]>
Commit | Line | Data |
---|---|---|
eb191de6 | 1 | //----------------------------------------------------------------------------- |
ba1a299c | 2 | // Copyright (C) 2014 |
eb191de6 | 3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
1e090a61 | 8 | // Low frequency demod/decode commands |
eb191de6 | 9 | //----------------------------------------------------------------------------- |
eb191de6 | 10 | #include "lfdemod.h" |
6426f6ba | 11 | |
a126332a | 12 | //un_comment to allow debug print calls when used not on device |
6426f6ba | 13 | void dummy(char *fmt, ...){} |
9833360b | 14 | void dummy_sgc (int clock, int startidx) {} |
e977fb0d | 15 | |
6426f6ba | 16 | #ifndef ON_DEVICE |
91e92957 | 17 | # include "ui.h" // plotclock, plotclockstartindex |
e977fb0d | 18 | # include "cmdparser.h" |
19 | # include "cmddata.h" | |
20 | # define prnt PrintAndLog | |
9833360b | 21 | # define sgc SetGraphClock |
88e7a6bf | 22 | void SetGraphClock(int clock, int startidx){ |
9833360b | 23 | PlotClock = clock; |
24 | PlockClockStartIndex = startidx; | |
25 | } | |
91e92957 | 26 | #else |
27 | uint8_t g_debugMode = 0; | |
28 | # define prnt dummy | |
29 | # define sgc dummy_sgc | |
30 | #endif | |
9833360b | 31 | |
2dcf60f3 | 32 | //test samples are not just noise |
33 | uint8_t justNoise(uint8_t *bits, size_t size) { | |
34 | #define THRESHOLD 123 | |
35 | uint8_t val = 1; | |
9833360b | 36 | for(size_t idx = 0; idx < size && val; idx++) |
2dcf60f3 | 37 | val = bits[idx] < THRESHOLD; |
38 | return val; | |
a1d17964 | 39 | } |
40 | ||
1e090a61 | 41 | //by marshmellow |
872e3d4d | 42 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 | 43 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
44 | { | |
45 | *high=0; | |
46 | *low=255; | |
47 | // get high and low thresholds | |
2eec55c8 | 48 | for (size_t i=0; i < size; i++){ |
1e090a61 | 49 | if (BitStream[i] > *high) *high = BitStream[i]; |
50 | if (BitStream[i] < *low) *low = BitStream[i]; | |
51 | } | |
52 | if (*high < 123) return -1; // just noise | |
75cbbe9a | 53 | *high = ((*high-128)*fuzzHi + 12800)/100; |
54 | *low = ((*low-128)*fuzzLo + 12800)/100; | |
1e090a61 | 55 | return 1; |
56 | } | |
57 | ||
a1d17964 | 58 | // by marshmellow |
59 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
60 | // returns 1 if passed | |
61 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) | |
62 | { | |
63 | uint8_t ans = 0; | |
64 | for (uint8_t i = 0; i < bitLen; i++){ | |
65 | ans ^= ((bits >> i) & 1); | |
66 | } | |
4ac9f078 | 67 | if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits); |
a1d17964 | 68 | return (ans == pType); |
69 | } | |
70 | ||
a126332a | 71 | //by marshmellow |
72 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), | |
c728b2b4 | 73 | // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) |
a126332a | 74 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) |
75 | { | |
76 | uint32_t parityWd = 0; | |
77 | size_t j = 0, bitCnt = 0; | |
c08c796e | 78 | for (int word = 0; word < (bLen); word += pLen){ |
a126332a | 79 | for (int bit=0; bit < pLen; bit++){ |
80 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; | |
81 | BitStream[j++] = (BitStream[startIdx+word+bit]); | |
82 | } | |
5215a874 | 83 | if (word+pLen > bLen) break; |
4ac9f078 | 84 | |
a126332a | 85 | j--; // overwrite parity with next data |
86 | // if parity fails then return 0 | |
c728b2b4 | 87 | switch (pType) { |
11dee3d5 | 88 | case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit |
89 | case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit | |
3c654208 | 90 | default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity |
a126332a | 91 | } |
c08c796e | 92 | bitCnt += (pLen-1); |
a126332a | 93 | parityWd = 0; |
94 | } | |
95 | // if we got here then all the parities passed | |
96 | //return ID start index and size | |
97 | return bitCnt; | |
98 | } | |
99 | ||
100 | // by marshmellow | |
101 | // takes a array of binary values, length of bits per parity (includes parity bit), | |
0d2c5909 | 102 | // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) |
c728b2b4 | 103 | // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added |
a126332a | 104 | size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) |
105 | { | |
106 | uint32_t parityWd = 0; | |
107 | size_t j = 0, bitCnt = 0; | |
108 | for (int word = 0; word < sourceLen; word+=pLen-1) { | |
109 | for (int bit=0; bit < pLen-1; bit++){ | |
110 | parityWd = (parityWd << 1) | BitSource[word+bit]; | |
111 | dest[j++] = (BitSource[word+bit]); | |
112 | } | |
0d2c5909 | 113 | |
a126332a | 114 | // if parity fails then return 0 |
0d2c5909 | 115 | switch (pType) { |
116 | case 3: dest[j++]=0; break; // marker bit which should be a 0 | |
117 | case 2: dest[j++]=1; break; // marker bit which should be a 1 | |
118 | default: | |
119 | dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; | |
120 | break; | |
a126332a | 121 | } |
122 | bitCnt += pLen; | |
123 | parityWd = 0; | |
124 | } | |
125 | // if we got here then all the parities passed | |
126 | //return ID start index and size | |
127 | return bitCnt; | |
128 | } | |
129 | ||
130 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) | |
131 | { | |
132 | uint32_t num = 0; | |
0d2c5909 | 133 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 134 | num = (num << 1) | (*src); |
135 | src++; | |
136 | } | |
137 | return num; | |
138 | } | |
139 | ||
140 | //least significant bit first | |
141 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) | |
142 | { | |
143 | uint32_t num = 0; | |
6b6815bc | 144 | for(int i = 0 ; i < numbits ; i++) { |
a126332a | 145 | num = (num << 1) | *(src + (numbits-(i+1))); |
146 | } | |
147 | return num; | |
148 | } | |
149 | ||
8ad1e731 | 150 | //by marshmellow |
151 | // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) | |
152 | bool preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx){ | |
153 | return preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false); | |
154 | } | |
a1d17964 | 155 | //by marshmellow |
2147c307 | 156 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
8ad1e731 | 157 | // param @findone: look for a repeating preamble or only the first. |
158 | // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits | |
159 | bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) | |
a1d17964 | 160 | { |
5735cfa5 | 161 | // Sanity check. If preamble length is bigger than bitstream length. |
8ad1e731 | 162 | if ( *size <= pLen ) return false; |
5735cfa5 | 163 | |
56d0fb8e | 164 | uint8_t foundCnt = 0; |
165 | for (int idx = 0; idx < *size - pLen; idx++){ | |
e0165dcf | 166 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ |
5215a874 | 167 | if (g_debugMode) prnt("DEBUG: preamble found at %i", idx); |
e0165dcf | 168 | //first index found |
169 | foundCnt++; | |
170 | if (foundCnt == 1){ | |
171 | *startIdx = idx; | |
8ad1e731 | 172 | if (findone) return true; |
e0165dcf | 173 | } |
174 | if (foundCnt == 2){ | |
175 | *size = idx - *startIdx; | |
8ad1e731 | 176 | return true; |
e0165dcf | 177 | } |
178 | } | |
179 | } | |
8ad1e731 | 180 | return false; |
181 | } | |
182 | ||
183 | // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup. | |
184 | size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) { | |
185 | size_t i = 0; | |
186 | size_t waveSizeCnt = 0; | |
187 | uint8_t thresholdCnt = 0; | |
188 | bool isAboveThreshold = dest[i++] >= threshold_value; | |
189 | for (; i < size-20; i++ ) { | |
190 | if(dest[i] < threshold_value && isAboveThreshold) { | |
191 | thresholdCnt++; | |
192 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
193 | isAboveThreshold = false; | |
194 | waveSizeCnt = 0; | |
195 | } else if (dest[i] >= threshold_value && !isAboveThreshold) { | |
196 | thresholdCnt++; | |
197 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
198 | isAboveThreshold = true; | |
199 | waveSizeCnt = 0; | |
200 | } else { | |
201 | waveSizeCnt++; | |
202 | } | |
203 | if (thresholdCnt > 10) break; | |
204 | } | |
205 | if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt); | |
206 | return i; | |
a1d17964 | 207 | } |
208 | ||
2147c307 | 209 | //by marshmellow |
210 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
8ad1e731 | 211 | // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future |
a8fd088d | 212 | int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) |
2147c307 | 213 | { |
5215a874 | 214 | // sanity check |
a9eeb576 | 215 | if (*size < 64) return -3; |
a8fd088d | 216 | if (BitStream[1] > 1) return -1; |
8ad1e731 | 217 | |
5215a874 | 218 | uint8_t fmtlen; |
e0165dcf | 219 | *startIdx = 0; |
8ad1e731 | 220 | |
221 | // preamble 0111111111 | |
222 | // include 0 in front to help get start pos | |
223 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
a9eeb576 | 224 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx)) |
a8fd088d | 225 | return -2; |
a9eeb576 | 226 | |
227 | //XL and normal size. | |
228 | if (*size != 64 && *size != 128) return -3; | |
8ad1e731 | 229 | |
a9eeb576 | 230 | fmtlen = (*size == 128) ? 22 : 10; |
8ad1e731 | 231 | |
5215a874 | 232 | //skip last 4bit parity row for simplicity |
233 | *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, fmtlen * 5); | |
234 | ||
235 | switch (*size) { | |
236 | case 40: { | |
237 | // std em410x format | |
238 | *hi = 0; | |
239 | *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32)); | |
240 | break; | |
241 | } | |
242 | case 88: { | |
243 | // long em format | |
244 | *hi = (bytebits_to_byte(BitStream, 24)); | |
245 | *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32)); | |
246 | break; | |
247 | } | |
a8fd088d | 248 | default: return -4; |
e0165dcf | 249 | } |
8ad1e731 | 250 | return 1; |
2147c307 | 251 | } |
252 | ||
fef74fdc | 253 | //by marshmellow |
254 | //demodulates strong heavily clipped samples | |
4eabb8ad | 255 | //RETURN: num of errors. if 0, is ok. |
23f0a7d8 | 256 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) |
257 | { | |
258 | size_t bitCnt=0, smplCnt=0, errCnt=0; | |
259 | uint8_t waveHigh = 0; | |
23f0a7d8 | 260 | for (size_t i=0; i < *size; i++){ |
261 | if (BinStream[i] >= high && waveHigh){ | |
262 | smplCnt++; | |
263 | } else if (BinStream[i] <= low && !waveHigh){ | |
264 | smplCnt++; | |
265 | } else { //transition | |
266 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
81e82dfe | 267 | |
23f0a7d8 | 268 | if (smplCnt > clk-(clk/4)-1) { //full clock |
a38f5a07 | 269 | if (smplCnt > clk + (clk/4)+1) { //too many samples |
23f0a7d8 | 270 | errCnt++; |
05164399 | 271 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
81e82dfe | 272 | BinStream[bitCnt++] = 7; |
23f0a7d8 | 273 | } else if (waveHigh) { |
274 | BinStream[bitCnt++] = invert; | |
275 | BinStream[bitCnt++] = invert; | |
276 | } else if (!waveHigh) { | |
277 | BinStream[bitCnt++] = invert ^ 1; | |
278 | BinStream[bitCnt++] = invert ^ 1; | |
279 | } | |
280 | waveHigh ^= 1; | |
281 | smplCnt = 0; | |
282 | } else if (smplCnt > (clk/2) - (clk/4)-1) { | |
283 | if (waveHigh) { | |
284 | BinStream[bitCnt++] = invert; | |
285 | } else if (!waveHigh) { | |
286 | BinStream[bitCnt++] = invert ^ 1; | |
287 | } | |
288 | waveHigh ^= 1; | |
289 | smplCnt = 0; | |
290 | } else if (!bitCnt) { | |
291 | //first bit | |
292 | waveHigh = (BinStream[i] >= high); | |
293 | smplCnt = 1; | |
294 | } else { | |
295 | smplCnt++; | |
296 | //transition bit oops | |
297 | } | |
298 | } else { //haven't hit new high or new low yet | |
299 | smplCnt++; | |
300 | } | |
301 | } | |
302 | } | |
303 | *size = bitCnt; | |
304 | return errCnt; | |
305 | } | |
306 | ||
eb191de6 | 307 | //by marshmellow |
fef74fdc | 308 | void askAmp(uint8_t *BitStream, size_t size) |
309 | { | |
9686a8d4 | 310 | uint8_t last = 128; |
311 | for(size_t i = 1; i < size; ++i){ | |
312 | if (BitStream[i]-BitStream[i-1] >= 30) //large jump up | |
313 | last = 255; | |
314 | else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down | |
315 | last = 0; | |
316 | ||
317 | BitStream[i] = last; | |
fef74fdc | 318 | } |
fef74fdc | 319 | } |
320 | ||
321 | //by marshmellow | |
322 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester | |
323 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) | |
eb191de6 | 324 | { |
fef74fdc | 325 | if (*size==0) return -1; |
6e984446 | 326 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
2eec55c8 | 327 | if (*clk==0 || start < 0) return -3; |
fef74fdc | 328 | if (*invert != 1) *invert = 0; |
329 | if (amp==1) askAmp(BinStream, *size); | |
a38f5a07 | 330 | if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); |
fef74fdc | 331 | |
9833360b | 332 | sgc(*clk, start); |
333 | ||
2eec55c8 | 334 | uint8_t initLoopMax = 255; |
335 | if (initLoopMax > *size) initLoopMax = *size; | |
ba1a299c | 336 | // Detect high and lows |
fef74fdc | 337 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 | 338 | int high, low; |
fef74fdc | 339 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) |
340 | return -2; //just noise | |
ba1a299c | 341 | |
fef74fdc | 342 | size_t errCnt = 0; |
23f0a7d8 | 343 | // if clean clipped waves detected run alternate demod |
344 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
05164399 | 345 | if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); |
fef74fdc | 346 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); |
347 | if (askType) //askman | |
348 | return manrawdecode(BinStream, size, 0); | |
81e82dfe | 349 | //askraw |
350 | return errCnt; | |
23f0a7d8 | 351 | } |
05164399 | 352 | if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); |
23f0a7d8 | 353 | |
fef74fdc | 354 | int lastBit; //set first clock check - can go negative |
355 | size_t i, bitnum = 0; //output counter | |
356 | uint8_t midBit = 0; | |
2eec55c8 | 357 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
fef74fdc | 358 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely |
05164399 | 359 | size_t MaxBits = 3072; //max bits to collect |
6e984446 | 360 | lastBit = start - *clk; |
fef74fdc | 361 | |
6e984446 | 362 | for (i = start; i < *size; ++i) { |
fef74fdc | 363 | if (i-lastBit >= *clk-tol){ |
364 | if (BinStream[i] >= high) { | |
365 | BinStream[bitnum++] = *invert; | |
366 | } else if (BinStream[i] <= low) { | |
367 | BinStream[bitnum++] = *invert ^ 1; | |
368 | } else if (i-lastBit >= *clk+tol) { | |
369 | if (bitnum > 0) { | |
05164399 | 370 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
fef74fdc | 371 | BinStream[bitnum++]=7; |
372 | errCnt++; | |
373 | } | |
374 | } else { //in tolerance - looking for peak | |
375 | continue; | |
376 | } | |
377 | midBit = 0; | |
2eec55c8 | 378 | lastBit += *clk; |
fef74fdc | 379 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ |
380 | if (BinStream[i] >= high) { | |
381 | BinStream[bitnum++] = *invert; | |
382 | } else if (BinStream[i] <= low) { | |
383 | BinStream[bitnum++] = *invert ^ 1; | |
384 | } else if (i-lastBit >= *clk/2+tol) { | |
385 | BinStream[bitnum] = BinStream[bitnum-1]; | |
386 | bitnum++; | |
387 | } else { //in tolerance - looking for peak | |
388 | continue; | |
389 | } | |
390 | midBit = 1; | |
2eec55c8 | 391 | } |
392 | if (bitnum >= MaxBits) break; | |
ba1a299c | 393 | } |
2eec55c8 | 394 | *size = bitnum; |
6e984446 | 395 | return errCnt; |
eb191de6 | 396 | } |
eb191de6 | 397 | //by marshmellow |
398 | //take 10 and 01 and manchester decode | |
399 | //run through 2 times and take least errCnt | |
4eabb8ad | 400 | int manrawdecode(uint8_t *BitStream, size_t *size, uint8_t invert){ |
401 | ||
402 | // sanity check | |
403 | if (*size < 16) return -1; | |
404 | ||
5f5b83b7 | 405 | int errCnt = 0, bestErr = 1000; |
406 | uint16_t bitnum = 0, MaxBits = 512, bestRun = 0; | |
81e82dfe | 407 | size_t i, k; |
4eabb8ad | 408 | |
2767fc02 | 409 | //find correct start position [alignment] |
4eabb8ad | 410 | for (k = 0; k < 2; ++k){ |
411 | for (i = k; i < *size-3; i += 2) { | |
81e82dfe | 412 | if (BitStream[i] == BitStream[i+1]) |
ba1a299c | 413 | errCnt++; |
4eabb8ad | 414 | } |
81e82dfe | 415 | if (bestErr > errCnt){ |
416 | bestErr = errCnt; | |
417 | bestRun = k; | |
ba1a299c | 418 | } |
4eabb8ad | 419 | errCnt = 0; |
ba1a299c | 420 | } |
4eabb8ad | 421 | |
2767fc02 | 422 | //decode |
4eabb8ad | 423 | for (i = bestRun; i < *size-3; i += 2){ |
81e82dfe | 424 | if (BitStream[i] == 1 && (BitStream[i+1] == 0)){ |
425 | BitStream[bitnum++] = invert; | |
426 | } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
427 | BitStream[bitnum++] = invert^1; | |
23f0a7d8 | 428 | } else { |
81e82dfe | 429 | BitStream[bitnum++] = 7; |
ba1a299c | 430 | } |
4eabb8ad | 431 | if (bitnum > MaxBits) break; |
ba1a299c | 432 | } |
4eabb8ad | 433 | *size = bitnum; |
2eec55c8 | 434 | return bestErr; |
f822a063 | 435 | } |
436 | ||
1d0ccbe0 | 437 | uint32_t manchesterEncode2Bytes(uint16_t datain) { |
438 | uint32_t output = 0; | |
439 | uint8_t curBit = 0; | |
440 | for (uint8_t i=0; i<16; i++) { | |
441 | curBit = (datain >> (15-i) & 1); | |
442 | output |= (1<<(((15-i)*2)+curBit)); | |
443 | } | |
444 | return output; | |
445 | } | |
446 | ||
fef74fdc | 447 | //by marshmellow |
448 | //encode binary data into binary manchester | |
449 | int ManchesterEncode(uint8_t *BitStream, size_t size) | |
450 | { | |
451 | size_t modIdx=20000, i=0; | |
452 | if (size>modIdx) return -1; | |
453 | for (size_t idx=0; idx < size; idx++){ | |
454 | BitStream[idx+modIdx++] = BitStream[idx]; | |
455 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
456 | } | |
457 | for (; i<(size*2); i++){ | |
458 | BitStream[i] = BitStream[i+20000]; | |
459 | } | |
460 | return i; | |
461 | } | |
462 | ||
f822a063 | 463 | //by marshmellow |
2147c307 | 464 | //take 01 or 10 = 1 and 11 or 00 = 0 |
465 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
13d77ef9 | 466 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 | 467 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 | 468 | { |
2eec55c8 | 469 | uint16_t bitnum = 0; |
470 | uint16_t errCnt = 0; | |
471 | size_t i = offset; | |
2147c307 | 472 | uint16_t MaxBits=512; |
473 | //if not enough samples - error | |
474 | if (*size < 51) return -1; | |
475 | //check for phase change faults - skip one sample if faulty | |
476 | uint8_t offsetA = 1, offsetB = 1; | |
477 | for (; i<48; i+=2){ | |
478 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
479 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
480 | } | |
481 | if (!offsetA && offsetB) offset++; | |
482 | for (i=offset; i<*size-3; i+=2){ | |
483 | //check for phase error | |
13d77ef9 | 484 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 | 485 | BitStream[bitnum++]=7; |
2147c307 | 486 | errCnt++; |
487 | } | |
ba1a299c | 488 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 | 489 | BitStream[bitnum++]=1^invert; |
ba1a299c | 490 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 | 491 | BitStream[bitnum++]=invert; |
ba1a299c | 492 | } else { |
2767fc02 | 493 | BitStream[bitnum++]=7; |
ba1a299c | 494 | errCnt++; |
495 | } | |
6de43508 | 496 | if(bitnum>MaxBits) break; |
ba1a299c | 497 | } |
498 | *size=bitnum; | |
499 | return errCnt; | |
eb191de6 | 500 | } |
501 | ||
fef74fdc | 502 | // by marshmellow |
11081e04 | 503 | // demod gProxIIDemod |
504 | // error returns as -x | |
505 | // success returns start position in BitStream | |
506 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
507 | int gProxII_Demod(uint8_t BitStream[], size_t *size) | |
508 | { | |
509 | size_t startIdx=0; | |
510 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
511 | ||
8ad1e731 | 512 | if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx)) |
513 | return -3; //preamble not found | |
514 | ||
11081e04 | 515 | if (*size != 96) return -2; //should have found 96 bits |
8ad1e731 | 516 | |
11081e04 | 517 | //check first 6 spacer bits to verify format |
518 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
519 | //confirmed proper separator bits found | |
520 | //return start position | |
521 | return (int) startIdx; | |
522 | } | |
7fa7e812 | 523 | return -5; //spacer bits not found - not a valid gproxII |
11081e04 | 524 | } |
525 | ||
7fa7e812 | 526 | //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) |
f822a063 | 527 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 528 | { |
2eec55c8 | 529 | size_t last_transition = 0; |
530 | size_t idx = 1; | |
ba1a299c | 531 | if (fchigh==0) fchigh=10; |
532 | if (fclow==0) fclow=8; | |
84871873 | 533 | //set the threshold close to 0 (graph) or 128 std to avoid static |
534 | uint8_t threshold_value = 123; | |
ac2df346 | 535 | size_t preLastSample = 0; |
536 | size_t LastSample = 0; | |
537 | size_t currSample = 0; | |
4ac9f078 | 538 | if ( size < 1024 ) return 0; // not enough samples |
539 | ||
8ad1e731 | 540 | //find start of modulating data in trace |
541 | idx = findModStart(dest, size, threshold_value, fchigh); | |
ba1a299c | 542 | |
543 | // Need to threshold first sample | |
4ac9f078 | 544 | if(dest[idx] < threshold_value) dest[0] = 0; |
ba1a299c | 545 | else dest[0] = 1; |
4ac9f078 | 546 | idx++; |
ba1a299c | 547 | |
548 | size_t numBits = 0; | |
549 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
cd0bed3c | 550 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere |
ba1a299c | 551 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
7fa7e812 | 552 | // (could also be fc/5 && fc/7 for fsk1 = 4-9) |
4ac9f078 | 553 | for(; idx < size-20; idx++) { |
ba1a299c | 554 | // threshold current value |
555 | ||
556 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
557 | else dest[idx] = 1; | |
558 | ||
559 | // Check for 0->1 transition | |
7fa7e812 | 560 | if (dest[idx-1] < dest[idx]) { |
ac2df346 | 561 | preLastSample = LastSample; |
562 | LastSample = currSample; | |
563 | currSample = idx-last_transition; | |
6426f6ba | 564 | if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3) |
ba1a299c | 565 | //do nothing with extra garbage |
7fa7e812 | 566 | } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) |
567 | //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) | |
4ac9f078 | 568 | if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){ |
7fa7e812 | 569 | dest[numBits-1]=1; |
ac2df346 | 570 | } |
2eec55c8 | 571 | dest[numBits++]=1; |
ac2df346 | 572 | |
4ac9f078 | 573 | } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage |
574 | //do nothing with beginning garbage and reset.. should be rare.. | |
575 | numBits = 0; | |
7fa7e812 | 576 | } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) |
ac2df346 | 577 | dest[numBits++]=1; |
7fa7e812 | 578 | } else { //9+ = 10 sample waves (or 6+ = 7) |
2eec55c8 | 579 | dest[numBits++]=0; |
ba1a299c | 580 | } |
581 | last_transition = idx; | |
ba1a299c | 582 | } |
583 | } | |
584 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
eb191de6 | 585 | } |
586 | ||
ba1a299c | 587 | //translate 11111100000 to 10 |
7fa7e812 | 588 | //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock |
2eec55c8 | 589 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
e0165dcf | 590 | uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 591 | { |
ba1a299c | 592 | uint8_t lastval=dest[0]; |
2eec55c8 | 593 | size_t idx=0; |
ba1a299c | 594 | size_t numBits=0; |
595 | uint32_t n=1; | |
ba1a299c | 596 | for( idx=1; idx < size; idx++) { |
13d77ef9 | 597 | n++; |
a38f5a07 | 598 | if (dest[idx]==lastval) continue; //skip until we hit a transition |
2eec55c8 | 599 | |
7fa7e812 | 600 | //find out how many bits (n) we collected |
ba1a299c | 601 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 | 602 | if (dest[idx-1]==1) { |
75cbbe9a | 603 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 604 | } else {// 0->1 crossing |
75cbbe9a | 605 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c | 606 | } |
607 | if (n == 0) n = 1; | |
608 | ||
7fa7e812 | 609 | //add to our destination the bits we collected |
2eec55c8 | 610 | memset(dest+numBits, dest[idx-1]^invert , n); |
611 | numBits += n; | |
ba1a299c | 612 | n=0; |
613 | lastval=dest[idx]; | |
614 | }//end for | |
13d77ef9 | 615 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a | 616 | if (n > rfLen/fchigh) { |
13d77ef9 | 617 | if (dest[idx-2]==1) { |
75cbbe9a | 618 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 619 | } else { |
75cbbe9a | 620 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 | 621 | } |
2eec55c8 | 622 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 | 623 | numBits += n; |
624 | } | |
ba1a299c | 625 | return numBits; |
eb191de6 | 626 | } |
6426f6ba | 627 | |
eb191de6 | 628 | //by marshmellow (from holiman's base) |
629 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
f822a063 | 630 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 631 | { |
ba1a299c | 632 | // FSK demodulator |
633 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
2eec55c8 | 634 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); |
ba1a299c | 635 | return size; |
eb191de6 | 636 | } |
a1d17964 | 637 | |
eb191de6 | 638 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 | 639 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 | 640 | { |
e0165dcf | 641 | if (justNoise(dest, *size)) return -1; |
642 | ||
337f7036 | 643 | size_t numStart=0, size2 = *size, startIdx=0; |
e0165dcf | 644 | // FSK demodulator |
645 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
2eec55c8 | 646 | if (*size < 96*2) return -2; |
e0165dcf | 647 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
648 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
8ad1e731 | 649 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
650 | return -3; //preamble not found | |
e0165dcf | 651 | |
652 | numStart = startIdx + sizeof(preamble); | |
653 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
654 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
655 | if (dest[idx] == dest[idx+1]){ | |
656 | return -4; //not manchester data | |
657 | } | |
658 | *hi2 = (*hi2<<1)|(*hi>>31); | |
659 | *hi = (*hi<<1)|(*lo>>31); | |
660 | //Then, shift in a 0 or one into low | |
81b7e894 | 661 | *lo <<= 1; |
e0165dcf | 662 | if (dest[idx] && !dest[idx+1]) // 1 0 |
81b7e894 | 663 | *lo |= 1; |
e0165dcf | 664 | else // 0 1 |
81b7e894 | 665 | *lo |= 0; |
e0165dcf | 666 | } |
667 | return (int)startIdx; | |
eb191de6 | 668 | } |
669 | ||
ec75f5c1 | 670 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 | 671 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 | 672 | { |
a1d17964 | 673 | if (justNoise(dest, *size)) return -1; |
674 | ||
337f7036 | 675 | size_t numStart=0, size2 = *size, startIdx=0; |
ec75f5c1 | 676 | // FSK demodulator |
a1d17964 | 677 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
678 | if (*size < 96) return -2; | |
ec75f5c1 | 679 | |
a1d17964 | 680 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
681 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
8ad1e731 | 682 | if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
683 | return -3; //preamble not found | |
a1d17964 | 684 | |
685 | numStart = startIdx + sizeof(preamble); | |
686 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
687 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
688 | if (dest[idx] == dest[idx+1]) | |
689 | return -4; //not manchester data | |
690 | *hi2 = (*hi2<<1)|(*hi>>31); | |
691 | *hi = (*hi<<1)|(*lo>>31); | |
692 | //Then, shift in a 0 or one into low | |
693 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
694 | *lo=(*lo<<1)|1; | |
695 | else // 0 1 | |
696 | *lo=(*lo<<1)|0; | |
ec75f5c1 | 697 | } |
a1d17964 | 698 | return (int)startIdx; |
ec75f5c1 | 699 | } |
700 | ||
eb191de6 | 701 | int IOdemodFSK(uint8_t *dest, size_t size) |
702 | { | |
a1d17964 | 703 | if (justNoise(dest, size)) return -1; |
ba1a299c | 704 | //make sure buffer has data |
a1d17964 | 705 | if (size < 66*64) return -2; |
ba1a299c | 706 | // FSK demodulator |
a1d17964 | 707 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
708 | if (size < 65) return -3; //did we get a good demod? | |
ba1a299c | 709 | //Index map |
710 | //0 10 20 30 40 50 60 | |
711 | //| | | | | | | | |
712 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
713 | //----------------------------------------------------------------------------- | |
714 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
715 | // | |
716 | //XSF(version)facility:codeone+codetwo | |
717 | //Handle the data | |
a1d17964 | 718 | size_t startIdx = 0; |
719 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
8ad1e731 | 720 | if (! preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx)) |
721 | return -4; //preamble not found | |
eb191de6 | 722 | |
a1d17964 | 723 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
724 | //confirmed proper separator bits found | |
725 | //return start position | |
726 | return (int) startIdx; | |
1e090a61 | 727 | } |
a1d17964 | 728 | return -5; |
1e090a61 | 729 | } |
730 | ||
70459879 | 731 | // by marshmellow |
732 | // find viking preamble 0xF200 in already demoded data | |
733 | int VikingDemod_AM(uint8_t *dest, size_t *size) { | |
70459879 | 734 | //make sure buffer has data |
735 | if (*size < 64*2) return -2; | |
70459879 | 736 | size_t startIdx = 0; |
737 | uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
8ad1e731 | 738 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
739 | return -4; //preamble not found | |
740 | ||
c0afa86f | 741 | uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ |
742 | bytebits_to_byte(dest+startIdx+8,8) ^ | |
743 | bytebits_to_byte(dest+startIdx+16,8) ^ | |
744 | bytebits_to_byte(dest+startIdx+24,8) ^ | |
745 | bytebits_to_byte(dest+startIdx+32,8) ^ | |
746 | bytebits_to_byte(dest+startIdx+40,8) ^ | |
747 | bytebits_to_byte(dest+startIdx+48,8) ^ | |
748 | bytebits_to_byte(dest+startIdx+56,8); | |
749 | if ( checkCalc != 0xA8 ) return -5; | |
57c7b44b | 750 | if (*size != 64) return -6; |
70459879 | 751 | //return start position |
deba67ab | 752 | return (int)startIdx; |
70459879 | 753 | } |
754 | ||
5daad826 | 755 | // by iceman |
756 | // find Visa2000 preamble in already demoded data | |
757 | int Visa2kDemod_AM(uint8_t *dest, size_t *size) { | |
371a40bf | 758 | if (*size < 96) return -1; //make sure buffer has data |
5daad826 | 759 | size_t startIdx = 0; |
760 | uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; | |
8ad1e731 | 761 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
762 | return -2; //preamble not found | |
5daad826 | 763 | if (*size != 96) return -3; //wrong demoded size |
764 | //return start position | |
deba67ab | 765 | return (int)startIdx; |
5daad826 | 766 | } |
207fc33a | 767 | // by iceman |
768 | // find Noralsy preamble in already demoded data | |
769 | int NoralsyDemod_AM(uint8_t *dest, size_t *size) { | |
7d269265 | 770 | if (*size < 96) return -1; //make sure buffer has data |
207fc33a | 771 | size_t startIdx = 0; |
772 | uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0}; | |
8ad1e731 | 773 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
774 | return -2; //preamble not found | |
207fc33a | 775 | if (*size != 96) return -3; //wrong demoded size |
776 | //return start position | |
deba67ab | 777 | return (int)startIdx; |
207fc33a | 778 | } |
4469412e | 779 | // find presco preamble 0x10D in already demoded data |
780 | int PrescoDemod(uint8_t *dest, size_t *size) { | |
d48175d4 | 781 | if (*size < 128*2) return -1; //make sure buffer has data |
4469412e | 782 | size_t startIdx = 0; |
d48175d4 | 783 | uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; |
8ad1e731 | 784 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
785 | return -2; //preamble not found | |
d48175d4 | 786 | if (*size != 128) return -3; //wrong demoded size |
4469412e | 787 | //return start position |
deba67ab | 788 | return (int)startIdx; |
4469412e | 789 | } |
790 | ||
615f21dd | 791 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID |
0df669a2 | 792 | // BitStream must contain previously askrawdemod and biphasedemoded data |
deba67ab | 793 | int FDXBdemodBI(uint8_t *dest, size_t *size) { |
794 | if (*size < 128*2) return -1; //make sure buffer has enough data | |
615f21dd | 795 | size_t startIdx = 0; |
0df669a2 | 796 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; |
8ad1e731 | 797 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
798 | return -2; //preamble not found | |
deba67ab | 799 | if (*size != 128) return -3; //wrong demoded size |
800 | //return start position | |
615f21dd | 801 | return (int)startIdx; |
802 | } | |
1e090a61 | 803 | |
6c283951 | 804 | // ASK/Diphase fc/64 (inverted Biphase) |
805 | // Note: this i s not a demod, this is only a detection | |
806 | // the parameter *dest needs to be demoded before call | |
deba67ab | 807 | // 0xFFFF preamble, 64bits |
6c283951 | 808 | int JablotronDemod(uint8_t *dest, size_t *size){ |
deba67ab | 809 | if (*size < 64*2) return -1; //make sure buffer has enough data |
6c283951 | 810 | size_t startIdx = 0; |
deba67ab | 811 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; |
8ad1e731 | 812 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
813 | return -2; //preamble not found | |
deba67ab | 814 | if (*size != 64) return -3; // wrong demoded size |
6c283951 | 815 | |
29ce214c | 816 | uint8_t checkchksum = 0; |
6c283951 | 817 | for (int i=16; i < 56; i += 8) { |
29ce214c | 818 | checkchksum += bytebits_to_byte(dest+startIdx+i,8); |
6c283951 | 819 | } |
29ce214c | 820 | checkchksum ^= 0x3A; |
29ce214c | 821 | uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8); |
deba67ab | 822 | if ( checkchksum != crc ) return -5; |
6c283951 | 823 | return (int)startIdx; |
824 | } | |
825 | ||
1e090a61 | 826 | // by marshmellow |
827 | // FSK Demod then try to locate an AWID ID | |
a1d17964 | 828 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 829 | { |
a1d17964 | 830 | //make sure buffer has enough data |
831 | if (*size < 96*50) return -1; | |
832 | ||
833 | if (justNoise(dest, *size)) return -2; | |
1e090a61 | 834 | |
835 | // FSK demodulator | |
a1d17964 | 836 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
837 | if (*size < 96) return -3; //did we get a good demod? | |
838 | ||
839 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
840 | size_t startIdx = 0; | |
8ad1e731 | 841 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
842 | return -4; //preamble not found | |
a1d17964 | 843 | if (*size != 96) return -5; |
844 | return (int)startIdx; | |
1e090a61 | 845 | } |
846 | ||
847 | // by marshmellow | |
6426f6ba | 848 | // FSK Demod then try to locate a Farpointe Data (pyramid) ID |
a1d17964 | 849 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 850 | { |
f3bf15e4 | 851 | //make sure buffer has data |
852 | if (*size < 128*50) return -5; | |
a1d17964 | 853 | |
f3bf15e4 | 854 | //test samples are not just noise |
855 | if (justNoise(dest, *size)) return -1; | |
1e090a61 | 856 | |
f3bf15e4 | 857 | // FSK demodulator |
858 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
859 | if (*size < 128) return -2; //did we get a good demod? | |
a1d17964 | 860 | size_t startIdx = 0; |
8ad1e731 | 861 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}; |
862 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) | |
863 | return -4; //preamble not found | |
a1d17964 | 864 | if (*size != 128) return -3; |
865 | return (int)startIdx; | |
1e090a61 | 866 | } |
867 | ||
0cbe0cb8 | 868 | // find nedap preamble in already demoded data |
56bbb25a | 869 | int NedapDemod(uint8_t *dest, size_t *size) { |
870 | //make sure buffer has data | |
871 | if (*size < 128) return -3; | |
96faed21 | 872 | |
56bbb25a | 873 | size_t startIdx = 0; |
15d49e82 | 874 | //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1}; |
875 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0}; | |
8ad1e731 | 876 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
877 | return -4; //preamble not found | |
56bbb25a | 878 | return (int) startIdx; |
879 | } | |
880 | ||
3acac886 | 881 | // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits |
882 | // by iceman | |
883 | int IdteckDemodPSK(uint8_t *dest, size_t *size) { | |
884 | //make sure buffer has data | |
885 | if (*size < 64*2) return -1; | |
886 | size_t startIdx = 0; | |
887 | uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1}; | |
8ad1e731 | 888 | if (!preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx)) |
889 | return -2; //preamble not found | |
3acac886 | 890 | if (*size != 64) return -3; // wrong demoded size |
891 | return (int) startIdx; | |
892 | } | |
893 | ||
fef74fdc | 894 | // by marshmellow |
895 | // to detect a wave that has heavily clipped (clean) samples | |
cc15a118 | 896 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
6de43508 | 897 | { |
6426f6ba | 898 | bool allArePeaks = true; |
6de43508 | 899 | uint16_t cntPeaks=0; |
6426f6ba | 900 | size_t loopEnd = 512+160; |
1fbf8956 | 901 | if (loopEnd > size) loopEnd = size; |
6426f6ba | 902 | for (size_t i=160; i<loopEnd; i++){ |
6de43508 | 903 | if (dest[i]>low && dest[i]<high) |
6426f6ba | 904 | allArePeaks = false; |
6de43508 | 905 | else |
906 | cntPeaks++; | |
907 | } | |
6426f6ba | 908 | if (!allArePeaks){ |
909 | if (cntPeaks > 300) return true; | |
6de43508 | 910 | } |
6426f6ba | 911 | return allArePeaks; |
6de43508 | 912 | } |
2eec55c8 | 913 | // by marshmellow |
914 | // to help detect clocks on heavily clipped samples | |
cc15a118 | 915 | // based on count of low to low |
9833360b | 916 | int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low, int *clock) |
13d77ef9 | 917 | { |
9833360b | 918 | uint8_t clocks[] = {8,16,32,40,50,64,128}; |
cc15a118 | 919 | size_t startwave; |
6426f6ba | 920 | size_t i = 100; |
cc15a118 | 921 | size_t minClk = 255; |
9833360b | 922 | int shortestWaveIdx = 0; |
923 | // get to first full low to prime loop and skip incomplete first pulse | |
cc15a118 | 924 | while ((dest[i] < high) && (i < size)) |
925 | ++i; | |
926 | while ((dest[i] > low) && (i < size)) | |
927 | ++i; | |
928 | ||
929 | // loop through all samples | |
930 | while (i < size) { | |
931 | // measure from low to low | |
932 | while ((dest[i] > low) && (i < size)) | |
933 | ++i; | |
934 | startwave= i; | |
935 | while ((dest[i] < high) && (i < size)) | |
936 | ++i; | |
937 | while ((dest[i] > low) && (i < size)) | |
938 | ++i; | |
939 | //get minimum measured distance | |
9833360b | 940 | if (i-startwave < minClk && i < size) { |
cc15a118 | 941 | minClk = i - startwave; |
9833360b | 942 | shortestWaveIdx = startwave; |
943 | } | |
13d77ef9 | 944 | } |
cc15a118 | 945 | // set clock |
a126332a | 946 | if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk); |
cc15a118 | 947 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
37a71c7a | 948 | if (minClk >= clocks[clkCnt]-(clocks[clkCnt]/8) && minClk <= clocks[clkCnt]+1) { |
9833360b | 949 | *clock = clocks[clkCnt]; |
950 | return shortestWaveIdx; | |
37a71c7a | 951 | } |
13d77ef9 | 952 | } |
cc15a118 | 953 | return 0; |
13d77ef9 | 954 | } |
955 | ||
eb191de6 | 956 | // by marshmellow |
957 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
958 | // maybe somehow adjust peak trimming value based on samples to fix? | |
6de43508 | 959 | // return start index of best starting position for that clock and return clock (by reference) |
960 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) | |
eb191de6 | 961 | { |
c6e5c7ea | 962 | size_t i = 1; |
cc15a118 | 963 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; |
964 | uint8_t clkEnd = 9; | |
2eec55c8 | 965 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
c6e5c7ea | 966 | if (size <= loopCnt + 60) return -1; //not enough samples |
6426f6ba | 967 | size -= 60; //sometimes there is a strange end wave - filter out this.... |
6e984446 | 968 | //if we already have a valid clock |
c6e5c7ea | 969 | uint8_t clockFnd = 0; |
970 | for (; i < clkEnd; ++i) | |
cc15a118 | 971 | if (clk[i] == *clock) clockFnd = i; |
6e984446 | 972 | //clock found but continue to find best startpos |
e0165dcf | 973 | |
974 | //get high and low peak | |
975 | int peak, low; | |
2eec55c8 | 976 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf | 977 | |
978 | //test for large clean peaks | |
cc15a118 | 979 | if (!clockFnd){ |
980 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
9833360b | 981 | int ans = DetectStrongAskClock(dest, size, peak, low, clock); |
982 | if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i", clock ,ans); | |
983 | if (ans > 0){ | |
984 | return ans; // return shortest wave start pos | |
e0165dcf | 985 | } |
986 | } | |
987 | } | |
2eec55c8 | 988 | uint8_t ii; |
989 | uint8_t clkCnt, tol = 0; | |
990 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
991 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
992 | size_t errCnt = 0; | |
993 | size_t arrLoc, loopEnd; | |
6e984446 | 994 | |
c6e5c7ea | 995 | if (clockFnd > 0) { |
cc15a118 | 996 | clkCnt = clockFnd; |
997 | clkEnd = clockFnd+1; | |
81e82dfe | 998 | } else { |
c6e5c7ea | 999 | clkCnt = 1; |
cc15a118 | 1000 | } |
cc15a118 | 1001 | |
1002 | //test each valid clock from smallest to greatest to see which lines up | |
c6e5c7ea | 1003 | for (; clkCnt < clkEnd; clkCnt++) { |
81e82dfe | 1004 | if (clk[clkCnt] <= 32) { |
e0165dcf | 1005 | tol=1; |
81e82dfe | 1006 | } else { |
e0165dcf | 1007 | tol=0; |
1008 | } | |
2767fc02 | 1009 | //if no errors allowed - keep start within the first clock |
81e82dfe | 1010 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) |
1011 | loopCnt = clk[clkCnt] * 2; | |
1012 | ||
1013 | bestErr[clkCnt] = 1000; | |
1014 | ||
6e984446 | 1015 | //try lining up the peaks by moving starting point (try first few clocks) |
cc15a118 | 1016 | for (ii=0; ii < loopCnt; ii++){ |
2eec55c8 | 1017 | if (dest[ii] < peak && dest[ii] > low) continue; |
1018 | ||
81e82dfe | 1019 | errCnt = 0; |
2eec55c8 | 1020 | // now that we have the first one lined up test rest of wave array |
1021 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; | |
1022 | for (i=0; i < loopEnd; ++i){ | |
1023 | arrLoc = ii + (i * clk[clkCnt]); | |
1024 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ | |
1025 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ | |
1026 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ | |
1027 | }else{ //error no peak detected | |
1028 | errCnt++; | |
e0165dcf | 1029 | } |
1030 | } | |
cc15a118 | 1031 | //if we found no errors then we can stop here and a low clock (common clocks) |
2eec55c8 | 1032 | // this is correct one - return this clock |
81e82dfe | 1033 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i); |
1034 | if (errCnt==0 && clkCnt<7) { | |
cc15a118 | 1035 | if (!clockFnd) *clock = clk[clkCnt]; |
2eec55c8 | 1036 | return ii; |
1037 | } | |
1038 | //if we found errors see if it is lowest so far and save it as best run | |
81e82dfe | 1039 | if (errCnt < bestErr[clkCnt]) { |
1040 | bestErr[clkCnt] = errCnt; | |
1041 | bestStart[clkCnt] = ii; | |
2eec55c8 | 1042 | } |
e0165dcf | 1043 | } |
1044 | } | |
81e82dfe | 1045 | uint8_t k; |
1046 | uint8_t best = 0; | |
1047 | for (k=1; k < clkEnd; ++k){ | |
1048 | if (bestErr[k] < bestErr[best]){ | |
1049 | if (bestErr[k] == 0) bestErr[k]=1; | |
e0165dcf | 1050 | // current best bit to error ratio vs new bit to error ratio |
81e82dfe | 1051 | if ( (size/clk[best])/bestErr[best] < (size/clk[k])/bestErr[k] ){ |
1052 | best = k; | |
e0165dcf | 1053 | } |
1054 | } | |
81e82dfe | 1055 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]); |
e0165dcf | 1056 | } |
cc15a118 | 1057 | if (!clockFnd) *clock = clk[best]; |
c6e5c7ea | 1058 | |
e0165dcf | 1059 | return bestStart[best]; |
eb191de6 | 1060 | } |
ba1a299c | 1061 | |
9833360b | 1062 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) { |
1063 | int firstPhaseShift = 0; | |
1064 | return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift); | |
1065 | } | |
1066 | ||
ba1a299c | 1067 | //by marshmellow |
6de43508 | 1068 | //detect psk clock by reading each phase shift |
1069 | // a phase shift is determined by measuring the sample length of each wave | |
9833360b | 1070 | int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseShift) { |
c6e5c7ea | 1071 | uint8_t clk[] = {255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
e0165dcf | 1072 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1073 | |
1074 | //if we already have a valid clock quit | |
1075 | size_t i=1; | |
1076 | for (; i < 8; ++i) | |
1077 | if (clk[i] == clock) return clock; | |
9833360b | 1078 | |
c6e5c7ea | 1079 | if (size < 160+20) return 0; |
c6e5c7ea | 1080 | // size must be larger than 20 here, and 160 later on. |
9833360b | 1081 | if (size < loopCnt) loopCnt = size-20; |
e0165dcf | 1082 | |
1083 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1084 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; | |
1085 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; | |
c6e5c7ea | 1086 | uint16_t bestErr[] = {1000,1000,1000,1000,1000,1000,1000,1000,1000}; |
1087 | uint16_t peaksdet[] = {0,0,0,0,0,0,0,0,0}; | |
2eec55c8 | 1088 | fc = countFC(dest, size, 0); |
1089 | if (fc!=2 && fc!=4 && fc!=8) return -1; | |
a126332a | 1090 | if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc); |
e0165dcf | 1091 | |
1092 | //find first full wave | |
c6e5c7ea | 1093 | for (i=160; i < loopCnt; i++){ |
e0165dcf | 1094 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1095 | if (waveStart == 0) { | |
1096 | waveStart = i+1; | |
6426f6ba | 1097 | //prnt("DEBUG: waveStart: %d",waveStart); |
e0165dcf | 1098 | } else { |
1099 | waveEnd = i+1; | |
6426f6ba | 1100 | //prnt("DEBUG: waveEnd: %d",waveEnd); |
e0165dcf | 1101 | waveLenCnt = waveEnd-waveStart; |
1102 | if (waveLenCnt > fc){ | |
1103 | firstFullWave = waveStart; | |
1104 | fullWaveLen=waveLenCnt; | |
1105 | break; | |
1106 | } | |
1107 | waveStart=0; | |
1108 | } | |
1109 | } | |
1110 | } | |
9833360b | 1111 | *firstPhaseShift = firstFullWave; |
c6e5c7ea | 1112 | if (g_debugMode == 2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
e0165dcf | 1113 | |
1114 | //test each valid clock from greatest to smallest to see which lines up | |
c6e5c7ea | 1115 | for (clkCnt=7; clkCnt >= 1 ; clkCnt--){ |
e0165dcf | 1116 | lastClkBit = firstFullWave; //set end of wave as clock align |
1117 | waveStart = 0; | |
1118 | errCnt=0; | |
1119 | peakcnt=0; | |
a126332a | 1120 | if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); |
e0165dcf | 1121 | |
1122 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
1123 | //top edge of wave = start of new wave | |
1124 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1125 | if (waveStart == 0) { | |
1126 | waveStart = i+1; | |
1127 | waveLenCnt=0; | |
1128 | } else { //waveEnd | |
1129 | waveEnd = i+1; | |
1130 | waveLenCnt = waveEnd-waveStart; | |
1131 | if (waveLenCnt > fc){ | |
1132 | //if this wave is a phase shift | |
a126332a | 1133 | if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc); |
e0165dcf | 1134 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit |
1135 | peakcnt++; | |
1136 | lastClkBit+=clk[clkCnt]; | |
1137 | } else if (i<lastClkBit+8){ | |
1138 | //noise after a phase shift - ignore | |
1139 | } else { //phase shift before supposed to based on clock | |
1140 | errCnt++; | |
1141 | } | |
1142 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ | |
1143 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
1144 | } | |
1145 | waveStart=i+1; | |
1146 | } | |
1147 | } | |
1148 | } | |
c6e5c7ea | 1149 | if (errCnt == 0) return clk[clkCnt]; |
1150 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt] = errCnt; | |
1151 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt] = peakcnt; | |
e0165dcf | 1152 | } |
1153 | //all tested with errors | |
1154 | //return the highest clk with the most peaks found | |
c6e5c7ea | 1155 | uint8_t best = 7; |
1156 | for (i=7; i >= 1; i--){ | |
1157 | if (peaksdet[i] > peaksdet[best]) | |
e0165dcf | 1158 | best = i; |
c6e5c7ea | 1159 | |
a126332a | 1160 | if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); |
e0165dcf | 1161 | } |
1162 | return clk[best]; | |
ba1a299c | 1163 | } |
1164 | ||
6426f6ba | 1165 | int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){ |
1166 | //find shortest transition from high to low | |
1167 | size_t i = 0; | |
1168 | size_t transition1 = 0; | |
1169 | int lowestTransition = 255; | |
1170 | bool lastWasHigh = false; | |
1171 | ||
1172 | //find first valid beginning of a high or low wave | |
1173 | while ((dest[i] >= peak || dest[i] <= low) && (i < size)) | |
1174 | ++i; | |
1175 | while ((dest[i] < peak && dest[i] > low) && (i < size)) | |
1176 | ++i; | |
1177 | lastWasHigh = (dest[i] >= peak); | |
1178 | ||
1179 | if (i==size) return 0; | |
1180 | transition1 = i; | |
1181 | ||
1182 | for (;i < size; i++) { | |
1183 | if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { | |
1184 | lastWasHigh = (dest[i] >= peak); | |
1185 | if (i-transition1 < lowestTransition) lowestTransition = i-transition1; | |
1186 | transition1 = i; | |
1187 | } | |
1188 | } | |
6426f6ba | 1189 | if (lowestTransition == 255) lowestTransition = 0; |
a126332a | 1190 | if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); |
6426f6ba | 1191 | return lowestTransition; |
1192 | } | |
1193 | ||
9833360b | 1194 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) { |
1195 | int bestStart = 0; | |
1196 | return DetectNRZClock_ext(dest, size, clock, &bestStart); | |
1197 | } | |
1198 | ||
6de43508 | 1199 | //by marshmellow |
1200 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
9833360b | 1201 | int DetectNRZClock_ext(uint8_t dest[], size_t size, int clock, int *clockStartIdx) { |
c6e5c7ea | 1202 | size_t i = 0; |
1203 | uint8_t clk[] = {8,16,32,40,50,64,100,128,255}; | |
2eec55c8 | 1204 | size_t loopCnt = 4096; //don't need to loop through entire array... |
c6e5c7ea | 1205 | |
e0165dcf | 1206 | //if we already have a valid clock quit |
1207 | for (; i < 8; ++i) | |
1208 | if (clk[i] == clock) return clock; | |
c6e5c7ea | 1209 | |
1210 | if (size < 20) return 0; | |
1211 | // size must be larger than 20 here | |
1212 | if (size < loopCnt) loopCnt = size-20; | |
e0165dcf | 1213 | |
1214 | //get high and low peak | |
1215 | int peak, low; | |
2eec55c8 | 1216 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf | 1217 | |
6426f6ba | 1218 | int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low); |
2eec55c8 | 1219 | size_t ii; |
e0165dcf | 1220 | uint8_t clkCnt; |
1221 | uint8_t tol = 0; | |
6426f6ba | 1222 | uint16_t smplCnt = 0; |
1223 | int16_t peakcnt = 0; | |
1224 | int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; | |
1225 | uint16_t maxPeak = 255; | |
1226 | bool firstpeak = false; | |
e0165dcf | 1227 | //test for large clipped waves |
1228 | for (i=0; i<loopCnt; i++){ | |
1229 | if (dest[i] >= peak || dest[i] <= low){ | |
6426f6ba | 1230 | if (!firstpeak) continue; |
1231 | smplCnt++; | |
e0165dcf | 1232 | } else { |
c6e5c7ea | 1233 | firstpeak = true; |
6426f6ba | 1234 | if (smplCnt > 6 ){ |
1235 | if (maxPeak > smplCnt){ | |
1236 | maxPeak = smplCnt; | |
1237 | //prnt("maxPk: %d",maxPeak); | |
1238 | } | |
1239 | peakcnt++; | |
1240 | //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt); | |
c6e5c7ea | 1241 | smplCnt = 0; |
e0165dcf | 1242 | } |
e0165dcf | 1243 | } |
1244 | } | |
6426f6ba | 1245 | bool errBitHigh = 0; |
1246 | bool bitHigh = 0; | |
1247 | uint8_t ignoreCnt = 0; | |
1248 | uint8_t ignoreWindow = 4; | |
1249 | bool lastPeakHigh = 0; | |
1250 | int lastBit = 0; | |
9833360b | 1251 | int bestStart[] = {0,0,0,0,0,0,0,0,0}; |
c6e5c7ea | 1252 | peakcnt = 0; |
e0165dcf | 1253 | //test each valid clock from smallest to greatest to see which lines up |
1254 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ | |
6426f6ba | 1255 | //ignore clocks smaller than smallest peak |
1256 | if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue; | |
e0165dcf | 1257 | //try lining up the peaks by moving starting point (try first 256) |
6426f6ba | 1258 | for (ii=20; ii < loopCnt; ++ii){ |
e0165dcf | 1259 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ |
1260 | peakcnt=0; | |
6426f6ba | 1261 | bitHigh = false; |
1262 | ignoreCnt = 0; | |
1263 | lastBit = ii-clk[clkCnt]; | |
1264 | //loop through to see if this start location works | |
1265 | for (i = ii; i < size-20; ++i) { | |
1266 | //if we are at a clock bit | |
1267 | if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { | |
1268 | //test high/low | |
1269 | if (dest[i] >= peak || dest[i] <= low) { | |
1270 | //if same peak don't count it | |
1271 | if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { | |
c6e5c7ea | 1272 | peakcnt++; |
6426f6ba | 1273 | } |
1274 | lastPeakHigh = (dest[i] >= peak); | |
1275 | bitHigh = true; | |
1276 | errBitHigh = false; | |
1277 | ignoreCnt = ignoreWindow; | |
1278 | lastBit += clk[clkCnt]; | |
1279 | } else if (i == lastBit + clk[clkCnt] + tol) { | |
1280 | lastBit += clk[clkCnt]; | |
1281 | } | |
1282 | //else if not a clock bit and no peaks | |
1283 | } else if (dest[i] < peak && dest[i] > low){ | |
c6e5c7ea | 1284 | if (ignoreCnt == 0){ |
6426f6ba | 1285 | bitHigh=false; |
c6e5c7ea | 1286 | if (errBitHigh==true) |
1287 | peakcnt--; | |
6426f6ba | 1288 | errBitHigh=false; |
1289 | } else { | |
1290 | ignoreCnt--; | |
1291 | } | |
1292 | // else if not a clock bit but we have a peak | |
1293 | } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { | |
1294 | //error bar found no clock... | |
1295 | errBitHigh=true; | |
e0165dcf | 1296 | } |
1297 | } | |
c6e5c7ea | 1298 | if (peakcnt > peaksdet[clkCnt]) { |
9833360b | 1299 | bestStart[clkCnt]=ii; |
c6e5c7ea | 1300 | peaksdet[clkCnt] = peakcnt; |
e0165dcf | 1301 | } |
1302 | } | |
1303 | } | |
1304 | } | |
c6e5c7ea | 1305 | |
1306 | uint8_t best = 0; | |
1307 | for (int m = 7; m > 0; m--){ | |
1308 | if ((peaksdet[m] >= (peaksdet[best]-1)) && (peaksdet[m] <= peaksdet[best]+1) && lowestTransition) { | |
1309 | if (clk[m] > (lowestTransition - (clk[m]/8)) && clk[m] < (lowestTransition + (clk[m]/8))) { | |
1310 | best = m; | |
1311 | } | |
1312 | } else if (peaksdet[m] > peaksdet[best]){ | |
1313 | best = m; | |
e0165dcf | 1314 | } |
c6e5c7ea | 1315 | if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d", clk[m], peaksdet[m], maxPeak, clk[best], lowestTransition); |
e0165dcf | 1316 | } |
9833360b | 1317 | *clockStartIdx = bestStart[best]; |
e0165dcf | 1318 | return clk[best]; |
ba1a299c | 1319 | } |
1320 | ||
04d2721b | 1321 | // by marshmellow |
1322 | // convert psk1 demod to psk2 demod | |
1323 | // only transition waves are 1s | |
4ac9f078 | 1324 | void psk1TOpsk2(uint8_t *bits, size_t size) { |
1325 | uint8_t lastBit = bits[0]; | |
1326 | for (size_t i = 1; i < size; i++){ | |
1327 | //ignore errors | |
1328 | if (bits[i] == 7) continue; | |
1329 | ||
1330 | if (lastBit != bits[i]){ | |
1331 | lastBit = bits[i]; | |
1332 | bits[i] = 1; | |
04d2721b | 1333 | } else { |
4ac9f078 | 1334 | bits[i] = 0; |
04d2721b | 1335 | } |
1336 | } | |
04d2721b | 1337 | } |
ba1a299c | 1338 | |
3bc66a96 | 1339 | // by marshmellow |
1340 | // convert psk2 demod to psk1 demod | |
1341 | // from only transition waves are 1s to phase shifts change bit | |
4ac9f078 | 1342 | void psk2TOpsk1(uint8_t *bits, size_t size) { |
1343 | uint8_t phase = 0; | |
1344 | for (size_t i = 0; i < size; i++){ | |
1345 | if (bits[i] == 1){ | |
1346 | phase ^= 1; | |
3bc66a96 | 1347 | } |
4ac9f078 | 1348 | bits[i] = phase; |
3bc66a96 | 1349 | } |
3bc66a96 | 1350 | } |
1351 | ||
04d2721b | 1352 | // redesigned by marshmellow adjusted from existing decode functions |
1353 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
ba1a299c | 1354 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1355 | { | |
1356 | //26 bit 40134 format (don't know other formats) | |
57c7b44b | 1357 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
1358 | uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; | |
1359 | size_t startidx = 0; | |
1360 | if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){ | |
1361 | // if didn't find preamble try again inverting | |
1362 | if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1; | |
1363 | *invert ^= 1; | |
1364 | } | |
1365 | if (*size != 64 && *size != 224) return -2; | |
1366 | if (*invert==1) | |
1367 | for (size_t i = startidx; i < *size; i++) | |
1368 | bitStream[i] ^= 1; | |
ba1a299c | 1369 | |
57c7b44b | 1370 | return (int) startidx; |
ba1a299c | 1371 | } |
1372 | ||
05164399 | 1373 | // by marshmellow - demodulate NRZ wave - requires a read with strong signal |
04d2721b | 1374 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
6426f6ba | 1375 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){ |
e0165dcf | 1376 | if (justNoise(dest, *size)) return -1; |
1377 | *clk = DetectNRZClock(dest, *size, *clk); | |
1378 | if (*clk==0) return -2; | |
2eec55c8 | 1379 | size_t i, gLen = 4096; |
6426f6ba | 1380 | if (gLen>*size) gLen = *size-20; |
e0165dcf | 1381 | int high, low; |
1382 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
6426f6ba | 1383 | |
1384 | uint8_t bit=0; | |
1385 | //convert wave samples to 1's and 0's | |
1386 | for(i=20; i < *size-20; i++){ | |
1387 | if (dest[i] >= high) bit = 1; | |
1388 | if (dest[i] <= low) bit = 0; | |
1389 | dest[i] = bit; | |
e0165dcf | 1390 | } |
6426f6ba | 1391 | //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) |
1392 | size_t lastBit = 0; | |
1393 | size_t numBits = 0; | |
1394 | for(i=21; i < *size-20; i++) { | |
1395 | //if transition detected or large number of same bits - store the passed bits | |
1396 | if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { | |
1397 | memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); | |
1398 | numBits += (i - lastBit + (*clk/4)) / *clk; | |
1399 | lastBit = i-1; | |
e0165dcf | 1400 | } |
e0165dcf | 1401 | } |
6426f6ba | 1402 | *size = numBits; |
1403 | return 0; | |
ba1a299c | 1404 | } |
1405 | ||
9833360b | 1406 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) { |
1407 | int firstClockEdge = 0; | |
1408 | return detectFSKClk_ext(BitStream, size, fcHigh, fcLow, &firstClockEdge); | |
1409 | } | |
1410 | ||
1e090a61 | 1411 | //by marshmellow |
03e6bb4a | 1412 | //detects the bit clock for FSK given the high and low Field Clocks |
9833360b | 1413 | uint8_t detectFSKClk_ext(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow, int *firstClockEdge) { |
e0165dcf | 1414 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1415 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1416 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1417 | uint8_t rfLensFnd = 0; | |
2eec55c8 | 1418 | uint8_t lastFCcnt = 0; |
1419 | uint16_t fcCounter = 0; | |
e0165dcf | 1420 | uint16_t rfCounter = 0; |
1421 | uint8_t firstBitFnd = 0; | |
1422 | size_t i; | |
1423 | if (size == 0) return 0; | |
1424 | ||
6426f6ba | 1425 | uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); |
e0165dcf | 1426 | rfLensFnd=0; |
1427 | fcCounter=0; | |
1428 | rfCounter=0; | |
1429 | firstBitFnd=0; | |
a38f5a07 | 1430 | //prnt("DEBUG: fcTol: %d",fcTol); |
6426f6ba | 1431 | // prime i to first peak / up transition |
1432 | for (i = 160; i < size-20; i++) | |
e0165dcf | 1433 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) |
1434 | break; | |
1435 | ||
6426f6ba | 1436 | for (; i < size-20; i++){ |
2eec55c8 | 1437 | fcCounter++; |
1438 | rfCounter++; | |
1439 | ||
1440 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) | |
1441 | continue; | |
1442 | // else new peak | |
1443 | // if we got less than the small fc + tolerance then set it to the small fc | |
8ad1e731 | 1444 | // if it is inbetween set it to the last counter |
1445 | if (fcCounter < fcHigh && fcCounter > fcLow) | |
1446 | fcCounter = lastFCcnt; | |
1447 | else if (fcCounter < fcLow+fcTol) | |
2eec55c8 | 1448 | fcCounter = fcLow; |
1449 | else //set it to the large fc | |
1450 | fcCounter = fcHigh; | |
1451 | ||
1452 | //look for bit clock (rf/xx) | |
1453 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ | |
1454 | //not the same size as the last wave - start of new bit sequence | |
1455 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit | |
1456 | for (int ii=0; ii<15; ii++){ | |
6426f6ba | 1457 | if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ |
2eec55c8 | 1458 | rfCnts[ii]++; |
1459 | rfCounter = 0; | |
1460 | break; | |
e0165dcf | 1461 | } |
e0165dcf | 1462 | } |
2eec55c8 | 1463 | if (rfCounter > 0 && rfLensFnd < 15){ |
a38f5a07 | 1464 | //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); |
2eec55c8 | 1465 | rfCnts[rfLensFnd]++; |
1466 | rfLens[rfLensFnd++] = rfCounter; | |
1467 | } | |
1468 | } else { | |
9833360b | 1469 | *firstClockEdge = i; |
2eec55c8 | 1470 | firstBitFnd++; |
e0165dcf | 1471 | } |
2eec55c8 | 1472 | rfCounter=0; |
1473 | lastFCcnt=fcCounter; | |
e0165dcf | 1474 | } |
2eec55c8 | 1475 | fcCounter=0; |
e0165dcf | 1476 | } |
1477 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
1478 | ||
1479 | for (i=0; i<15; i++){ | |
e0165dcf | 1480 | //get highest 2 RF values (might need to get more values to compare or compare all?) |
1481 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
1482 | rfHighest3=rfHighest2; | |
1483 | rfHighest2=rfHighest; | |
1484 | rfHighest=i; | |
1485 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
1486 | rfHighest3=rfHighest2; | |
1487 | rfHighest2=i; | |
1488 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
1489 | rfHighest3=i; | |
1490 | } | |
a126332a | 1491 | if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); |
e0165dcf | 1492 | } |
1493 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
1494 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
1495 | uint8_t tol1 = fcHigh+1; | |
1496 | ||
a126332a | 1497 | if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); |
e0165dcf | 1498 | |
1499 | // loop to find the highest clock that has a remainder less than the tolerance | |
1500 | // compare samples counted divided by | |
6426f6ba | 1501 | // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) |
e0165dcf | 1502 | int ii=7; |
6426f6ba | 1503 | for (; ii>=2; ii--){ |
e0165dcf | 1504 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ |
1505 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
1506 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
a126332a | 1507 | if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); |
e0165dcf | 1508 | break; |
1509 | } | |
1510 | } | |
1511 | } | |
1512 | } | |
1513 | ||
8ad1e731 | 1514 | if (ii<2) return 0; // oops we went too far |
e0165dcf | 1515 | |
1516 | return clk[ii]; | |
03e6bb4a | 1517 | } |
1e090a61 | 1518 | |
03e6bb4a | 1519 | //by marshmellow |
1520 | //countFC is to detect the field clock lengths. | |
1521 | //counts and returns the 2 most common wave lengths | |
6de43508 | 1522 | //mainly used for FSK field clock detection |
2eec55c8 | 1523 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a | 1524 | { |
6426f6ba | 1525 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1526 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
e0165dcf | 1527 | uint8_t fcLensFnd = 0; |
1a4b9073 | 1528 | uint8_t lastFCcnt = 0; |
2eec55c8 | 1529 | uint8_t fcCounter = 0; |
e0165dcf | 1530 | size_t i; |
1a4b9073 | 1531 | if (size < 180) return 0; |
e0165dcf | 1532 | |
1533 | // prime i to first up transition | |
6426f6ba | 1534 | for (i = 160; i < size-20; i++) |
e0165dcf | 1535 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) |
1536 | break; | |
1537 | ||
6426f6ba | 1538 | for (; i < size-20; i++){ |
e0165dcf | 1539 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ |
1540 | // new up transition | |
1541 | fcCounter++; | |
2eec55c8 | 1542 | if (fskAdj){ |
1543 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
1544 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
1545 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) | |
1546 | if ((fcCounter==9) || fcCounter==4) fcCounter++; | |
e0165dcf | 1547 | // save last field clock count (fc/xx) |
2eec55c8 | 1548 | lastFCcnt = fcCounter; |
1549 | } | |
e0165dcf | 1550 | // find which fcLens to save it to: |
6426f6ba | 1551 | for (int ii=0; ii<15; ii++){ |
e0165dcf | 1552 | if (fcLens[ii]==fcCounter){ |
1553 | fcCnts[ii]++; | |
1554 | fcCounter=0; | |
1555 | break; | |
1556 | } | |
1557 | } | |
6426f6ba | 1558 | if (fcCounter>0 && fcLensFnd<15){ |
e0165dcf | 1559 | //add new fc length |
1560 | fcCnts[fcLensFnd]++; | |
1561 | fcLens[fcLensFnd++]=fcCounter; | |
1562 | } | |
1563 | fcCounter=0; | |
1564 | } else { | |
1565 | // count sample | |
1566 | fcCounter++; | |
1567 | } | |
1568 | } | |
1569 | ||
6426f6ba | 1570 | uint8_t best1=14, best2=14, best3=14; |
e0165dcf | 1571 | uint16_t maxCnt1=0; |
1572 | // go through fclens and find which ones are bigest 2 | |
6426f6ba | 1573 | for (i=0; i<15; i++){ |
e0165dcf | 1574 | // get the 3 best FC values |
1575 | if (fcCnts[i]>maxCnt1) { | |
1576 | best3=best2; | |
1577 | best2=best1; | |
1578 | maxCnt1=fcCnts[i]; | |
1579 | best1=i; | |
1580 | } else if(fcCnts[i]>fcCnts[best2]){ | |
1581 | best3=best2; | |
1582 | best2=i; | |
1583 | } else if(fcCnts[i]>fcCnts[best3]){ | |
1584 | best3=i; | |
1585 | } | |
a126332a | 1586 | if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); |
e0165dcf | 1587 | } |
6426f6ba | 1588 | if (fcLens[best1]==0) return 0; |
e0165dcf | 1589 | uint8_t fcH=0, fcL=0; |
1590 | if (fcLens[best1]>fcLens[best2]){ | |
1591 | fcH=fcLens[best1]; | |
1592 | fcL=fcLens[best2]; | |
1593 | } else{ | |
1594 | fcH=fcLens[best2]; | |
1595 | fcL=fcLens[best1]; | |
1596 | } | |
a126332a | 1597 | if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { |
1598 | if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); | |
1599 | return 0; //lots of waves not psk or fsk | |
1600 | } | |
e0165dcf | 1601 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1602 | ||
1603 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
2eec55c8 | 1604 | if (fskAdj) return fcs; |
1605 | return fcLens[best1]; | |
6de43508 | 1606 | } |
1607 | ||
1608 | //by marshmellow - demodulate PSK1 wave | |
1609 | //uses wave lengths (# Samples) | |
1610 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) | |
1611 | { | |
e0165dcf | 1612 | if (size == 0) return -1; |
2eec55c8 | 1613 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1614 | if (*size<loopCnt) loopCnt = *size; |
1615 | ||
6426f6ba | 1616 | size_t numBits=0; |
e0165dcf | 1617 | uint8_t curPhase = *invert; |
4ac9f078 | 1618 | size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; |
8ad1e731 | 1619 | uint16_t fc=0, fullWaveLen=0, tol=1; |
1620 | uint16_t errCnt=0, waveLenCnt=0, errCnt2=0; | |
1621 | fc = countFC(dest, *size, 1); | |
1622 | uint8_t fc2 = fc >> 8; | |
1623 | if (fc2 == 10) return -1; //fsk found - quit | |
1624 | fc = fc & 0xFF; | |
e0165dcf | 1625 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
a38f5a07 | 1626 | //prnt("DEBUG: FC: %d",fc); |
e0165dcf | 1627 | *clock = DetectPSKClock(dest, *size, *clock); |
2eec55c8 | 1628 | if (*clock == 0) return -1; |
4ac9f078 | 1629 | |
8ad1e731 | 1630 | //find start of modulating data in trace |
1631 | uint8_t threshold_value = 123; //-5 | |
1632 | i = findModStart(dest, *size, threshold_value, fc); | |
4ac9f078 | 1633 | |
e0165dcf | 1634 | //find first phase shift |
8ad1e731 | 1635 | int avgWaveVal=0, lastAvgWaveVal=0; |
1636 | waveStart = i; | |
4ac9f078 | 1637 | for (; i<loopCnt; i++){ |
8ad1e731 | 1638 | // find peak |
e0165dcf | 1639 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1640 | waveEnd = i+1; | |
4ac9f078 | 1641 | if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart); |
e0165dcf | 1642 | waveLenCnt = waveEnd-waveStart; |
4ac9f078 | 1643 | if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack |
e0165dcf | 1644 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); |
1645 | firstFullWave = waveStart; | |
1646 | fullWaveLen=waveLenCnt; | |
8ad1e731 | 1647 | //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) |
1648 | if (lastAvgWaveVal > threshold_value) curPhase ^= 1; | |
e0165dcf | 1649 | break; |
1650 | } | |
1651 | waveStart = i+1; | |
1652 | avgWaveVal = 0; | |
1653 | } | |
2eec55c8 | 1654 | avgWaveVal += dest[i+2]; |
e0165dcf | 1655 | } |
6426f6ba | 1656 | if (firstFullWave == 0) { |
1657 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start | |
1658 | // so skip a little to ensure we are past any Start Signal | |
1659 | firstFullWave = 160; | |
1660 | memset(dest, curPhase, firstFullWave / *clock); | |
1661 | } else { | |
1662 | memset(dest, curPhase^1, firstFullWave / *clock); | |
1663 | } | |
1664 | //advance bits | |
1665 | numBits += (firstFullWave / *clock); | |
1666 | //set start of wave as clock align | |
1667 | lastClkBit = firstFullWave; | |
7fa7e812 | 1668 | if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen); |
8ad1e731 | 1669 | if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); |
e0165dcf | 1670 | waveStart = 0; |
e0165dcf | 1671 | dest[numBits++] = curPhase; //set first read bit |
2eec55c8 | 1672 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf | 1673 | //top edge of wave = start of new wave |
1674 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1675 | if (waveStart == 0) { | |
1676 | waveStart = i+1; | |
2eec55c8 | 1677 | waveLenCnt = 0; |
e0165dcf | 1678 | avgWaveVal = dest[i+1]; |
1679 | } else { //waveEnd | |
1680 | waveEnd = i+1; | |
1681 | waveLenCnt = waveEnd-waveStart; | |
1682 | lastAvgWaveVal = avgWaveVal/waveLenCnt; | |
1683 | if (waveLenCnt > fc){ | |
a38f5a07 | 1684 | //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); |
2eec55c8 | 1685 | //this wave is a phase shift |
a38f5a07 | 1686 | //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
e0165dcf | 1687 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit |
2eec55c8 | 1688 | curPhase ^= 1; |
e0165dcf | 1689 | dest[numBits++] = curPhase; |
1690 | lastClkBit += *clock; | |
2eec55c8 | 1691 | } else if (i < lastClkBit+10+fc){ |
e0165dcf | 1692 | //noise after a phase shift - ignore |
1693 | } else { //phase shift before supposed to based on clock | |
1694 | errCnt++; | |
2767fc02 | 1695 | dest[numBits++] = 7; |
e0165dcf | 1696 | } |
1697 | } else if (i+1 > lastClkBit + *clock + tol + fc){ | |
1698 | lastClkBit += *clock; //no phase shift but clock bit | |
1699 | dest[numBits++] = curPhase; | |
8ad1e731 | 1700 | } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) |
1701 | errCnt2++; | |
1702 | if(errCnt2 > 101) return errCnt2; | |
e0165dcf | 1703 | } |
2eec55c8 | 1704 | avgWaveVal = 0; |
1705 | waveStart = i+1; | |
e0165dcf | 1706 | } |
1707 | } | |
2eec55c8 | 1708 | avgWaveVal += dest[i+1]; |
e0165dcf | 1709 | } |
1710 | *size = numBits; | |
1711 | return errCnt; | |
6de43508 | 1712 | } |
05164399 | 1713 | |
a9eeb576 | 1714 | bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) { |
1715 | size_t ststart = 0, stend = 0; | |
1716 | return DetectST_ext(buffer, size, foundclock, &ststart, &stend); | |
1717 | } | |
1718 | ||
05164399 | 1719 | //by marshmellow |
1720 | //attempt to identify a Sequence Terminator in ASK modulated raw wave | |
a9eeb576 | 1721 | bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) { |
05164399 | 1722 | size_t bufsize = *size; |
1723 | //need to loop through all samples and identify our clock, look for the ST pattern | |
1724 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
1725 | int clk = 0; | |
1726 | int tol = 0; | |
1727 | int i, j, skip, start, end, low, high, minClk, waveStart; | |
1728 | bool complete = false; | |
a38f5a07 | 1729 | int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured |
1730 | int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed... | |
05164399 | 1731 | size_t testsize = (bufsize < 512) ? bufsize : 512; |
1732 | int phaseoff = 0; | |
1733 | high = low = 128; | |
1734 | memset(tmpbuff, 0, sizeof(tmpbuff)); | |
a38f5a07 | 1735 | memset(waveLen, 0, sizeof(waveLen)); |
05164399 | 1736 | |
a38f5a07 | 1737 | |
05164399 | 1738 | if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) { |
1739 | if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); | |
1740 | return false; //just noise | |
1741 | } | |
1742 | i = 0; | |
1743 | j = 0; | |
1744 | minClk = 255; | |
1745 | // get to first full low to prime loop and skip incomplete first pulse | |
1746 | while ((buffer[i] < high) && (i < bufsize)) | |
1747 | ++i; | |
1748 | while ((buffer[i] > low) && (i < bufsize)) | |
1749 | ++i; | |
1750 | skip = i; | |
1751 | ||
1752 | // populate tmpbuff buffer with pulse lengths | |
1753 | while (i < bufsize) { | |
1754 | // measure from low to low | |
1755 | while ((buffer[i] > low) && (i < bufsize)) | |
1756 | ++i; | |
1757 | start= i; | |
1758 | while ((buffer[i] < high) && (i < bufsize)) | |
1759 | ++i; | |
1760 | //first high point for this wave | |
1761 | waveStart = i; | |
1762 | while ((buffer[i] > low) && (i < bufsize)) | |
1763 | ++i; | |
a38f5a07 | 1764 | if (j >= (bufsize/32)) { |
05164399 | 1765 | break; |
1766 | } | |
1767 | waveLen[j] = i - waveStart; //first high to first low | |
1768 | tmpbuff[j++] = i - start; | |
1769 | if (i-start < minClk && i < bufsize) { | |
1770 | minClk = i - start; | |
1771 | } | |
1772 | } | |
1773 | // set clock - might be able to get this externally and remove this work... | |
1774 | if (!clk) { | |
1775 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
1776 | tol = fndClk[clkCnt]/8; | |
1777 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
1778 | clk=fndClk[clkCnt]; | |
1779 | break; | |
1780 | } | |
1781 | } | |
1782 | // clock not found - ERROR | |
1783 | if (!clk) { | |
1784 | if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); | |
1785 | return false; | |
1786 | } | |
1787 | } else tol = clk/8; | |
1788 | ||
1789 | *foundclock = clk; | |
1790 | ||
1791 | // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2) | |
1792 | start = -1; | |
1793 | for (i = 0; i < j - 4; ++i) { | |
1794 | skip += tmpbuff[i]; | |
1795 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior | |
1796 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 | |
1797 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1798 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1799 | start = i + 3; | |
1800 | break; | |
1801 | } | |
1802 | } | |
1803 | } | |
1804 | } | |
1805 | } | |
1806 | // first ST not found - ERROR | |
1807 | if (start < 0) { | |
1808 | if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); | |
1809 | return false; | |
a38f5a07 | 1810 | } else { |
1811 | if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j); | |
05164399 | 1812 | } |
1813 | if (waveLen[i+2] > clk*1+tol) | |
1814 | phaseoff = 0; | |
1815 | else | |
1816 | phaseoff = clk/2; | |
1817 | ||
1818 | // skip over the remainder of ST | |
1819 | skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point | |
1820 | ||
1821 | // now do it again to find the end | |
1822 | end = skip; | |
1823 | for (i += 3; i < j - 4; ++i) { | |
1824 | end += tmpbuff[i]; | |
a38f5a07 | 1825 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior |
05164399 | 1826 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 |
1827 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1828 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
1829 | complete = true; | |
1830 | break; | |
1831 | } | |
1832 | } | |
1833 | } | |
1834 | } | |
1835 | } | |
1836 | end -= phaseoff; | |
1837 | //didn't find second ST - ERROR | |
1838 | if (!complete) { | |
1839 | if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); | |
1840 | return false; | |
1841 | } | |
1842 | if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); | |
1843 | //now begin to trim out ST so we can use normal demod cmds | |
1844 | start = skip; | |
1845 | size_t datalen = end - start; | |
1846 | // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock | |
a38f5a07 | 1847 | if ( clk - (datalen % clk) <= clk/8) { |
1848 | // padd the amount off - could be problematic... but shouldn't happen often | |
1849 | datalen += clk - (datalen % clk); | |
1850 | } else if ( (datalen % clk) <= clk/8 ) { | |
1851 | // padd the amount off - could be problematic... but shouldn't happen often | |
1852 | datalen -= datalen % clk; | |
1853 | } else { | |
05164399 | 1854 | if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); |
1855 | return false; | |
05164399 | 1856 | } |
1857 | // if datalen is less than one t55xx block - ERROR | |
1858 | if (datalen/clk < 8*4) { | |
1859 | if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); | |
1860 | return false; | |
1861 | } | |
1862 | size_t dataloc = start; | |
a38f5a07 | 1863 | if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { |
1864 | //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start | |
1865 | for ( i=0; i <= (clk/8); ++i ) { | |
1866 | if ( buffer[dataloc - (clk*4) - i] <= low ) { | |
1867 | dataloc -= i; | |
1868 | break; | |
1869 | } | |
1870 | } | |
1871 | } | |
1872 | ||
05164399 | 1873 | size_t newloc = 0; |
1874 | i=0; | |
a38f5a07 | 1875 | if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); |
a9eeb576 | 1876 | bool firstrun = true; |
05164399 | 1877 | // warning - overwriting buffer given with raw wave data with ST removed... |
1878 | while ( dataloc < bufsize-(clk/2) ) { | |
7fa7e812 | 1879 | //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) |
05164399 | 1880 | if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) { |
1881 | for(i=0; i < clk/2-tol; ++i) { | |
1882 | buffer[dataloc+i] = high+5; | |
1883 | } | |
c24364a8 | 1884 | } //test for single sample outlier (high between two lows) in the case of very strong waves |
1885 | if (buffer[dataloc] >= high && buffer[dataloc+2] <= low) { | |
1886 | buffer[dataloc] = buffer[dataloc+2]; | |
1887 | buffer[dataloc+1] = buffer[dataloc+2]; | |
05164399 | 1888 | } |
a9eeb576 | 1889 | if (firstrun) { |
1890 | *stend = dataloc; | |
1891 | *ststart = dataloc-(clk*4); | |
1892 | firstrun=false; | |
1893 | } | |
05164399 | 1894 | for (i=0; i<datalen; ++i) { |
1895 | if (i+newloc < bufsize) { | |
1896 | if (i+newloc < dataloc) | |
1897 | buffer[i+newloc] = buffer[dataloc]; | |
1898 | ||
1899 | dataloc++; | |
1900 | } | |
1901 | } | |
1902 | newloc += i; | |
7fa7e812 | 1903 | //skip next ST - we just assume it will be there from now on... |
a38f5a07 | 1904 | if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4)); |
05164399 | 1905 | dataloc += clk*4; |
1906 | } | |
1907 | *size = newloc; | |
1908 | return true; | |
1909 | } |