]> git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
chg: @marshmellow42 's changes.
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10 #include "lfdemod.h"
11
12 //un_comment to allow debug print calls when used not on device
13 void dummy(char *fmt, ...){}
14
15
16 #ifndef ON_DEVICE
17 # include "ui.h"
18 # include "cmdparser.h"
19 # include "cmddata.h"
20 # define prnt PrintAndLog
21 #else
22 uint8_t g_debugMode=0;
23 # define prnt dummy
24 #endif
25
26 //test samples are not just noise
27 uint8_t justNoise(uint8_t *bits, size_t size) {
28 #define THRESHOLD 123
29 uint8_t val = 1;
30 for(size_t idx=0; idx < size && val ;idx++)
31 val = bits[idx] < THRESHOLD;
32 return val;
33 }
34
35 //by marshmellow
36 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
37 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
38 {
39 *high=0;
40 *low=255;
41 // get high and low thresholds
42 for (size_t i=0; i < size; i++){
43 if (BitStream[i] > *high) *high = BitStream[i];
44 if (BitStream[i] < *low) *low = BitStream[i];
45 }
46 if (*high < 123) return -1; // just noise
47 *high = ((*high-128)*fuzzHi + 12800)/100;
48 *low = ((*low-128)*fuzzLo + 12800)/100;
49 return 1;
50 }
51
52 // by marshmellow
53 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
54 // returns 1 if passed
55 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
56 {
57 uint8_t ans = 0;
58 for (uint8_t i = 0; i < bitLen; i++){
59 ans ^= ((bits >> i) & 1);
60 }
61 if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits);
62 return (ans == pType);
63 }
64
65 //by marshmellow
66 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
67 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
68 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
69 {
70 uint32_t parityWd = 0;
71 size_t j = 0, bitCnt = 0;
72 for (int word = 0; word < (bLen); word += pLen){
73 for (int bit=0; bit < pLen; bit++){
74 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
75 BitStream[j++] = (BitStream[startIdx+word+bit]);
76 }
77 if (word+pLen >= bLen) break;
78
79 j--; // overwrite parity with next data
80 // if parity fails then return 0
81 switch (pType) {
82 case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit
83 case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit
84 default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity
85 }
86 bitCnt += (pLen-1);
87 parityWd = 0;
88 }
89 // if we got here then all the parities passed
90 //return ID start index and size
91 return bitCnt;
92 }
93
94 // by marshmellow
95 // takes a array of binary values, length of bits per parity (includes parity bit),
96 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
97 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
98 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
99 {
100 uint32_t parityWd = 0;
101 size_t j = 0, bitCnt = 0;
102 for (int word = 0; word < sourceLen; word+=pLen-1) {
103 for (int bit=0; bit < pLen-1; bit++){
104 parityWd = (parityWd << 1) | BitSource[word+bit];
105 dest[j++] = (BitSource[word+bit]);
106 }
107
108 // if parity fails then return 0
109 switch (pType) {
110 case 3: dest[j++]=0; break; // marker bit which should be a 0
111 case 2: dest[j++]=1; break; // marker bit which should be a 1
112 default:
113 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
114 break;
115 }
116 bitCnt += pLen;
117 parityWd = 0;
118 }
119 // if we got here then all the parities passed
120 //return ID start index and size
121 return bitCnt;
122 }
123
124 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
125 {
126 uint32_t num = 0;
127 for(int i = 0 ; i < numbits ; i++) {
128 num = (num << 1) | (*src);
129 src++;
130 }
131 return num;
132 }
133
134 //least significant bit first
135 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
136 {
137 uint32_t num = 0;
138 for(int i = 0 ; i < numbits ; i++) {
139 num = (num << 1) | *(src + (numbits-(i+1)));
140 }
141 return num;
142 }
143
144 //by marshmellow
145 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found)
146 bool preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx){
147 return preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false);
148 }
149 //by marshmellow
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 // param @findone: look for a repeating preamble or only the first.
152 // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits
153 bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone)
154 {
155 // Sanity check. If preamble length is bigger than bitstream length.
156 if ( *size <= pLen ) return false;
157
158 uint8_t foundCnt = 0;
159 for (int idx = 0; idx < *size - pLen; idx++){
160 if (memcmp(BitStream+idx, preamble, pLen) == 0){
161 if (g_debugMode) prnt("DEBUG: preamble found at %u", idx);
162 //first index found
163 foundCnt++;
164 if (foundCnt == 1){
165 *startIdx = idx;
166 if (findone) return true;
167 }
168 if (foundCnt == 2){
169 *size = idx - *startIdx;
170 return true;
171 }
172 }
173 }
174 return false;
175 }
176
177 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
178 size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) {
179 size_t i = 0;
180 size_t waveSizeCnt = 0;
181 uint8_t thresholdCnt = 0;
182 bool isAboveThreshold = dest[i++] >= threshold_value;
183 for (; i < size-20; i++ ) {
184 if(dest[i] < threshold_value && isAboveThreshold) {
185 thresholdCnt++;
186 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
187 isAboveThreshold = false;
188 waveSizeCnt = 0;
189 } else if (dest[i] >= threshold_value && !isAboveThreshold) {
190 thresholdCnt++;
191 if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;
192 isAboveThreshold = true;
193 waveSizeCnt = 0;
194 } else {
195 waveSizeCnt++;
196 }
197 if (thresholdCnt > 10) break;
198 }
199 if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt);
200 return i;
201 }
202
203 //by marshmellow
204 //takes 1s and 0s and searches for EM410x format - output EM ID
205 // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
206 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
207 {
208 //allow only 1s and 0s
209 // only checking first bitvalue?!
210 if (BitStream[1] > 1) return 0;
211
212 uint32_t i = 0, idx = 0, parityBits = 0;
213 uint8_t fmtlen = 0;
214 *startIdx = 0;
215
216 // preamble 0111111111
217 // include 0 in front to help get start pos
218 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
219 if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx))
220 return 0;
221 if (*size < 64) return 0;
222
223 fmtlen = (*size > 64) ? 22 : 10;
224
225 idx = *startIdx + sizeof(preamble);
226
227 //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
228 for (i=0; i < fmtlen; i++){
229 parityBits = bytebits_to_byte(BitStream + (i*5) + idx, 5);
230 //check even parity
231 if (parityTest(parityBits, 5, 0) == 0) return 0;
232 //set uint64 with ID from BitStream
233 for (uint8_t j = 0; j < 4; j++){
234 *hi = (*hi << 1) | (*lo >> 63);
235 *lo = (*lo << 1) | (BitStream[(i*5) + j + idx]);
236 }
237 }
238 //skip last 5 bit parity test for simplicity.
239 // *size = 64 | 128;
240 return 1;
241 }
242
243 //by marshmellow
244 //demodulates strong heavily clipped samples
245 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
246 {
247 size_t bitCnt=0, smplCnt=0, errCnt=0;
248 uint8_t waveHigh = 0;
249 for (size_t i=0; i < *size; i++){
250 if (BinStream[i] >= high && waveHigh){
251 smplCnt++;
252 } else if (BinStream[i] <= low && !waveHigh){
253 smplCnt++;
254 } else { //transition
255 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
256
257 if (smplCnt > clk-(clk/4)-1) { //full clock
258 if (smplCnt > clk + (clk/4)+1) { //too many samples
259 errCnt++;
260 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
261 BinStream[bitCnt++] = 7;
262 } else if (waveHigh) {
263 BinStream[bitCnt++] = invert;
264 BinStream[bitCnt++] = invert;
265 } else if (!waveHigh) {
266 BinStream[bitCnt++] = invert ^ 1;
267 BinStream[bitCnt++] = invert ^ 1;
268 }
269 waveHigh ^= 1;
270 smplCnt = 0;
271 } else if (smplCnt > (clk/2) - (clk/4)-1) {
272 if (waveHigh) {
273 BinStream[bitCnt++] = invert;
274 } else if (!waveHigh) {
275 BinStream[bitCnt++] = invert ^ 1;
276 }
277 waveHigh ^= 1;
278 smplCnt = 0;
279 } else if (!bitCnt) {
280 //first bit
281 waveHigh = (BinStream[i] >= high);
282 smplCnt = 1;
283 } else {
284 smplCnt++;
285 //transition bit oops
286 }
287 } else { //haven't hit new high or new low yet
288 smplCnt++;
289 }
290 }
291 }
292 *size = bitCnt;
293 return errCnt;
294 }
295
296 //by marshmellow
297 void askAmp(uint8_t *BitStream, size_t size)
298 {
299 uint8_t last = 128;
300 for(size_t i = 1; i < size; ++i){
301 if (BitStream[i]-BitStream[i-1] >= 30) //large jump up
302 last = 255;
303 else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down
304 last = 0;
305
306 BitStream[i] = last;
307 }
308 }
309
310 //by marshmellow
311 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
312 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
313 {
314 if (*size==0) return -1;
315 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
316
317 if (*clk==0 || start < 0) return -3;
318 if (*invert != 1) *invert = 0;
319 if (amp==1) askAmp(BinStream, *size);
320 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
321
322 uint8_t initLoopMax = 255;
323 if (initLoopMax > *size) initLoopMax = *size;
324 // Detect high and lows
325 //25% clip in case highs and lows aren't clipped [marshmellow]
326 int high, low;
327 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
328 return -2; //just noise
329
330 size_t errCnt = 0;
331 // if clean clipped waves detected run alternate demod
332 if (DetectCleanAskWave(BinStream, *size, high, low)) {
333 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
334 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
335 if (askType) //askman
336 return manrawdecode(BinStream, size, 0);
337 //askraw
338 return errCnt;
339 }
340 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
341
342 int lastBit; //set first clock check - can go negative
343 size_t i, bitnum = 0; //output counter
344 uint8_t midBit = 0;
345 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
346 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
347 size_t MaxBits = 3072; //max bits to collect
348 lastBit = start - *clk;
349
350 for (i = start; i < *size; ++i) {
351 if (i-lastBit >= *clk-tol){
352 if (BinStream[i] >= high) {
353 BinStream[bitnum++] = *invert;
354 } else if (BinStream[i] <= low) {
355 BinStream[bitnum++] = *invert ^ 1;
356 } else if (i-lastBit >= *clk+tol) {
357 if (bitnum > 0) {
358 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
359 BinStream[bitnum++]=7;
360 errCnt++;
361 }
362 } else { //in tolerance - looking for peak
363 continue;
364 }
365 midBit = 0;
366 lastBit += *clk;
367 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
368 if (BinStream[i] >= high) {
369 BinStream[bitnum++] = *invert;
370 } else if (BinStream[i] <= low) {
371 BinStream[bitnum++] = *invert ^ 1;
372 } else if (i-lastBit >= *clk/2+tol) {
373 BinStream[bitnum] = BinStream[bitnum-1];
374 bitnum++;
375 } else { //in tolerance - looking for peak
376 continue;
377 }
378 midBit = 1;
379 }
380 if (bitnum >= MaxBits) break;
381 }
382 *size = bitnum;
383 return errCnt;
384 }
385 //by marshmellow
386 //take 10 and 01 and manchester decode
387 //run through 2 times and take least errCnt
388 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert){
389 int errCnt = 0, bestErr = 1000;
390 uint16_t bitnum = 0, MaxBits = 512, bestRun = 0;
391 size_t i, k;
392 if (*size < 16) return -1;
393 //find correct start position [alignment]
394 for (k=0; k < 2; ++k){
395 for (i=k; i<*size-3; i += 2)
396 if (BitStream[i] == BitStream[i+1])
397 errCnt++;
398
399 if (bestErr > errCnt){
400 bestErr = errCnt;
401 bestRun = k;
402 }
403 errCnt=0;
404 }
405 //decode
406 for (i=bestRun; i < *size-3; i += 2){
407 if (BitStream[i] == 1 && (BitStream[i+1] == 0)){
408 BitStream[bitnum++] = invert;
409 } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){
410 BitStream[bitnum++] = invert^1;
411 } else {
412 BitStream[bitnum++] = 7;
413 }
414 if (bitnum>MaxBits) break;
415 }
416 *size=bitnum;
417 return bestErr;
418 }
419
420 uint32_t manchesterEncode2Bytes(uint16_t datain) {
421 uint32_t output = 0;
422 uint8_t curBit = 0;
423 for (uint8_t i=0; i<16; i++) {
424 curBit = (datain >> (15-i) & 1);
425 output |= (1<<(((15-i)*2)+curBit));
426 }
427 return output;
428 }
429
430 //by marshmellow
431 //encode binary data into binary manchester
432 int ManchesterEncode(uint8_t *BitStream, size_t size)
433 {
434 size_t modIdx=20000, i=0;
435 if (size>modIdx) return -1;
436 for (size_t idx=0; idx < size; idx++){
437 BitStream[idx+modIdx++] = BitStream[idx];
438 BitStream[idx+modIdx++] = BitStream[idx]^1;
439 }
440 for (; i<(size*2); i++){
441 BitStream[i] = BitStream[i+20000];
442 }
443 return i;
444 }
445
446 //by marshmellow
447 //take 01 or 10 = 1 and 11 or 00 = 0
448 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
449 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
450 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
451 {
452 uint16_t bitnum = 0;
453 uint16_t errCnt = 0;
454 size_t i = offset;
455 uint16_t MaxBits=512;
456 //if not enough samples - error
457 if (*size < 51) return -1;
458 //check for phase change faults - skip one sample if faulty
459 uint8_t offsetA = 1, offsetB = 1;
460 for (; i<48; i+=2){
461 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
462 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
463 }
464 if (!offsetA && offsetB) offset++;
465 for (i=offset; i<*size-3; i+=2){
466 //check for phase error
467 if (BitStream[i+1]==BitStream[i+2]) {
468 BitStream[bitnum++]=7;
469 errCnt++;
470 }
471 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
472 BitStream[bitnum++]=1^invert;
473 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
474 BitStream[bitnum++]=invert;
475 } else {
476 BitStream[bitnum++]=7;
477 errCnt++;
478 }
479 if(bitnum>MaxBits) break;
480 }
481 *size=bitnum;
482 return errCnt;
483 }
484
485 // by marshmellow
486 // demod gProxIIDemod
487 // error returns as -x
488 // success returns start position in BitStream
489 // BitStream must contain previously askrawdemod and biphasedemoded data
490 int gProxII_Demod(uint8_t BitStream[], size_t *size)
491 {
492 size_t startIdx=0;
493 uint8_t preamble[] = {1,1,1,1,1,0};
494
495 if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx))
496 return -3; //preamble not found
497
498 if (*size != 96) return -2; //should have found 96 bits
499
500 //check first 6 spacer bits to verify format
501 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
502 //confirmed proper separator bits found
503 //return start position
504 return (int) startIdx;
505 }
506 return -5; //spacer bits not found - not a valid gproxII
507 }
508
509 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
510 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
511 {
512 size_t last_transition = 0;
513 size_t idx = 1;
514 if (fchigh==0) fchigh=10;
515 if (fclow==0) fclow=8;
516 //set the threshold close to 0 (graph) or 128 std to avoid static
517 uint8_t threshold_value = 123;
518 size_t preLastSample = 0;
519 size_t LastSample = 0;
520 size_t currSample = 0;
521 if ( size < 1024 ) return 0; // not enough samples
522
523 //find start of modulating data in trace
524 idx = findModStart(dest, size, threshold_value, fchigh);
525
526 // Need to threshold first sample
527 if(dest[idx] < threshold_value) dest[0] = 0;
528 else dest[0] = 1;
529 idx++;
530
531 size_t numBits = 0;
532 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
533 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
534 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
535 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
536 for(; idx < size-20; idx++) {
537 // threshold current value
538
539 if (dest[idx] < threshold_value) dest[idx] = 0;
540 else dest[idx] = 1;
541
542 // Check for 0->1 transition
543 if (dest[idx-1] < dest[idx]) {
544 preLastSample = LastSample;
545 LastSample = currSample;
546 currSample = idx-last_transition;
547 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
548 //do nothing with extra garbage
549 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
550 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
551 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){
552 dest[numBits-1]=1;
553 }
554 dest[numBits++]=1;
555
556 } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage
557 //do nothing with beginning garbage and reset.. should be rare..
558 numBits = 0;
559 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
560 dest[numBits++]=1;
561 } else { //9+ = 10 sample waves (or 6+ = 7)
562 dest[numBits++]=0;
563 }
564 last_transition = idx;
565 }
566 }
567 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
568 }
569
570 //translate 11111100000 to 10
571 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
572 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
573 uint8_t invert, uint8_t fchigh, uint8_t fclow)
574 {
575 uint8_t lastval=dest[0];
576 size_t idx=0;
577 size_t numBits=0;
578 uint32_t n=1;
579 for( idx=1; idx < size; idx++) {
580 n++;
581 if (dest[idx]==lastval) continue; //skip until we hit a transition
582
583 //find out how many bits (n) we collected
584 //if lastval was 1, we have a 1->0 crossing
585 if (dest[idx-1]==1) {
586 n = (n * fclow + rfLen/2) / rfLen;
587 } else {// 0->1 crossing
588 n = (n * fchigh + rfLen/2) / rfLen;
589 }
590 if (n == 0) n = 1;
591
592 //add to our destination the bits we collected
593 memset(dest+numBits, dest[idx-1]^invert , n);
594 numBits += n;
595 n=0;
596 lastval=dest[idx];
597 }//end for
598 // if valid extra bits at the end were all the same frequency - add them in
599 if (n > rfLen/fchigh) {
600 if (dest[idx-2]==1) {
601 n = (n * fclow + rfLen/2) / rfLen;
602 } else {
603 n = (n * fchigh + rfLen/2) / rfLen;
604 }
605 memset(dest+numBits, dest[idx-1]^invert , n);
606 numBits += n;
607 }
608 return numBits;
609 }
610
611 //by marshmellow (from holiman's base)
612 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
613 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
614 {
615 // FSK demodulator
616 size = fsk_wave_demod(dest, size, fchigh, fclow);
617 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
618 return size;
619 }
620
621 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
622 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
623 {
624 if (justNoise(dest, *size)) return -1;
625
626 size_t numStart=0, size2 = *size, startIdx=0;
627 // FSK demodulator
628 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
629 if (*size < 96*2) return -2;
630 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
631 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
632 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
633 return -3; //preamble not found
634
635 numStart = startIdx + sizeof(preamble);
636 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
637 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
638 if (dest[idx] == dest[idx+1]){
639 return -4; //not manchester data
640 }
641 *hi2 = (*hi2<<1)|(*hi>>31);
642 *hi = (*hi<<1)|(*lo>>31);
643 //Then, shift in a 0 or one into low
644 *lo <<= 1;
645 if (dest[idx] && !dest[idx+1]) // 1 0
646 *lo |= 1;
647 else // 0 1
648 *lo |= 0;
649 }
650 return (int)startIdx;
651 }
652
653 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
654 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
655 {
656 if (justNoise(dest, *size)) return -1;
657
658 size_t numStart=0, size2 = *size, startIdx=0;
659 // FSK demodulator
660 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
661 if (*size < 96) return -2;
662
663 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
664 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
665 if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
666 return -3; //preamble not found
667
668 numStart = startIdx + sizeof(preamble);
669 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
670 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
671 if (dest[idx] == dest[idx+1])
672 return -4; //not manchester data
673 *hi2 = (*hi2<<1)|(*hi>>31);
674 *hi = (*hi<<1)|(*lo>>31);
675 //Then, shift in a 0 or one into low
676 if (dest[idx] && !dest[idx+1]) // 1 0
677 *lo=(*lo<<1)|1;
678 else // 0 1
679 *lo=(*lo<<1)|0;
680 }
681 return (int)startIdx;
682 }
683
684 int IOdemodFSK(uint8_t *dest, size_t size)
685 {
686 if (justNoise(dest, size)) return -1;
687 //make sure buffer has data
688 if (size < 66*64) return -2;
689 // FSK demodulator
690 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
691 if (size < 65) return -3; //did we get a good demod?
692 //Index map
693 //0 10 20 30 40 50 60
694 //| | | | | | |
695 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
696 //-----------------------------------------------------------------------------
697 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
698 //
699 //XSF(version)facility:codeone+codetwo
700 //Handle the data
701 size_t startIdx = 0;
702 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
703 if (! preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx))
704 return -4; //preamble not found
705
706 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
707 //confirmed proper separator bits found
708 //return start position
709 return (int) startIdx;
710 }
711 return -5;
712 }
713
714 // by marshmellow
715 // find viking preamble 0xF200 in already demoded data
716 int VikingDemod_AM(uint8_t *dest, size_t *size) {
717 //make sure buffer has data
718 if (*size < 64*2) return -2;
719 size_t startIdx = 0;
720 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
721 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
722 return -4; //preamble not found
723
724 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^
725 bytebits_to_byte(dest+startIdx+8,8) ^
726 bytebits_to_byte(dest+startIdx+16,8) ^
727 bytebits_to_byte(dest+startIdx+24,8) ^
728 bytebits_to_byte(dest+startIdx+32,8) ^
729 bytebits_to_byte(dest+startIdx+40,8) ^
730 bytebits_to_byte(dest+startIdx+48,8) ^
731 bytebits_to_byte(dest+startIdx+56,8);
732 if ( checkCalc != 0xA8 ) return -5;
733 if (*size != 64) return -6;
734 //return start position
735 return (int)startIdx;
736 }
737
738 // by iceman
739 // find Visa2000 preamble in already demoded data
740 int Visa2kDemod_AM(uint8_t *dest, size_t *size) {
741 if (*size < 96) return -1; //make sure buffer has data
742 size_t startIdx = 0;
743 uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0};
744 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
745 return -2; //preamble not found
746 if (*size != 96) return -3; //wrong demoded size
747 //return start position
748 return (int)startIdx;
749 }
750 // by iceman
751 // find Noralsy preamble in already demoded data
752 int NoralsyDemod_AM(uint8_t *dest, size_t *size) {
753 if (*size < 96) return -1; //make sure buffer has data
754 size_t startIdx = 0;
755 uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0};
756 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
757 return -2; //preamble not found
758 if (*size != 96) return -3; //wrong demoded size
759 //return start position
760 return (int)startIdx;
761 }
762 // find presco preamble 0x10D in already demoded data
763 int PrescoDemod(uint8_t *dest, size_t *size) {
764 if (*size < 128*2) return -1; //make sure buffer has data
765 size_t startIdx = 0;
766 uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
767 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
768 return -2; //preamble not found
769 if (*size != 128) return -3; //wrong demoded size
770 //return start position
771 return (int)startIdx;
772 }
773
774 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
775 // BitStream must contain previously askrawdemod and biphasedemoded data
776 int FDXBdemodBI(uint8_t *dest, size_t *size) {
777 if (*size < 128*2) return -1; //make sure buffer has enough data
778 size_t startIdx = 0;
779 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
780 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
781 return -2; //preamble not found
782 if (*size != 128) return -3; //wrong demoded size
783 //return start position
784 return (int)startIdx;
785 }
786
787 // ASK/Diphase fc/64 (inverted Biphase)
788 // Note: this i s not a demod, this is only a detection
789 // the parameter *dest needs to be demoded before call
790 // 0xFFFF preamble, 64bits
791 int JablotronDemod(uint8_t *dest, size_t *size){
792 if (*size < 64*2) return -1; //make sure buffer has enough data
793 size_t startIdx = 0;
794 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
795 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
796 return -2; //preamble not found
797 if (*size != 64) return -3; // wrong demoded size
798
799 uint8_t checkchksum = 0;
800 for (int i=16; i < 56; i += 8) {
801 checkchksum += bytebits_to_byte(dest+startIdx+i,8);
802 }
803 checkchksum ^= 0x3A;
804 uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8);
805 if ( checkchksum != crc ) return -5;
806 return (int)startIdx;
807 }
808
809 // by marshmellow
810 // FSK Demod then try to locate an AWID ID
811 int AWIDdemodFSK(uint8_t *dest, size_t *size)
812 {
813 //make sure buffer has enough data
814 if (*size < 96*50) return -1;
815
816 if (justNoise(dest, *size)) return -2;
817
818 // FSK demodulator
819 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
820 if (*size < 96) return -3; //did we get a good demod?
821
822 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
823 size_t startIdx = 0;
824 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
825 return -4; //preamble not found
826 if (*size != 96) return -5;
827 return (int)startIdx;
828 }
829
830 // by marshmellow
831 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
832 int PyramiddemodFSK(uint8_t *dest, size_t *size)
833 {
834 //make sure buffer has data
835 if (*size < 128*50) return -5;
836
837 //test samples are not just noise
838 if (justNoise(dest, *size)) return -1;
839
840 // FSK demodulator
841 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
842 if (*size < 128) return -2; //did we get a good demod?
843 size_t startIdx = 0;
844 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1};
845 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
846 return -4; //preamble not found
847 if (*size != 128) return -3;
848 return (int)startIdx;
849 }
850
851 // find nedap preamble in already demoded data
852 int NedapDemod(uint8_t *dest, size_t *size) {
853 //make sure buffer has data
854 if (*size < 128) return -3;
855
856 size_t startIdx = 0;
857 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
858 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0};
859 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
860 return -4; //preamble not found
861 return (int) startIdx;
862 }
863
864 // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
865 // by iceman
866 int IdteckDemodPSK(uint8_t *dest, size_t *size) {
867 //make sure buffer has data
868 if (*size < 64*2) return -1;
869 size_t startIdx = 0;
870 uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1};
871 if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx))
872 return -2; //preamble not found
873 if (*size != 64) return -3; // wrong demoded size
874 return (int) startIdx;
875 }
876
877 // by marshmellow
878 // to detect a wave that has heavily clipped (clean) samples
879 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
880 {
881 bool allArePeaks = true;
882 uint16_t cntPeaks=0;
883 size_t loopEnd = 512+160;
884 if (loopEnd > size) loopEnd = size;
885 for (size_t i=160; i<loopEnd; i++){
886 if (dest[i]>low && dest[i]<high)
887 allArePeaks = false;
888 else
889 cntPeaks++;
890 }
891 if (!allArePeaks){
892 if (cntPeaks > 300) return true;
893 }
894 return allArePeaks;
895 }
896 // by marshmellow
897 // to help detect clocks on heavily clipped samples
898 // based on count of low to low
899 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
900 {
901 uint8_t fndClk[] = {8,16,32,40,50,64,128};
902 size_t startwave;
903 size_t i = 100;
904 size_t minClk = 255;
905 // get to first full low to prime loop and skip incomplete first pulse
906 while ((dest[i] < high) && (i < size))
907 ++i;
908 while ((dest[i] > low) && (i < size))
909 ++i;
910
911 // loop through all samples
912 while (i < size) {
913 // measure from low to low
914 while ((dest[i] > low) && (i < size))
915 ++i;
916 startwave= i;
917 while ((dest[i] < high) && (i < size))
918 ++i;
919 while ((dest[i] > low) && (i < size))
920 ++i;
921 //get minimum measured distance
922 if (i-startwave < minClk && i < size)
923 minClk = i - startwave;
924 }
925 // set clock
926 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
927 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
928 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
929 return fndClk[clkCnt];
930 }
931 return 0;
932 }
933
934 // by marshmellow
935 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
936 // maybe somehow adjust peak trimming value based on samples to fix?
937 // return start index of best starting position for that clock and return clock (by reference)
938 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
939 {
940 size_t i=1;
941 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
942 uint8_t clkEnd = 9;
943 uint8_t loopCnt = 255; //don't need to loop through entire array...
944 if (size <= loopCnt+60) return -1; //not enough samples
945 size -= 60; //sometimes there is a strange end wave - filter out this....
946 //if we already have a valid clock
947 uint8_t clockFnd=0;
948 for (;i<clkEnd;++i)
949 if (clk[i] == *clock) clockFnd = i;
950 //clock found but continue to find best startpos
951
952 //get high and low peak
953 int peak, low;
954 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
955
956 //test for large clean peaks
957 if (!clockFnd){
958 if (DetectCleanAskWave(dest, size, peak, low)==1){
959 int ans = DetectStrongAskClock(dest, size, peak, low);
960 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
961 for (i=clkEnd-1; i>0; i--){
962 if (clk[i] == ans) {
963 *clock = ans;
964 //clockFnd = i;
965 return 0; // for strong waves i don't use the 'best start position' yet...
966 //break; //clock found but continue to find best startpos [not yet]
967 }
968 }
969 }
970 }
971 uint8_t ii;
972 uint8_t clkCnt, tol = 0;
973 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
974 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
975 size_t errCnt = 0;
976 size_t arrLoc, loopEnd;
977
978 if (clockFnd>0) {
979 clkCnt = clockFnd;
980 clkEnd = clockFnd+1;
981 } else {
982 clkCnt=1;
983 }
984
985 //test each valid clock from smallest to greatest to see which lines up
986 for(; clkCnt < clkEnd; clkCnt++) {
987 if (clk[clkCnt] <= 32) {
988 tol=1;
989 } else {
990 tol=0;
991 }
992 //if no errors allowed - keep start within the first clock
993 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128)
994 loopCnt = clk[clkCnt] * 2;
995
996 bestErr[clkCnt] = 1000;
997
998 //try lining up the peaks by moving starting point (try first few clocks)
999 for (ii=0; ii < loopCnt; ii++){
1000 if (dest[ii] < peak && dest[ii] > low) continue;
1001
1002 errCnt = 0;
1003 // now that we have the first one lined up test rest of wave array
1004 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
1005 for (i=0; i < loopEnd; ++i){
1006 arrLoc = ii + (i * clk[clkCnt]);
1007 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
1008 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
1009 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
1010 }else{ //error no peak detected
1011 errCnt++;
1012 }
1013 }
1014 //if we found no errors then we can stop here and a low clock (common clocks)
1015 // this is correct one - return this clock
1016 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i);
1017 if (errCnt==0 && clkCnt<7) {
1018 if (!clockFnd) *clock = clk[clkCnt];
1019 return ii;
1020 }
1021 //if we found errors see if it is lowest so far and save it as best run
1022 if (errCnt < bestErr[clkCnt]) {
1023 bestErr[clkCnt] = errCnt;
1024 bestStart[clkCnt] = ii;
1025 }
1026 }
1027 }
1028 uint8_t k;
1029 uint8_t best = 0;
1030 for (k=1; k < clkEnd; ++k){
1031 if (bestErr[k] < bestErr[best]){
1032 if (bestErr[k] == 0) bestErr[k]=1;
1033 // current best bit to error ratio vs new bit to error ratio
1034 if ( (size/clk[best])/bestErr[best] < (size/clk[k])/bestErr[k] ){
1035 best = k;
1036 }
1037 }
1038 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]);
1039 }
1040 if (!clockFnd) *clock = clk[best];
1041 return bestStart[best];
1042 }
1043
1044 //by marshmellow
1045 //detect psk clock by reading each phase shift
1046 // a phase shift is determined by measuring the sample length of each wave
1047 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
1048 {
1049 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
1050 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1051 if (size == 0) return 0;
1052 if (size<loopCnt) loopCnt = size-20;
1053
1054 //if we already have a valid clock quit
1055 size_t i=1;
1056 for (; i < 8; ++i)
1057 if (clk[i] == clock) return clock;
1058
1059 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
1060 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
1061 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
1062 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
1063 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
1064 fc = countFC(dest, size, 0);
1065 if (fc!=2 && fc!=4 && fc!=8) return -1;
1066 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
1067
1068 //find first full wave
1069 for (i=160; i<loopCnt; i++){
1070 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1071 if (waveStart == 0) {
1072 waveStart = i+1;
1073 //prnt("DEBUG: waveStart: %d",waveStart);
1074 } else {
1075 waveEnd = i+1;
1076 //prnt("DEBUG: waveEnd: %d",waveEnd);
1077 waveLenCnt = waveEnd-waveStart;
1078 if (waveLenCnt > fc){
1079 firstFullWave = waveStart;
1080 fullWaveLen=waveLenCnt;
1081 break;
1082 }
1083 waveStart=0;
1084 }
1085 }
1086 }
1087 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1088
1089 //test each valid clock from greatest to smallest to see which lines up
1090 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
1091 lastClkBit = firstFullWave; //set end of wave as clock align
1092 waveStart = 0;
1093 errCnt=0;
1094 peakcnt=0;
1095 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
1096
1097 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
1098 //top edge of wave = start of new wave
1099 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1100 if (waveStart == 0) {
1101 waveStart = i+1;
1102 waveLenCnt=0;
1103 } else { //waveEnd
1104 waveEnd = i+1;
1105 waveLenCnt = waveEnd-waveStart;
1106 if (waveLenCnt > fc){
1107 //if this wave is a phase shift
1108 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
1109 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
1110 peakcnt++;
1111 lastClkBit+=clk[clkCnt];
1112 } else if (i<lastClkBit+8){
1113 //noise after a phase shift - ignore
1114 } else { //phase shift before supposed to based on clock
1115 errCnt++;
1116 }
1117 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1118 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1119 }
1120 waveStart=i+1;
1121 }
1122 }
1123 }
1124 if (errCnt == 0){
1125 return clk[clkCnt];
1126 }
1127 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1128 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1129 }
1130 //all tested with errors
1131 //return the highest clk with the most peaks found
1132 uint8_t best=7;
1133 for (i=7; i>=1; i--){
1134 if (peaksdet[i] > peaksdet[best]) {
1135 best = i;
1136 }
1137 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1138 }
1139 return clk[best];
1140 }
1141
1142 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1143 //find shortest transition from high to low
1144 size_t i = 0;
1145 size_t transition1 = 0;
1146 int lowestTransition = 255;
1147 bool lastWasHigh = false;
1148
1149 //find first valid beginning of a high or low wave
1150 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1151 ++i;
1152 while ((dest[i] < peak && dest[i] > low) && (i < size))
1153 ++i;
1154 lastWasHigh = (dest[i] >= peak);
1155
1156 if (i==size) return 0;
1157 transition1 = i;
1158
1159 for (;i < size; i++) {
1160 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1161 lastWasHigh = (dest[i] >= peak);
1162 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1163 transition1 = i;
1164 }
1165 }
1166 if (lowestTransition == 255) lowestTransition = 0;
1167 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1168 return lowestTransition;
1169 }
1170
1171 //by marshmellow
1172 //detect nrz clock by reading #peaks vs no peaks(or errors)
1173 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1174 {
1175 size_t i=0;
1176 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1177 size_t loopCnt = 4096; //don't need to loop through entire array...
1178 if (size == 0) return 0;
1179 if (size<loopCnt) loopCnt = size-20;
1180 //if we already have a valid clock quit
1181 for (; i < 8; ++i)
1182 if (clk[i] == clock) return clock;
1183
1184 //get high and low peak
1185 int peak, low;
1186 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1187
1188 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1189 size_t ii;
1190 uint8_t clkCnt;
1191 uint8_t tol = 0;
1192 uint16_t smplCnt = 0;
1193 int16_t peakcnt = 0;
1194 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1195 uint16_t maxPeak = 255;
1196 bool firstpeak = false;
1197 //test for large clipped waves
1198 for (i=0; i<loopCnt; i++){
1199 if (dest[i] >= peak || dest[i] <= low){
1200 if (!firstpeak) continue;
1201 smplCnt++;
1202 } else {
1203 firstpeak=true;
1204 if (smplCnt > 6 ){
1205 if (maxPeak > smplCnt){
1206 maxPeak = smplCnt;
1207 //prnt("maxPk: %d",maxPeak);
1208 }
1209 peakcnt++;
1210 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1211 smplCnt=0;
1212 }
1213 }
1214 }
1215 bool errBitHigh = 0;
1216 bool bitHigh = 0;
1217 uint8_t ignoreCnt = 0;
1218 uint8_t ignoreWindow = 4;
1219 bool lastPeakHigh = 0;
1220 int lastBit = 0;
1221 peakcnt=0;
1222 //test each valid clock from smallest to greatest to see which lines up
1223 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1224 //ignore clocks smaller than smallest peak
1225 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1226 //try lining up the peaks by moving starting point (try first 256)
1227 for (ii=20; ii < loopCnt; ++ii){
1228 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1229 peakcnt=0;
1230 bitHigh = false;
1231 ignoreCnt = 0;
1232 lastBit = ii-clk[clkCnt];
1233 //loop through to see if this start location works
1234 for (i = ii; i < size-20; ++i) {
1235 //if we are at a clock bit
1236 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1237 //test high/low
1238 if (dest[i] >= peak || dest[i] <= low) {
1239 //if same peak don't count it
1240 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1241 peakcnt++;
1242 }
1243 lastPeakHigh = (dest[i] >= peak);
1244 bitHigh = true;
1245 errBitHigh = false;
1246 ignoreCnt = ignoreWindow;
1247 lastBit += clk[clkCnt];
1248 } else if (i == lastBit + clk[clkCnt] + tol) {
1249 lastBit += clk[clkCnt];
1250 }
1251 //else if not a clock bit and no peaks
1252 } else if (dest[i] < peak && dest[i] > low){
1253 if (ignoreCnt==0){
1254 bitHigh=false;
1255 if (errBitHigh==true) peakcnt--;
1256 errBitHigh=false;
1257 } else {
1258 ignoreCnt--;
1259 }
1260 // else if not a clock bit but we have a peak
1261 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1262 //error bar found no clock...
1263 errBitHigh=true;
1264 }
1265 }
1266 if(peakcnt>peaksdet[clkCnt]) {
1267 peaksdet[clkCnt]=peakcnt;
1268 }
1269 }
1270 }
1271 }
1272 int iii=7;
1273 uint8_t best=0;
1274 for (iii=7; iii > 0; iii--){
1275 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1276 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1277 best = iii;
1278 }
1279 } else if (peaksdet[iii] > peaksdet[best]){
1280 best = iii;
1281 }
1282 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1283 }
1284
1285 return clk[best];
1286 }
1287
1288 // by marshmellow
1289 // convert psk1 demod to psk2 demod
1290 // only transition waves are 1s
1291 void psk1TOpsk2(uint8_t *bits, size_t size) {
1292 uint8_t lastBit = bits[0];
1293 for (size_t i = 1; i < size; i++){
1294 //ignore errors
1295 if (bits[i] == 7) continue;
1296
1297 if (lastBit != bits[i]){
1298 lastBit = bits[i];
1299 bits[i] = 1;
1300 } else {
1301 bits[i] = 0;
1302 }
1303 }
1304 }
1305
1306 // by marshmellow
1307 // convert psk2 demod to psk1 demod
1308 // from only transition waves are 1s to phase shifts change bit
1309 void psk2TOpsk1(uint8_t *bits, size_t size) {
1310 uint8_t phase = 0;
1311 for (size_t i = 0; i < size; i++){
1312 if (bits[i] == 1){
1313 phase ^= 1;
1314 }
1315 bits[i] = phase;
1316 }
1317 }
1318
1319 // redesigned by marshmellow adjusted from existing decode functions
1320 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1321 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1322 {
1323 //26 bit 40134 format (don't know other formats)
1324 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1325 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1326 size_t startidx = 0;
1327 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1328 // if didn't find preamble try again inverting
1329 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1330 *invert ^= 1;
1331 }
1332 if (*size != 64 && *size != 224) return -2;
1333 if (*invert==1)
1334 for (size_t i = startidx; i < *size; i++)
1335 bitStream[i] ^= 1;
1336
1337 return (int) startidx;
1338 }
1339
1340 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1341 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1342 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1343 if (justNoise(dest, *size)) return -1;
1344 *clk = DetectNRZClock(dest, *size, *clk);
1345 if (*clk==0) return -2;
1346 size_t i, gLen = 4096;
1347 if (gLen>*size) gLen = *size-20;
1348 int high, low;
1349 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1350
1351 uint8_t bit=0;
1352 //convert wave samples to 1's and 0's
1353 for(i=20; i < *size-20; i++){
1354 if (dest[i] >= high) bit = 1;
1355 if (dest[i] <= low) bit = 0;
1356 dest[i] = bit;
1357 }
1358 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1359 size_t lastBit = 0;
1360 size_t numBits = 0;
1361 for(i=21; i < *size-20; i++) {
1362 //if transition detected or large number of same bits - store the passed bits
1363 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1364 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1365 numBits += (i - lastBit + (*clk/4)) / *clk;
1366 lastBit = i-1;
1367 }
1368 }
1369 *size = numBits;
1370 return 0;
1371 }
1372
1373 //by marshmellow
1374 //detects the bit clock for FSK given the high and low Field Clocks
1375 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1376 {
1377 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1378 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1379 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1380 uint8_t rfLensFnd = 0;
1381 uint8_t lastFCcnt = 0;
1382 uint16_t fcCounter = 0;
1383 uint16_t rfCounter = 0;
1384 uint8_t firstBitFnd = 0;
1385 size_t i;
1386 if (size == 0) return 0;
1387
1388 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1389 rfLensFnd=0;
1390 fcCounter=0;
1391 rfCounter=0;
1392 firstBitFnd=0;
1393 //prnt("DEBUG: fcTol: %d",fcTol);
1394 // prime i to first peak / up transition
1395 for (i = 160; i < size-20; i++)
1396 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1397 break;
1398
1399 for (; i < size-20; i++){
1400 fcCounter++;
1401 rfCounter++;
1402
1403 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1404 continue;
1405 // else new peak
1406 // if we got less than the small fc + tolerance then set it to the small fc
1407 // if it is inbetween set it to the last counter
1408 if (fcCounter < fcHigh && fcCounter > fcLow)
1409 fcCounter = lastFCcnt;
1410 else if (fcCounter < fcLow+fcTol)
1411 fcCounter = fcLow;
1412 else //set it to the large fc
1413 fcCounter = fcHigh;
1414
1415 //look for bit clock (rf/xx)
1416 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1417 //not the same size as the last wave - start of new bit sequence
1418 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1419 for (int ii=0; ii<15; ii++){
1420 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1421 rfCnts[ii]++;
1422 rfCounter = 0;
1423 break;
1424 }
1425 }
1426 if (rfCounter > 0 && rfLensFnd < 15){
1427 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1428 rfCnts[rfLensFnd]++;
1429 rfLens[rfLensFnd++] = rfCounter;
1430 }
1431 } else {
1432 firstBitFnd++;
1433 }
1434 rfCounter=0;
1435 lastFCcnt=fcCounter;
1436 }
1437 fcCounter=0;
1438 }
1439 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1440
1441 for (i=0; i<15; i++){
1442 //get highest 2 RF values (might need to get more values to compare or compare all?)
1443 if (rfCnts[i]>rfCnts[rfHighest]){
1444 rfHighest3=rfHighest2;
1445 rfHighest2=rfHighest;
1446 rfHighest=i;
1447 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1448 rfHighest3=rfHighest2;
1449 rfHighest2=i;
1450 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1451 rfHighest3=i;
1452 }
1453 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1454 }
1455 // set allowed clock remainder tolerance to be 1 large field clock length+1
1456 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1457 uint8_t tol1 = fcHigh+1;
1458
1459 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1460
1461 // loop to find the highest clock that has a remainder less than the tolerance
1462 // compare samples counted divided by
1463 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1464 int ii=7;
1465 for (; ii>=2; ii--){
1466 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1467 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1468 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1469 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1470 break;
1471 }
1472 }
1473 }
1474 }
1475
1476 if (ii<2) return 0; // oops we went too far
1477
1478 return clk[ii];
1479 }
1480
1481 //by marshmellow
1482 //countFC is to detect the field clock lengths.
1483 //counts and returns the 2 most common wave lengths
1484 //mainly used for FSK field clock detection
1485 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1486 {
1487 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1488 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1489 uint8_t fcLensFnd = 0;
1490 uint8_t lastFCcnt = 0;
1491 uint8_t fcCounter = 0;
1492 size_t i;
1493 if (size < 180) return 0;
1494
1495 // prime i to first up transition
1496 for (i = 160; i < size-20; i++)
1497 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1498 break;
1499
1500 for (; i < size-20; i++){
1501 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1502 // new up transition
1503 fcCounter++;
1504 if (fskAdj){
1505 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1506 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1507 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1508 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1509 // save last field clock count (fc/xx)
1510 lastFCcnt = fcCounter;
1511 }
1512 // find which fcLens to save it to:
1513 for (int ii=0; ii<15; ii++){
1514 if (fcLens[ii]==fcCounter){
1515 fcCnts[ii]++;
1516 fcCounter=0;
1517 break;
1518 }
1519 }
1520 if (fcCounter>0 && fcLensFnd<15){
1521 //add new fc length
1522 fcCnts[fcLensFnd]++;
1523 fcLens[fcLensFnd++]=fcCounter;
1524 }
1525 fcCounter=0;
1526 } else {
1527 // count sample
1528 fcCounter++;
1529 }
1530 }
1531
1532 uint8_t best1=14, best2=14, best3=14;
1533 uint16_t maxCnt1=0;
1534 // go through fclens and find which ones are bigest 2
1535 for (i=0; i<15; i++){
1536 // get the 3 best FC values
1537 if (fcCnts[i]>maxCnt1) {
1538 best3=best2;
1539 best2=best1;
1540 maxCnt1=fcCnts[i];
1541 best1=i;
1542 } else if(fcCnts[i]>fcCnts[best2]){
1543 best3=best2;
1544 best2=i;
1545 } else if(fcCnts[i]>fcCnts[best3]){
1546 best3=i;
1547 }
1548 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1549 }
1550 if (fcLens[best1]==0) return 0;
1551 uint8_t fcH=0, fcL=0;
1552 if (fcLens[best1]>fcLens[best2]){
1553 fcH=fcLens[best1];
1554 fcL=fcLens[best2];
1555 } else{
1556 fcH=fcLens[best2];
1557 fcL=fcLens[best1];
1558 }
1559 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1560 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1561 return 0; //lots of waves not psk or fsk
1562 }
1563 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1564
1565 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1566 if (fskAdj) return fcs;
1567 return fcLens[best1];
1568 }
1569
1570 //by marshmellow - demodulate PSK1 wave
1571 //uses wave lengths (# Samples)
1572 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1573 {
1574 if (size == 0) return -1;
1575 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1576 if (*size<loopCnt) loopCnt = *size;
1577
1578 size_t numBits=0;
1579 uint8_t curPhase = *invert;
1580 size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1581 uint16_t fc=0, fullWaveLen=0, tol=1;
1582 uint16_t errCnt=0, waveLenCnt=0, errCnt2=0;
1583 fc = countFC(dest, *size, 1);
1584 uint8_t fc2 = fc >> 8;
1585 if (fc2 == 10) return -1; //fsk found - quit
1586 fc = fc & 0xFF;
1587 if (fc!=2 && fc!=4 && fc!=8) return -1;
1588 //prnt("DEBUG: FC: %d",fc);
1589 *clock = DetectPSKClock(dest, *size, *clock);
1590 if (*clock == 0) return -1;
1591
1592 //find start of modulating data in trace
1593 uint8_t threshold_value = 123; //-5
1594 i = findModStart(dest, *size, threshold_value, fc);
1595
1596 //find first phase shift
1597 int avgWaveVal=0, lastAvgWaveVal=0;
1598 waveStart = i;
1599 for (; i<loopCnt; i++){
1600 // find peak
1601 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1602 waveEnd = i+1;
1603 if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart);
1604 waveLenCnt = waveEnd-waveStart;
1605 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack
1606 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1607 firstFullWave = waveStart;
1608 fullWaveLen=waveLenCnt;
1609 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1610 if (lastAvgWaveVal > threshold_value) curPhase ^= 1;
1611 break;
1612 }
1613 waveStart = i+1;
1614 avgWaveVal = 0;
1615 }
1616 avgWaveVal += dest[i+2];
1617 }
1618 if (firstFullWave == 0) {
1619 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1620 // so skip a little to ensure we are past any Start Signal
1621 firstFullWave = 160;
1622 memset(dest, curPhase, firstFullWave / *clock);
1623 } else {
1624 memset(dest, curPhase^1, firstFullWave / *clock);
1625 }
1626 //advance bits
1627 numBits += (firstFullWave / *clock);
1628 //set start of wave as clock align
1629 lastClkBit = firstFullWave;
1630 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1631 if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
1632 waveStart = 0;
1633 dest[numBits++] = curPhase; //set first read bit
1634 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1635 //top edge of wave = start of new wave
1636 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1637 if (waveStart == 0) {
1638 waveStart = i+1;
1639 waveLenCnt = 0;
1640 avgWaveVal = dest[i+1];
1641 } else { //waveEnd
1642 waveEnd = i+1;
1643 waveLenCnt = waveEnd-waveStart;
1644 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1645 if (waveLenCnt > fc){
1646 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1647 //this wave is a phase shift
1648 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1649 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1650 curPhase ^= 1;
1651 dest[numBits++] = curPhase;
1652 lastClkBit += *clock;
1653 } else if (i < lastClkBit+10+fc){
1654 //noise after a phase shift - ignore
1655 } else { //phase shift before supposed to based on clock
1656 errCnt++;
1657 dest[numBits++] = 7;
1658 }
1659 } else if (i+1 > lastClkBit + *clock + tol + fc){
1660 lastClkBit += *clock; //no phase shift but clock bit
1661 dest[numBits++] = curPhase;
1662 } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often)
1663 errCnt2++;
1664 if(errCnt2 > 101) return errCnt2;
1665 }
1666 avgWaveVal = 0;
1667 waveStart = i+1;
1668 }
1669 }
1670 avgWaveVal += dest[i+1];
1671 }
1672 *size = numBits;
1673 return errCnt;
1674 }
1675
1676 //by marshmellow
1677 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1678 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1679 size_t bufsize = *size;
1680 //need to loop through all samples and identify our clock, look for the ST pattern
1681 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1682 int clk = 0;
1683 int tol = 0;
1684 int i, j, skip, start, end, low, high, minClk, waveStart;
1685 bool complete = false;
1686 int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1687 int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed...
1688 size_t testsize = (bufsize < 512) ? bufsize : 512;
1689 int phaseoff = 0;
1690 high = low = 128;
1691 memset(tmpbuff, 0, sizeof(tmpbuff));
1692 memset(waveLen, 0, sizeof(waveLen));
1693
1694
1695 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1696 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1697 return false; //just noise
1698 }
1699 i = 0;
1700 j = 0;
1701 minClk = 255;
1702 // get to first full low to prime loop and skip incomplete first pulse
1703 while ((buffer[i] < high) && (i < bufsize))
1704 ++i;
1705 while ((buffer[i] > low) && (i < bufsize))
1706 ++i;
1707 skip = i;
1708
1709 // populate tmpbuff buffer with pulse lengths
1710 while (i < bufsize) {
1711 // measure from low to low
1712 while ((buffer[i] > low) && (i < bufsize))
1713 ++i;
1714 start= i;
1715 while ((buffer[i] < high) && (i < bufsize))
1716 ++i;
1717 //first high point for this wave
1718 waveStart = i;
1719 while ((buffer[i] > low) && (i < bufsize))
1720 ++i;
1721 if (j >= (bufsize/32)) {
1722 break;
1723 }
1724 waveLen[j] = i - waveStart; //first high to first low
1725 tmpbuff[j++] = i - start;
1726 if (i-start < minClk && i < bufsize) {
1727 minClk = i - start;
1728 }
1729 }
1730 // set clock - might be able to get this externally and remove this work...
1731 if (!clk) {
1732 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1733 tol = fndClk[clkCnt]/8;
1734 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1735 clk=fndClk[clkCnt];
1736 break;
1737 }
1738 }
1739 // clock not found - ERROR
1740 if (!clk) {
1741 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1742 return false;
1743 }
1744 } else tol = clk/8;
1745
1746 *foundclock = clk;
1747
1748 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1749 start = -1;
1750 for (i = 0; i < j - 4; ++i) {
1751 skip += tmpbuff[i];
1752 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1753 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1754 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1755 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1756 start = i + 3;
1757 break;
1758 }
1759 }
1760 }
1761 }
1762 }
1763 // first ST not found - ERROR
1764 if (start < 0) {
1765 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1766 return false;
1767 } else {
1768 if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j);
1769 }
1770 if (waveLen[i+2] > clk*1+tol)
1771 phaseoff = 0;
1772 else
1773 phaseoff = clk/2;
1774
1775 // skip over the remainder of ST
1776 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1777
1778 // now do it again to find the end
1779 end = skip;
1780 for (i += 3; i < j - 4; ++i) {
1781 end += tmpbuff[i];
1782 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1783 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1784 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1785 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1786 complete = true;
1787 break;
1788 }
1789 }
1790 }
1791 }
1792 }
1793 end -= phaseoff;
1794 //didn't find second ST - ERROR
1795 if (!complete) {
1796 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1797 return false;
1798 }
1799 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1800 //now begin to trim out ST so we can use normal demod cmds
1801 start = skip;
1802 size_t datalen = end - start;
1803 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1804 if ( clk - (datalen % clk) <= clk/8) {
1805 // padd the amount off - could be problematic... but shouldn't happen often
1806 datalen += clk - (datalen % clk);
1807 } else if ( (datalen % clk) <= clk/8 ) {
1808 // padd the amount off - could be problematic... but shouldn't happen often
1809 datalen -= datalen % clk;
1810 } else {
1811 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1812 return false;
1813 }
1814 // if datalen is less than one t55xx block - ERROR
1815 if (datalen/clk < 8*4) {
1816 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1817 return false;
1818 }
1819 size_t dataloc = start;
1820 if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
1821 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1822 for ( i=0; i <= (clk/8); ++i ) {
1823 if ( buffer[dataloc - (clk*4) - i] <= low ) {
1824 dataloc -= i;
1825 break;
1826 }
1827 }
1828 }
1829
1830 size_t newloc = 0;
1831 i=0;
1832 if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
1833
1834 // warning - overwriting buffer given with raw wave data with ST removed...
1835 while ( dataloc < bufsize-(clk/2) ) {
1836 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1837 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1838 for(i=0; i < clk/2-tol; ++i) {
1839 buffer[dataloc+i] = high+5;
1840 }
1841 }
1842 for (i=0; i<datalen; ++i) {
1843 if (i+newloc < bufsize) {
1844 if (i+newloc < dataloc)
1845 buffer[i+newloc] = buffer[dataloc];
1846
1847 dataloc++;
1848 }
1849 }
1850 newloc += i;
1851 //skip next ST - we just assume it will be there from now on...
1852 if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
1853 dataloc += clk*4;
1854 }
1855 *size = newloc;
1856 return true;
1857 }
Impressum, Datenschutz