if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ |
2eec55c8 | 1421 | rfCnts[ii]++; |
1422 | rfCounter = 0; | |
1423 | break; | |
e0165dcf | 1424 | } |
e0165dcf | 1425 | } |
2eec55c8 | 1426 | if (rfCounter > 0 && rfLensFnd < 15){ |
a38f5a07 | 1427 | //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); |
2eec55c8 | 1428 | rfCnts[rfLensFnd]++; |
1429 | rfLens[rfLensFnd++] = rfCounter; | |
1430 | } | |
1431 | } else { | |
1432 | firstBitFnd++; | |
e0165dcf | 1433 | } |
2eec55c8 | 1434 | rfCounter=0; |
1435 | lastFCcnt=fcCounter; | |
e0165dcf | 1436 | } |
2eec55c8 | 1437 | fcCounter=0; |
e0165dcf | 1438 | } |
1439 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
1440 | ||
1441 | for (i=0; i<15; i++){ | |
e0165dcf | 1442 | //get highest 2 RF values (might need to get more values to compare or compare all?) |
1443 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
1444 | rfHighest3=rfHighest2; | |
1445 | rfHighest2=rfHighest; | |
1446 | rfHighest=i; | |
1447 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
1448 | rfHighest3=rfHighest2; | |
1449 | rfHighest2=i; | |
1450 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
1451 | rfHighest3=i; | |
1452 | } | |
a126332a | 1453 | if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); |
e0165dcf | 1454 | } |
1455 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
1456 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
1457 | uint8_t tol1 = fcHigh+1; | |
1458 | ||
a126332a | 1459 | if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); |
e0165dcf | 1460 | |
1461 | // loop to find the highest clock that has a remainder less than the tolerance | |
1462 | // compare samples counted divided by | |
6426f6ba | 1463 | // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) |
e0165dcf | 1464 | int ii=7; |
6426f6ba | 1465 | for (; ii>=2; ii--){ |
e0165dcf | 1466 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ |
1467 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
1468 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
a126332a | 1469 | if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); |
e0165dcf | 1470 | break; |
1471 | } | |
1472 | } | |
1473 | } | |
1474 | } | |
1475 | ||
8ad1e731 | 1476 | if (ii<2) return 0; // oops we went too far |
e0165dcf | 1477 | |
1478 | return clk[ii]; | |
03e6bb4a | 1479 | } |
1e090a61 | 1480 | |
03e6bb4a | 1481 | //by marshmellow |
1482 | //countFC is to detect the field clock lengths. | |
1483 | //counts and returns the 2 most common wave lengths | |
6de43508 | 1484 | //mainly used for FSK field clock detection |
2eec55c8 | 1485 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a | 1486 | { |
6426f6ba | 1487 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1488 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
e0165dcf | 1489 | uint8_t fcLensFnd = 0; |
1a4b9073 | 1490 | uint8_t lastFCcnt = 0; |
2eec55c8 | 1491 | uint8_t fcCounter = 0; |
e0165dcf | 1492 | size_t i; |
1a4b9073 | 1493 | if (size < 180) return 0; |
e0165dcf | 1494 | |
1495 | // prime i to first up transition | |
6426f6ba | 1496 | for (i = 160; i < size-20; i++) |
e0165dcf | 1497 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) |
1498 | break; | |
1499 | ||
6426f6ba | 1500 | for (; i < size-20; i++){ |
e0165dcf | 1501 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ |
1502 | // new up transition | |
1503 | fcCounter++; | |
2eec55c8 | 1504 | if (fskAdj){ |
1505 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
1506 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
1507 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) | |
1508 | if ((fcCounter==9) || fcCounter==4) fcCounter++; | |
e0165dcf | 1509 | // save last field clock count (fc/xx) |
2eec55c8 | 1510 | lastFCcnt = fcCounter; |
1511 | } | |
e0165dcf | 1512 | // find which fcLens to save it to: |
6426f6ba | 1513 | for (int ii=0; ii<15; ii++){ |
e0165dcf | 1514 | if (fcLens[ii]==fcCounter){ |
1515 | fcCnts[ii]++; | |
1516 | fcCounter=0; | |
1517 | break; | |
1518 | } | |
1519 | } | |
6426f6ba | 1520 | if (fcCounter>0 && fcLensFnd<15){ |
e0165dcf | 1521 | //add new fc length |
1522 | fcCnts[fcLensFnd]++; | |
1523 | fcLens[fcLensFnd++]=fcCounter; | |
1524 | } | |
1525 | fcCounter=0; | |
1526 | } else { | |
1527 | // count sample | |
1528 | fcCounter++; | |
1529 | } | |
1530 | } | |
1531 | ||
6426f6ba | 1532 | uint8_t best1=14, best2=14, best3=14; |
e0165dcf | 1533 | uint16_t maxCnt1=0; |
1534 | // go through fclens and find which ones are bigest 2 | |
6426f6ba | 1535 | for (i=0; i<15; i++){ |
e0165dcf | 1536 | // get the 3 best FC values |
1537 | if (fcCnts[i]>maxCnt1) { | |
1538 | best3=best2; | |
1539 | best2=best1; | |
1540 | maxCnt1=fcCnts[i]; | |
1541 | best1=i; | |
1542 | } else if(fcCnts[i]>fcCnts[best2]){ | |
1543 | best3=best2; | |
1544 | best2=i; | |
1545 | } else if(fcCnts[i]>fcCnts[best3]){ | |
1546 | best3=i; | |
1547 | } | |
a126332a | 1548 | if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); |
e0165dcf | 1549 | } |
6426f6ba | 1550 | if (fcLens[best1]==0) return 0; |
e0165dcf | 1551 | uint8_t fcH=0, fcL=0; |
1552 | if (fcLens[best1]>fcLens[best2]){ | |
1553 | fcH=fcLens[best1]; | |
1554 | fcL=fcLens[best2]; | |
1555 | } else{ | |
1556 | fcH=fcLens[best2]; | |
1557 | fcL=fcLens[best1]; | |
1558 | } | |
a126332a | 1559 | if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { |
1560 | if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); | |
1561 | return 0; //lots of waves not psk or fsk | |
1562 | } | |
e0165dcf | 1563 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1564 | ||
1565 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
2eec55c8 | 1566 | if (fskAdj) return fcs; |
1567 | return fcLens[best1]; | |
6de43508 | 1568 | } |
1569 | ||
1570 | //by marshmellow - demodulate PSK1 wave | |
1571 | //uses wave lengths (# Samples) | |
1572 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) | |
1573 | { | |
e0165dcf | 1574 | if (size == 0) return -1; |
2eec55c8 | 1575 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1576 | if (*size<loopCnt) loopCnt = *size; |
1577 | ||
6426f6ba | 1578 | size_t numBits=0; |
e0165dcf | 1579 | uint8_t curPhase = *invert; |
4ac9f078 | 1580 | size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; |
8ad1e731 | 1581 | uint16_t fc=0, fullWaveLen=0, tol=1; |
1582 | uint16_t errCnt=0, waveLenCnt=0, errCnt2=0; | |
1583 | fc = countFC(dest, *size, 1); | |
1584 | uint8_t fc2 = fc >> 8; | |
1585 | if (fc2 == 10) return -1; //fsk found - quit | |
1586 | fc = fc & 0xFF; | |
e0165dcf | 1587 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
a38f5a07 | 1588 | //prnt("DEBUG: FC: %d",fc); |
e0165dcf | 1589 | *clock = DetectPSKClock(dest, *size, *clock); |
2eec55c8 | 1590 | if (*clock == 0) return -1; |
4ac9f078 | 1591 | |
8ad1e731 | 1592 | //find start of modulating data in trace |
1593 | uint8_t threshold_value = 123; //-5 | |
1594 | i = findModStart(dest, *size, threshold_value, fc); | |
4ac9f078 | 1595 | |
e0165dcf | 1596 | //find first phase shift |
8ad1e731 | 1597 | int avgWaveVal=0, lastAvgWaveVal=0; |
1598 | waveStart = i; | |
4ac9f078 | 1599 | for (; i<loopCnt; i++){ |
8ad1e731 | 1600 | // find peak |
e0165dcf | 1601 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1602 | waveEnd = i+1; | |
4ac9f078 | 1603 | if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart); |
e0165dcf | 1604 | waveLenCnt = waveEnd-waveStart; |
4ac9f078 | 1605 | if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack |
e0165dcf | 1606 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); |
1607 | firstFullWave = waveStart; | |
1608 | fullWaveLen=waveLenCnt; | |
8ad1e731 | 1609 | //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) |
1610 | if (lastAvgWaveVal > threshold_value) curPhase ^= 1; | |
e0165dcf | 1611 | break; |
1612 | } | |
1613 | waveStart = i+1; | |
1614 | avgWaveVal = 0; | |
1615 | } | |
2eec55c8 | 1616 | avgWaveVal += dest[i+2]; |
e0165dcf | 1617 | } |
6426f6ba | 1618 | if (firstFullWave == 0) { |
1619 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start | |
1620 | // so skip a little to ensure we are past any Start Signal | |
1621 | firstFullWave = 160; | |
1622 | memset(dest, curPhase, firstFullWave / *clock); | |
1623 | } else { | |
1624 | memset(dest, curPhase^1, firstFullWave / *clock); | |
1625 | } | |
1626 | //advance bits | |
1627 | numBits += (firstFullWave / *clock); | |
1628 | //set start of wave as clock align | |
1629 | lastClkBit = firstFullWave; | |
7fa7e812 | 1630 | if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen); |
8ad1e731 | 1631 | if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); |
e0165dcf | 1632 | waveStart = 0; |
e0165dcf | 1633 | dest[numBits++] = curPhase; //set first read bit |
2eec55c8 | 1634 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf | 1635 | //top edge of wave = start of new wave |
1636 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1637 | if (waveStart == 0) { | |
1638 | waveStart = i+1; | |
2eec55c8 | 1639 | waveLenCnt = 0; |
e0165dcf | 1640 | avgWaveVal = dest[i+1]; |
1641 | } else { //waveEnd | |
1642 | waveEnd = i+1; | |
1643 | waveLenCnt = waveEnd-waveStart; | |
1644 | lastAvgWaveVal = avgWaveVal/waveLenCnt; | |
1645 | if (waveLenCnt > fc){ | |
a38f5a07 | 1646 | //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); |
2eec55c8 | 1647 | //this wave is a phase shift |
a38f5a07 | 1648 | //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
e0165dcf | 1649 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit |
2eec55c8 | 1650 | curPhase ^= 1; |
e0165dcf | 1651 | dest[numBits++] = curPhase; |
1652 | lastClkBit += *clock; | |
2eec55c8 | 1653 | } else if (i < lastClkBit+10+fc){ |
e0165dcf | 1654 | //noise after a phase shift - ignore |
1655 | } else { //phase shift before supposed to based on clock | |
1656 | errCnt++; | |
2767fc02 | 1657 | dest[numBits++] = 7; |
e0165dcf | 1658 | } |
1659 | } else if (i+1 > lastClkBit + *clock + tol + fc){ | |
1660 | lastClkBit += *clock; //no phase shift but clock bit | |
1661 | dest[numBits++] = curPhase; | |
8ad1e731 | 1662 | } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) |
1663 | errCnt2++; | |
1664 | if(errCnt2 > 101) return errCnt2; | |
e0165dcf | 1665 | } |
2eec55c8 | 1666 | avgWaveVal = 0; |
1667 | waveStart = i+1; | |
e0165dcf | 1668 | } |
1669 | } | |
2eec55c8 | 1670 | avgWaveVal += dest[i+1]; |
e0165dcf | 1671 | } |
1672 | *size = numBits; | |
1673 | return errCnt; | |
6de43508 | 1674 | } |
05164399 | 1675 | |
1676 | //by marshmellow | |
1677 | //attempt to identify a Sequence Terminator in ASK modulated raw wave | |
1678 | bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) { | |
1679 | size_t bufsize = *size; | |
1680 | //need to loop through all samples and identify our clock, look for the ST pattern | |
1681 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
1682 | int clk = 0; | |
1683 | int tol = 0; | |
1684 | int i, j, skip, start, end, low, high, minClk, waveStart; | |
1685 | bool complete = false; | |
a38f5a07 | 1686 | int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured |
1687 | int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed... | |
05164399 | 1688 | size_t testsize = (bufsize < 512) ? bufsize : 512; |
1689 | int phaseoff = 0; | |
1690 | high = low = 128; | |
1691 | memset(tmpbuff, 0, sizeof(tmpbuff)); | |
a38f5a07 | 1692 | memset(waveLen, 0, sizeof(waveLen)); |
05164399 | 1693 | |
a38f5a07 | 1694 | |
05164399 | 1695 | if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) { |
1696 | if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); | |
1697 | return false; //just noise | |
1698 | } | |
1699 | i = 0; | |
1700 | j = 0; | |
1701 | minClk = 255; | |
1702 | // get to first full low to prime loop and skip incomplete first pulse | |
1703 | while ((buffer[i] < high) && (i < bufsize)) | |
1704 | ++i; | |
1705 | while ((buffer[i] > low) && (i < bufsize)) | |
1706 | ++i; | |
1707 | skip = i; | |
1708 | ||
1709 | // populate tmpbuff buffer with pulse lengths | |
1710 | while (i < bufsize) { | |
1711 | // measure from low to low | |
1712 | while ((buffer[i] > low) && (i < bufsize)) | |
1713 | ++i; | |
1714 | start= i; | |
1715 | while ((buffer[i] < high) && (i < bufsize)) | |
1716 | ++i; | |
1717 | //first high point for this wave | |
1718 | waveStart = i; | |
1719 | while ((buffer[i] > low) && (i < bufsize)) | |
1720 | ++i; | |
a38f5a07 | 1721 | if (j >= (bufsize/32)) { |
05164399 | 1722 | break; |
1723 | } | |
1724 | waveLen[j] = i - waveStart; //first high to first low | |
1725 | tmpbuff[j++] = i - start; | |
1726 | if (i-start < minClk && i < bufsize) { | |
1727 | minClk = i - start; | |
1728 | } | |
1729 | } | |
1730 | // set clock - might be able to get this externally and remove this work... | |
1731 | if (!clk) { | |
1732 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
1733 | tol = fndClk[clkCnt]/8; | |
1734 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
1735 | clk=fndClk[clkCnt]; | |
1736 | break; | |
1737 | } | |
1738 | } | |
1739 | // clock not found - ERROR | |
1740 | if (!clk) { | |
1741 | if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); | |
1742 | return false; | |
1743 | } | |
1744 | } else tol = clk/8; | |
1745 | ||
1746 | *foundclock = clk; | |
1747 | ||
1748 | // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2) | |
1749 | start = -1; | |
1750 | for (i = 0; i < j - 4; ++i) { | |
1751 | skip += tmpbuff[i]; | |
1752 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior | |
1753 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 | |
1754 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1755 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1756 | start = i + 3; | |
1757 | break; | |
1758 | } | |
1759 | } | |
1760 | } | |
1761 | } | |
1762 | } | |
1763 | // first ST not found - ERROR | |
1764 | if (start < 0) { | |
1765 | if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); | |
1766 | return false; | |
a38f5a07 | 1767 | } else { |
1768 | if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j); | |
05164399 | 1769 | } |
1770 | if (waveLen[i+2] > clk*1+tol) | |
1771 | phaseoff = 0; | |
1772 | else | |
1773 | phaseoff = clk/2; | |
1774 | ||
1775 | // skip over the remainder of ST | |
1776 | skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point | |
1777 | ||
1778 | // now do it again to find the end | |
1779 | end = skip; | |
1780 | for (i += 3; i < j - 4; ++i) { | |
1781 | end += tmpbuff[i]; | |
a38f5a07 | 1782 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior |
05164399 | 1783 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 |
1784 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1785 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1786 | complete = true; | |
1787 | break; | |
1788 | } | |
1789 | } | |
1790 | } | |
1791 | } | |
1792 | } | |
1793 | end -= phaseoff; | |
1794 | //didn't find second ST - ERROR | |
1795 | if (!complete) { | |
1796 | if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); | |
1797 | return false; | |
1798 | } | |
1799 | if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); | |
1800 | //now begin to trim out ST so we can use normal demod cmds | |
1801 | start = skip; | |
1802 | size_t datalen = end - start; | |
1803 | // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock | |
a38f5a07 | 1804 | if ( clk - (datalen % clk) <= clk/8) { |
1805 | // padd the amount off - could be problematic... but shouldn't happen often | |
1806 | datalen += clk - (datalen % clk); | |
1807 | } else if ( (datalen % clk) <= clk/8 ) { | |
1808 | // padd the amount off - could be problematic... but shouldn't happen often | |
1809 | datalen -= datalen % clk; | |
1810 | } else { | |
05164399 | 1811 | if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); |
1812 | return false; | |
05164399 | 1813 | } |
1814 | // if datalen is less than one t55xx block - ERROR | |
1815 | if (datalen/clk < 8*4) { | |
1816 | if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); | |
1817 | return false; | |
1818 | } | |
1819 | size_t dataloc = start; | |
a38f5a07 | 1820 | if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { |
1821 | //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start | |
1822 | for ( i=0; i <= (clk/8); ++i ) { | |
1823 | if ( buffer[dataloc - (clk*4) - i] <= low ) { | |
1824 | dataloc -= i; | |
1825 | break; | |
1826 | } | |
1827 | } | |
1828 | } | |
1829 | ||
05164399 | 1830 | size_t newloc = 0; |
1831 | i=0; | |
a38f5a07 | 1832 | if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); |
1833 | ||
05164399 | 1834 | // warning - overwriting buffer given with raw wave data with ST removed... |
1835 | while ( dataloc < bufsize-(clk/2) ) { | |
7fa7e812 | 1836 | //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) |
05164399 | 1837 | if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) { |
1838 | for(i=0; i < clk/2-tol; ++i) { | |
1839 | buffer[dataloc+i] = high+5; | |
1840 | } | |
1841 | } | |
1842 | for (i=0; i<datalen; ++i) { | |
1843 | if (i+newloc < bufsize) { | |
1844 | if (i+newloc < dataloc) | |
1845 | buffer[i+newloc] = buffer[dataloc]; | |
1846 | ||
1847 | dataloc++; | |
1848 | } | |
1849 | } | |
1850 | newloc += i; | |
7fa7e812 | 1851 | //skip next ST - we just assume it will be there from now on... |
a38f5a07 | 1852 | if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4)); |
05164399 | 1853 | dataloc += clk*4; |
1854 | } | |
1855 | *size = newloc; | |
1856 | return true; | |
1857 | } |