]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443b.c
CHG: marshmellow42 's improved "hf mf sim x"
[proxmark3-svn] / armsrc / iso14443b.c
CommitLineData
489ef36c 1//-----------------------------------------------------------------------------
2// Jonathan Westhues, split Nov 2006
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
abb21530 8// Routines to support ISO 14443B. This includes both the reader software and
9// the `fake tag' modes.
489ef36c 10//-----------------------------------------------------------------------------
6fc68747 11#include "iso14443b.h"
489ef36c 12
11c2df83 13#define RECEIVE_SAMPLES_TIMEOUT 50000
a62bf3af 14#define ISO14443B_DMA_BUFFER_SIZE 256
489ef36c 15
11c2df83 16// Guard Time (per 14443-2)
17#define TR0 0
18// Synchronization time (per 14443-2)
19#define TR1 0
20// Frame Delay Time PICC to PCD (per 14443-3 Amendment 1)
21#define TR2 0
d51717ff 22
23// 4sample
c3e8413c 24#define SEND4STUFFBIT(x) ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);
25//#define SEND4STUFFBIT(x) ToSendStuffBit(x);
d51717ff 26
11c2df83 27static void switch_off(void);
28
6fc68747 29// the block number for the ISO14443-4 PCB (used with APDUs)
a62bf3af 30static uint8_t pcb_blocknum = 0;
31
11c2df83 32static uint32_t iso14b_timeout = RECEIVE_SAMPLES_TIMEOUT;
33// param timeout is in ftw_
34void iso14b_set_timeout(uint32_t timeout) {
35 // 9.4395us = 1etu.
36 // clock is about 1.5 us
37 iso14b_timeout = timeout;
38 if(MF_DBGLEVEL >= 2) Dbprintf("ISO14443B Timeout set to %ld fwt", iso14b_timeout);
39}
40
41static void switch_off(void){
42 if (MF_DBGLEVEL > 3) Dbprintf("switch_off");
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
44 SpinDelay(100);
45 FpgaDisableSscDma();
46 set_tracing(FALSE);
47 LEDsoff();
48}
49
489ef36c 50//=============================================================================
51// An ISO 14443 Type B tag. We listen for commands from the reader, using
52// a UART kind of thing that's implemented in software. When we get a
53// frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
54// If it's good, then we can do something appropriate with it, and send
55// a response.
56//=============================================================================
57
cef590d9 58
59//-----------------------------------------------------------------------------
11c2df83 60// The software UART that receives commands from the reader, and its state variables.
cef590d9 61//-----------------------------------------------------------------------------
62static struct {
63 enum {
64 STATE_UNSYNCD,
65 STATE_GOT_FALLING_EDGE_OF_SOF,
66 STATE_AWAITING_START_BIT,
67 STATE_RECEIVING_DATA
68 } state;
11c2df83 69 uint16_t shiftReg;
70 int bitCnt;
71 int byteCnt;
72 int byteCntMax;
73 int posCnt;
74 uint8_t *output;
cef590d9 75} Uart;
76
11c2df83 77static void UartReset() {
cef590d9 78 Uart.state = STATE_UNSYNCD;
11c2df83 79 Uart.shiftReg = 0;
cef590d9 80 Uart.bitCnt = 0;
11c2df83 81 Uart.byteCnt = 0;
82 Uart.byteCntMax = MAX_FRAME_SIZE;
cef590d9 83 Uart.posCnt = 0;
cef590d9 84}
85
11c2df83 86static void UartInit(uint8_t *data) {
cef590d9 87 Uart.output = data;
88 UartReset();
11c2df83 89// memset(Uart.output, 0x00, MAX_FRAME_SIZE);
cef590d9 90}
91
11c2df83 92//-----------------------------------------------------------------------------
93// The software Demod that receives commands from the tag, and its state variables.
94//-----------------------------------------------------------------------------
cef590d9 95static struct {
96 enum {
97 DEMOD_UNSYNCD,
98 DEMOD_PHASE_REF_TRAINING,
99 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
100 DEMOD_GOT_FALLING_EDGE_OF_SOF,
101 DEMOD_AWAITING_START_BIT,
102 DEMOD_RECEIVING_DATA
103 } state;
11c2df83 104 uint16_t bitCount;
105 int posCount;
106 int thisBit;
cef590d9 107/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
108 int metric;
109 int metricN;
110*/
11c2df83 111 uint16_t shiftReg;
112 uint8_t *output;
113 uint16_t len;
114 int sumI;
115 int sumQ;
116 uint32_t startTime, endTime;
cef590d9 117} Demod;
118
11c2df83 119// Clear out the state of the "UART" that receives from the tag.
120static void DemodReset() {
cef590d9 121 Demod.state = DEMOD_UNSYNCD;
cef590d9 122 Demod.bitCount = 0;
11c2df83 123 Demod.posCount = 0;
cef590d9 124 Demod.thisBit = 0;
125 Demod.shiftReg = 0;
11c2df83 126 Demod.len = 0;
127 Demod.sumI = 0;
128 Demod.sumQ = 0;
129 Demod.startTime = 0;
130 Demod.endTime = 0;
cef590d9 131}
132
11c2df83 133static void DemodInit(uint8_t *data) {
cef590d9 134 Demod.output = data;
135 DemodReset();
11c2df83 136 // memset(Demod.output, 0x00, MAX_FRAME_SIZE);
cef590d9 137}
138
11c2df83 139void AppendCrc14443b(uint8_t* data, int len) {
dccddaef 140 ComputeCrc14443(CRC_14443_B, data, len, data+len, data+len+1);
6fc68747 141}
142
489ef36c 143//-----------------------------------------------------------------------------
144// Code up a string of octets at layer 2 (including CRC, we don't generate
145// that here) so that they can be transmitted to the reader. Doesn't transmit
146// them yet, just leaves them ready to send in ToSend[].
147//-----------------------------------------------------------------------------
11c2df83 148static void CodeIso14443bAsTag(const uint8_t *cmd, int len) {
149 /* ISO 14443 B
150 *
151 * Reader to card | ASK - Amplitude Shift Keying Modulation (PCD to PICC for Type B) (NRZ-L encodig)
152 * Card to reader | BPSK - Binary Phase Shift Keying Modulation, (PICC to PCD for Type B)
153 *
154 * fc - carrier frequency 13.56mHz
155 * TR0 - Guard Time per 14443-2
156 * TR1 - Synchronization Time per 14443-2
157 * TR2 - PICC to PCD Frame Delay Time (per 14443-3 Amendment 1)
158 *
159 * Elementary Time Unit (ETU) is
160 * - 128 Carrier Cycles (9.4395 µS) = 8 Subcarrier Units
161 * - 1 ETU = 1 bit
162 * - 10 ETU = 1 startbit, 8 databits, 1 stopbit (10bits length)
163 * - startbit is a 0
164 * - stopbit is a 1
165 *
166 * Start of frame (SOF) is
167 * - [10-11] ETU of ZEROS, unmodulated time
168 * - [2-3] ETU of ONES,
169 *
170 * End of frame (EOF) is
171 * - [10-11] ETU of ZEROS, unmodulated time
172 *
173 * -TO VERIFY THIS BELOW-
174 * The mode FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK which we use to simulate tag
175 * works like this:
176 * - A 1-bit input to the FPGA becomes 8 pulses at 847.5kHz (9.44µS)
177 * - A 0-bit input to the FPGA becomes an unmodulated time of 9.44µS
178 *
179 *
180 *
181 * Card sends data ub 847.e kHz subcarrier
182 * 848k = 9.44µS = 128 fc
183 * 424k = 18.88µS = 256 fc
184 * 212k = 37.76µS = 512 fc
185 * 106k = 75.52µS = 1024 fc
186 *
187 * Reader data transmission:
188 * - no modulation ONES
189 * - SOF
190 * - Command, data and CRC_B
191 * - EOF
192 * - no modulation ONES
193 *
194 * Card data transmission
195 * - TR1
196 * - SOF
197 * - data (each bytes is: 1startbit,8bits, 1stopbit)
198 * - CRC_B
199 * - EOF
200 *
201 * FPGA implementation :
202 * At this point only Type A is implemented. This means that we are using a
203 * bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
204 * things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
205 *
206 */
207
11c2df83 208 int i,j;
209 uint8_t b;
210
489ef36c 211 ToSendReset();
212
213 // Transmit a burst of ones, as the initial thing that lets the
11c2df83 214 // reader get phase sync.
215 // This loop is TR1, per specification
216 // TR1 minimum must be > 80/fs
217 // TR1 maximum 200/fs
218 // 80/fs < TR1 < 200/fs
219 // 10 ETU < TR1 < 24 ETU
489ef36c 220
221 // Send SOF.
11c2df83 222 // 10-11 ETU * 4times samples ZEROS
d51717ff 223 for(i = 0; i < 10; i++) { SEND4STUFFBIT(0); }
c3e8413c 224 //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }
11c2df83 225
226 // 2-3 ETU * 4times samples ONES
d51717ff 227 for(i = 0; i < 3; i++) { SEND4STUFFBIT(1); }
c3e8413c 228 //for(i = 0; i < 3; i++) { ToSendStuffBit(1); }
11c2df83 229
230 // data
231 for(i = 0; i < len; ++i) {
232
489ef36c 233 // Start bit
d51717ff 234 SEND4STUFFBIT(0);
c3e8413c 235 //ToSendStuffBit(0);
489ef36c 236
237 // Data bits
11c2df83 238 b = cmd[i];
239 for(j = 0; j < 8; ++j) {
d51717ff 240 if(b & 1) {
241 SEND4STUFFBIT(1);
c3e8413c 242 //ToSendStuffBit(1);
489ef36c 243 } else {
d51717ff 244 SEND4STUFFBIT(0);
c3e8413c 245 //ToSendStuffBit(0);
489ef36c 246 }
247 b >>= 1;
248 }
249
250 // Stop bit
d51717ff 251 SEND4STUFFBIT(1);
c3e8413c 252 //ToSendStuffBit(1);
11c2df83 253
254 // Extra Guard bit
255 // For PICC it ranges 0-18us (1etu = 9us)
d51717ff 256 SEND4STUFFBIT(1);
c3e8413c 257 //ToSendStuffBit(1);
489ef36c 258 }
259
abb21530 260 // Send EOF.
11c2df83 261 // 10-11 ETU * 4 sample rate = ZEROS
d51717ff 262 for(i = 0; i < 10; i++) { SEND4STUFFBIT(0); }
c3e8413c 263 //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }
11c2df83 264
265 // why this?
d51717ff 266 for(i = 0; i < 40; i++) { SEND4STUFFBIT(1); }
c3e8413c 267 //for(i = 0; i < 40; i++) { ToSendStuffBit(1); }
11c2df83 268
489ef36c 269 // Convert from last byte pos to length
6fc68747 270 ++ToSendMax;
489ef36c 271}
272
cef590d9 273
489ef36c 274/* Receive & handle a bit coming from the reader.
abb21530 275 *
276 * This function is called 4 times per bit (every 2 subcarrier cycles).
277 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
489ef36c 278 *
279 * LED handling:
280 * LED A -> ON once we have received the SOF and are expecting the rest.
281 * LED A -> OFF once we have received EOF or are in error state or unsynced
282 *
283 * Returns: true if we received a EOF
284 * false if we are still waiting for some more
285 */
11c2df83 286static RAMFUNC int Handle14443bReaderUartBit(uint8_t bit) {
489ef36c 287 switch(Uart.state) {
288 case STATE_UNSYNCD:
489ef36c 289 if(!bit) {
dccddaef 290 // we went low, so this could be the beginning of an SOF
489ef36c 291 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
292 Uart.posCnt = 0;
293 Uart.bitCnt = 0;
294 }
295 break;
296
297 case STATE_GOT_FALLING_EDGE_OF_SOF:
298 Uart.posCnt++;
abb21530 299 if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
489ef36c 300 if(bit) {
abb21530 301 if(Uart.bitCnt > 9) {
489ef36c 302 // we've seen enough consecutive
303 // zeros that it's a valid SOF
304 Uart.posCnt = 0;
305 Uart.byteCnt = 0;
306 Uart.state = STATE_AWAITING_START_BIT;
307 LED_A_ON(); // Indicate we got a valid SOF
308 } else {
309 // didn't stay down long enough
310 // before going high, error
36f84d47 311 Uart.state = STATE_UNSYNCD;
489ef36c 312 }
313 } else {
314 // do nothing, keep waiting
315 }
316 Uart.bitCnt++;
317 }
318 if(Uart.posCnt >= 4) Uart.posCnt = 0;
abb21530 319 if(Uart.bitCnt > 12) {
489ef36c 320 // Give up if we see too many zeros without
321 // a one, too.
36f84d47 322 LED_A_OFF();
323 Uart.state = STATE_UNSYNCD;
489ef36c 324 }
325 break;
326
327 case STATE_AWAITING_START_BIT:
328 Uart.posCnt++;
329 if(bit) {
abb21530 330 if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
489ef36c 331 // stayed high for too long between
332 // characters, error
36f84d47 333 Uart.state = STATE_UNSYNCD;
489ef36c 334 }
335 } else {
336 // falling edge, this starts the data byte
337 Uart.posCnt = 0;
338 Uart.bitCnt = 0;
339 Uart.shiftReg = 0;
340 Uart.state = STATE_RECEIVING_DATA;
489ef36c 341 }
342 break;
343
344 case STATE_RECEIVING_DATA:
345 Uart.posCnt++;
346 if(Uart.posCnt == 2) {
347 // time to sample a bit
348 Uart.shiftReg >>= 1;
349 if(bit) {
350 Uart.shiftReg |= 0x200;
351 }
352 Uart.bitCnt++;
353 }
354 if(Uart.posCnt >= 4) {
355 Uart.posCnt = 0;
356 }
357 if(Uart.bitCnt == 10) {
358 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
359 {
360 // this is a data byte, with correct
361 // start and stop bits
362 Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
363 Uart.byteCnt++;
364
365 if(Uart.byteCnt >= Uart.byteCntMax) {
366 // Buffer overflowed, give up
36f84d47 367 LED_A_OFF();
368 Uart.state = STATE_UNSYNCD;
489ef36c 369 } else {
370 // so get the next byte now
371 Uart.posCnt = 0;
372 Uart.state = STATE_AWAITING_START_BIT;
373 }
46734099 374 } else if (Uart.shiftReg == 0x000) {
489ef36c 375 // this is an EOF byte
376 LED_A_OFF(); // Finished receiving
36f84d47 377 Uart.state = STATE_UNSYNCD;
22e24700 378 if (Uart.byteCnt != 0) {
489ef36c 379 return TRUE;
22e24700 380 }
489ef36c 381 } else {
382 // this is an error
36f84d47 383 LED_A_OFF();
46734099 384 Uart.state = STATE_UNSYNCD;
36f84d47 385 }
489ef36c 386 }
387 break;
388
389 default:
36f84d47 390 LED_A_OFF();
489ef36c 391 Uart.state = STATE_UNSYNCD;
392 break;
393 }
394
489ef36c 395 return FALSE;
396}
397
398//-----------------------------------------------------------------------------
399// Receive a command (from the reader to us, where we are the simulated tag),
400// and store it in the given buffer, up to the given maximum length. Keeps
401// spinning, waiting for a well-framed command, until either we get one
402// (returns TRUE) or someone presses the pushbutton on the board (FALSE).
403//
404// Assume that we're called with the SSC (to the FPGA) and ADC path set
405// correctly.
406//-----------------------------------------------------------------------------
11c2df83 407static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) {
abb21530 408 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
489ef36c 409 // only, since we are receiving, not transmitting).
410 // Signal field is off with the appropriate LED
411 LED_D_OFF();
412 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
ffeb77fd 413
11c2df83 414 StartCountSspClk();
415
ffeb77fd 416 volatile uint8_t b;
417
418 // clear receiving shift register and holding register
419 // What does this loop do? Is it TR1?
420 for(uint8_t c = 0; c < 10;) {
421 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
422 AT91C_BASE_SSC->SSC_THR = 0xFF;
423 ++c;
424 }
425 }
426
489ef36c 427 // Now run a `software UART' on the stream of incoming samples.
36f84d47 428 UartInit(received);
ffeb77fd 429
430 b = 0;
431 uint8_t mask;
dccddaef 432 while( !BUTTON_PRESS() ) {
489ef36c 433 WDT_HIT();
434
dccddaef 435 if ( AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY ) {
436 b = (uint8_t) AT91C_BASE_SSC->SSC_RHR;
437 for ( mask = 0x80; mask != 0; mask >>= 1) {
438 if ( Handle14443bReaderUartBit(b & mask)) {
489ef36c 439 *len = Uart.byteCnt;
440 return TRUE;
441 }
442 }
443 }
11c2df83 444 }
36f84d47 445 return FALSE;
489ef36c 446}
447
ffeb77fd 448void ClearFpgaShiftingRegisters(void){
449
450 volatile uint8_t b;
451
452 // clear receiving shift register and holding register
453 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
c3e8413c 454
ffeb77fd 455 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
456
457 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
c3e8413c 458
ffeb77fd 459 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
460
461
462 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
463 for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
464 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
465 if (AT91C_BASE_SSC->SSC_RHR) break;
466 }
467
468 // Clear TXRDY:
c3e8413c 469 //AT91C_BASE_SSC->SSC_THR = 0xFF;
ffeb77fd 470}
471
472void WaitForFpgaDelayQueueIsEmpty( uint16_t delay ){
473 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
474 uint8_t fpga_queued_bits = delay >> 3; // twich /8 ?? >>3,
475 for (uint8_t i = 0; i <= fpga_queued_bits/8 + 1; ) {
476 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
477 AT91C_BASE_SSC->SSC_THR = 0xFF;
478 i++;
479 }
480 }
481}
dccddaef 482
483static void TransmitFor14443b_AsTag( uint8_t *response, uint16_t len) {
484
485 // Signal field is off with the appropriate LED
486 LED_D_OFF();
c3e8413c 487 //uint16_t fpgasendQueueDelay = 0;
dccddaef 488
489 // Modulate BPSK
490 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
491
ffeb77fd 492 ClearFpgaShiftingRegisters();
493
dccddaef 494 FpgaSetupSsc();
c3e8413c 495 volatile uint32_t b;
dccddaef 496
497 // Transmit the response.
498 for(uint16_t i = 0; i < len;) {
499 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
ffeb77fd 500 AT91C_BASE_SSC->SSC_THR = response[++i];
dccddaef 501 }
c3e8413c 502 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
503 b = AT91C_BASE_SSC->SSC_RHR;
504 (void)b;
505 }
dccddaef 506 }
ffeb77fd 507
c3e8413c 508 //WaitForFpgaDelayQueueIsEmpty(fpgasendQueueDelay);
509 AT91C_BASE_SSC->SSC_THR = 0xFF;
dccddaef 510}
489ef36c 511//-----------------------------------------------------------------------------
512// Main loop of simulated tag: receive commands from reader, decide what
513// response to send, and send it.
514//-----------------------------------------------------------------------------
dccddaef 515void SimulateIso14443bTag(uint32_t pupi) {
dccddaef 516
0923c43c 517 ///////////// setup device.
99cf19d9 518 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
519
11c2df83 520 // allocate command receive buffer
521 BigBuf_free();
522 BigBuf_Clear_ext(false);
523 clear_trace(); //sim
36f84d47 524 set_tracing(TRUE);
11c2df83 525
dccddaef 526 // connect Demodulated Signal to ADC:
527 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
528
529 // Set up the synchronous serial port
530 FpgaSetupSsc();
0923c43c 531 /////////////
dccddaef 532
0923c43c 533 uint16_t len, cmdsReceived = 0;
534 int cardSTATE = SIM_NOFIELD;
535 int vHf = 0; // in mV
536 // uint32_t time_0 = 0;
537 // uint32_t t2r_time = 0;
538 // uint32_t r2t_time = 0;
539 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
dccddaef 540
0923c43c 541 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
542// static const uint8_t cmdWUPB[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; // WUPB
543 // ... and REQB, AFI=0, Normal Request, N=1:
544// static const uint8_t cmdREQB[] = { ISO14443B_REQB, 0x00, 0x00, 0x71, 0xFF }; // REQB
545 // ... and ATTRIB
546// static const uint8_t cmdATTRIB[] = { ISO14443B_ATTRIB, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
547
548 // ... if not PUPI/UID is supplied we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
549 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
550 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
551 uint8_t respATQB[] = { 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19,
552 0x22, 0x00, 0x21, 0x85, 0x5e, 0xd7 };
553
554 // response to HLTB and ATTRIB
555 static const uint8_t respOK[] = {0x00, 0x78, 0xF0};
556
557 // ...PUPI/UID supplied from user. Adjust ATQB response accordingly
558 if ( pupi > 0 ) {
c23d2618 559 uint8_t len = sizeof(respATQB);
0923c43c 560 num_to_bytes(pupi, 4, respATQB+1);
c3e8413c 561 ComputeCrc14443(CRC_14443_B, respATQB, 12, &respATQB[len-2], &respATQB[len-1]);
0923c43c 562 }
563
564 // prepare "ATQB" tag answer (encoded):
565 CodeIso14443bAsTag(respATQB, sizeof(respATQB));
566 uint8_t *encodedATQB = BigBuf_malloc(ToSendMax);
567 uint16_t encodedATQBLen = ToSendMax;
568 memcpy(encodedATQB, ToSend, ToSendMax);
569
11c2df83 570
0923c43c 571 // prepare "OK" tag answer (encoded):
572 CodeIso14443bAsTag(respOK, sizeof(respOK));
573 uint8_t *encodedOK = BigBuf_malloc(ToSendMax);
574 uint16_t encodedOKLen = ToSendMax;
575 memcpy(encodedOK, ToSend, ToSendMax);
11c2df83 576
0923c43c 577 // Simulation loop
dccddaef 578 while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
579 WDT_HIT();
489ef36c 580
dccddaef 581 // find reader field
0923c43c 582 if (cardSTATE == SIM_NOFIELD) {
dccddaef 583 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
0923c43c 584 if ( vHf > MF_MINFIELDV ) {
585 cardSTATE = SIM_IDLE;
586 LED_A_ON();
587 }
dccddaef 588 }
0923c43c 589 if (cardSTATE == SIM_NOFIELD) continue;
489ef36c 590
0923c43c 591 // Get reader command
810f5379 592 if (!GetIso14443bCommandFromReader(receivedCmd, &len)) {
0923c43c 593 Dbprintf("button pressed, received %d commands", cmdsReceived);
810f5379 594 break;
489ef36c 595 }
596
0923c43c 597 // ISO14443-B protocol states:
598 // REQ or WUP request in ANY state
599 // WUP in HALTED state
600 if (len == 5 ) {
ffeb77fd 601 if ( (receivedCmd[0] == ISO14443B_REQB && (receivedCmd[2] & 0x8)== 0x8 && cardSTATE == SIM_HALTED) ||
602 receivedCmd[0] == ISO14443B_REQB ){
603 LogTrace(receivedCmd, len, 0, 0, NULL, TRUE);
0923c43c 604 cardSTATE = SIM_SELECTING;
0923c43c 605 }
606 }
607
608 /*
609 * How should this flow go?
610 * REQB or WUPB
611 * send response ( waiting for Attrib)
612 * ATTRIB
613 * send response ( waiting for commands 7816)
614 * HALT
615 send halt response ( waiting for wupb )
616 */
d51717ff 617
dccddaef 618 switch(cardSTATE){
0923c43c 619 case SIM_NOFIELD:
620 case SIM_HALTED:
621 case SIM_IDLE:{
dccddaef 622 LogTrace(receivedCmd, len, 0, 0, NULL, TRUE);
623 break;
624 }
0923c43c 625 case SIM_SELECTING: {
626 TransmitFor14443b_AsTag( encodedATQB, encodedATQBLen );
627 LogTrace(respATQB, sizeof(respATQB), 0, 0, NULL, FALSE);
ffeb77fd 628 cardSTATE = SIM_WORK;
dccddaef 629 break;
0923c43c 630 }
631 case SIM_HALTING: {
632 TransmitFor14443b_AsTag( encodedOK, encodedOKLen );
633 LogTrace(respOK, sizeof(respOK), 0, 0, NULL, FALSE);
634 cardSTATE = SIM_HALTED;
dccddaef 635 break;
0923c43c 636 }
637 case SIM_ACKNOWLEDGE:{
638 TransmitFor14443b_AsTag( encodedOK, encodedOKLen );
639 LogTrace(respOK, sizeof(respOK), 0, 0, NULL, FALSE);
640 cardSTATE = SIM_IDLE;
641 break;
642 }
d51717ff 643 case SIM_WORK:{
644 if ( len == 7 && receivedCmd[0] == ISO14443B_HALT ) {
645 cardSTATE = SIM_HALTED;
646 } else if ( len == 11 && receivedCmd[0] == ISO14443B_ATTRIB ) {
647 cardSTATE = SIM_ACKNOWLEDGE;
648 } else {
649 // Todo:
650 // - SLOT MARKER
651 // - ISO7816
652 // - emulate with a memory dump
653 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsReceived);
654
655 // CRC Check
656 uint8_t b1, b2;
657 if (len >= 3){ // if crc exists
658 ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
659 if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1])
660 DbpString("+++CRC fail");
661 else
662 DbpString("CRC passes");
663 }
664 cardSTATE = SIM_IDLE;
665 }
dccddaef 666 break;
d51717ff 667 }
668 default: break;
dccddaef 669 }
670
0923c43c 671 ++cmdsReceived;
672 if(cmdsReceived > 1000) {
dccddaef 673 DbpString("14B Simulate, 1000 commands later...");
489ef36c 674 break;
675 }
489ef36c 676 }
dccddaef 677 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
11c2df83 678 switch_off(); //simulate
489ef36c 679}
680
681//=============================================================================
682// An ISO 14443 Type B reader. We take layer two commands, code them
683// appropriately, and then send them to the tag. We then listen for the
684// tag's response, which we leave in the buffer to be demodulated on the
685// PC side.
686//=============================================================================
687
489ef36c 688/*
689 * Handles reception of a bit from the tag
690 *
abb21530 691 * This function is called 2 times per bit (every 4 subcarrier cycles).
692 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
693 *
489ef36c 694 * LED handling:
695 * LED C -> ON once we have received the SOF and are expecting the rest.
696 * LED C -> OFF once we have received EOF or are unsynced
697 *
698 * Returns: true if we received a EOF
699 * false if we are still waiting for some more
700 *
701 */
cef590d9 702#ifndef SUBCARRIER_DETECT_THRESHOLD
11c2df83 703# define SUBCARRIER_DETECT_THRESHOLD 8
cef590d9 704#endif
705
11c2df83 706static RAMFUNC int Handle14443bTagSamplesDemod(int ci, int cq) {
707 int v=0;// , myI, myQ = 0;
51d4f6f1 708// The soft decision on the bit uses an estimate of just the
709// quadrant of the reference angle, not the exact angle.
489ef36c 710#define MAKE_SOFT_DECISION() { \
5b59bf20 711 if(Demod.sumI > 0) { \
712 v = ci; \
713 } else { \
714 v = -ci; \
715 } \
489ef36c 716 if(Demod.sumQ > 0) { \
717 v += cq; \
718 } else { \
719 v -= cq; \
720 } \
721 }
722
cef590d9 723// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
abb21530 724// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
725#define CHECK_FOR_SUBCARRIER() { \
cef590d9 726 if(ci < 0) { \
727 if(cq < 0) { /* ci < 0, cq < 0 */ \
728 if (cq < ci) { \
729 v = -cq - (ci >> 1); \
730 } else { \
731 v = -ci - (cq >> 1); \
732 } \
733 } else { /* ci < 0, cq >= 0 */ \
734 if (cq < -ci) { \
735 v = -ci + (cq >> 1); \
736 } else { \
737 v = cq - (ci >> 1); \
738 } \
739 } \
740 } else { \
741 if(cq < 0) { /* ci >= 0, cq < 0 */ \
742 if (-cq < ci) { \
743 v = ci - (cq >> 1); \
744 } else { \
745 v = -cq + (ci >> 1); \
746 } \
747 } else { /* ci >= 0, cq >= 0 */ \
748 if (cq < ci) { \
749 v = ci + (cq >> 1); \
750 } else { \
751 v = cq + (ci >> 1); \
752 } \
753 } \
754 } \
755 }
db25599d 756
6fc68747 757//note: couldn't we just use MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2) from common.h - marshmellow
11c2df83 758#define CHECK_FOR_SUBCARRIER_un() { \
759 myI = ABS(ci); \
760 myQ = ABS(cq); \
761 v = MAX(myI,myQ) + (MIN(myI,myQ) >> 1); \
6fc68747 762 }
db25599d 763
489ef36c 764 switch(Demod.state) {
765 case DEMOD_UNSYNCD:
cef590d9 766
abb21530 767 CHECK_FOR_SUBCARRIER();
cef590d9 768
769 // subcarrier detected
770 if(v > SUBCARRIER_DETECT_THRESHOLD) {
489ef36c 771 Demod.state = DEMOD_PHASE_REF_TRAINING;
abb21530 772 Demod.sumI = ci;
773 Demod.sumQ = cq;
774 Demod.posCount = 1;
489ef36c 775 }
776 break;
777
778 case DEMOD_PHASE_REF_TRAINING:
5b59bf20 779 if(Demod.posCount < 8) {
cef590d9 780
abb21530 781 CHECK_FOR_SUBCARRIER();
cef590d9 782
abb21530 783 if (v > SUBCARRIER_DETECT_THRESHOLD) {
784 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
785 // note: synchronization time > 80 1/fs
b10a759f 786 Demod.sumI += ci;
787 Demod.sumQ += cq;
cef590d9 788 ++Demod.posCount;
789 } else {
790 // subcarrier lost
b10a759f 791 Demod.state = DEMOD_UNSYNCD;
abb21530 792 }
489ef36c 793 } else {
b10a759f 794 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
489ef36c 795 }
489ef36c 796 break;
797
798 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
cef590d9 799
489ef36c 800 MAKE_SOFT_DECISION();
cef590d9 801
cef590d9 802 if(v < 0) { // logic '0' detected
489ef36c 803 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
abb21530 804 Demod.posCount = 0; // start of SOF sequence
489ef36c 805 } else {
cef590d9 806 // maximum length of TR1 = 200 1/fs
c3e8413c 807 if(Demod.posCount > 26*2) Demod.state = DEMOD_UNSYNCD;
489ef36c 808 }
cef590d9 809 ++Demod.posCount;
489ef36c 810 break;
811
812 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
cef590d9 813 ++Demod.posCount;
814
489ef36c 815 MAKE_SOFT_DECISION();
cef590d9 816
489ef36c 817 if(v > 0) {
cef590d9 818 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
c3e8413c 819 if(Demod.posCount < 8*2) {
489ef36c 820 Demod.state = DEMOD_UNSYNCD;
821 } else {
a62bf3af 822 LED_C_ON(); // Got SOF
11c2df83 823 Demod.startTime = GetCountSspClk();
489ef36c 824 Demod.state = DEMOD_AWAITING_START_BIT;
825 Demod.posCount = 0;
826 Demod.len = 0;
489ef36c 827 }
828 } else {
cef590d9 829 // low phase of SOF too long (> 12 etu)
c3e8413c 830 if (Demod.posCount > 14*2) {
489ef36c 831 Demod.state = DEMOD_UNSYNCD;
47286d89 832 LED_C_OFF();
489ef36c 833 }
834 }
489ef36c 835 break;
836
837 case DEMOD_AWAITING_START_BIT:
cef590d9 838 ++Demod.posCount;
839
489ef36c 840 MAKE_SOFT_DECISION();
cef590d9 841
842 if (v > 0) {
c3e8413c 843 if(Demod.posCount > 2*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
489ef36c 844 Demod.state = DEMOD_UNSYNCD;
47286d89 845 LED_C_OFF();
489ef36c 846 }
abb21530 847 } else { // start bit detected
489ef36c 848 Demod.bitCount = 0;
abb21530 849 Demod.posCount = 1; // this was the first half
489ef36c 850 Demod.thisBit = v;
851 Demod.shiftReg = 0;
852 Demod.state = DEMOD_RECEIVING_DATA;
853 }
854 break;
855
856 case DEMOD_RECEIVING_DATA:
cef590d9 857
489ef36c 858 MAKE_SOFT_DECISION();
cef590d9 859
860 if (Demod.posCount == 0) {
861 // first half of bit
489ef36c 862 Demod.thisBit = v;
863 Demod.posCount = 1;
cef590d9 864 } else {
865 // second half of bit
489ef36c 866 Demod.thisBit += v;
489ef36c 867 Demod.shiftReg >>= 1;
489ef36c 868
cef590d9 869 // logic '1'
870 if(Demod.thisBit > 0) Demod.shiftReg |= 0x200;
871
872 ++Demod.bitCount;
873
489ef36c 874 if(Demod.bitCount == 10) {
cef590d9 875
489ef36c 876 uint16_t s = Demod.shiftReg;
cef590d9 877
878 // stop bit == '1', start bit == '0'
879 if((s & 0x200) && !(s & 0x001)) {
489ef36c 880 uint8_t b = (s >> 1);
881 Demod.output[Demod.len] = b;
cef590d9 882 ++Demod.len;
489ef36c 883 Demod.state = DEMOD_AWAITING_START_BIT;
489ef36c 884 } else {
885 Demod.state = DEMOD_UNSYNCD;
11c2df83 886 Demod.endTime = GetCountSspClk();
47286d89 887 LED_C_OFF();
cef590d9 888
889 // This is EOF (start, stop and all data bits == '0'
890 if(s == 0) return TRUE;
489ef36c 891 }
892 }
893 Demod.posCount = 0;
894 }
895 break;
896
897 default:
898 Demod.state = DEMOD_UNSYNCD;
47286d89 899 LED_C_OFF();
489ef36c 900 break;
901 }
489ef36c 902 return FALSE;
903}
904
905
489ef36c 906/*
907 * Demodulate the samples we received from the tag, also log to tracebuffer
489ef36c 908 * quiet: set to 'TRUE' to disable debug output
909 */
dccddaef 910static void GetTagSamplesFor14443bDemod() {
abb21530 911 bool gotFrame = FALSE;
11c2df83 912 int lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
913 int max = 0, ci = 0, cq = 0, samples = 0;
914 uint32_t time_0 = 0, time_stop = 0;
489ef36c 915
11c2df83 916 BigBuf_free();
917
489ef36c 918 // Set up the demodulator for tag -> reader responses.
db25599d 919 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
b10a759f 920
921 // The DMA buffer, used to stream samples from the FPGA
922 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
11c2df83 923 int8_t *upTo = dmaBuf;
cef590d9 924
db25599d 925 // Setup and start DMA.
11c2df83 926 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE) ){
927 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
928 return;
929 }
db25599d 930
11c2df83 931 time_0 = GetCountSspClk();
932
933 // And put the FPGA in the appropriate mode
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
c3e8413c 935
11c2df83 936 while( !BUTTON_PRESS() ) {
937 WDT_HIT();
489ef36c 938
489ef36c 939 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
940 if(behindBy > max) max = behindBy;
941
11c2df83 942 // rx counter - dma counter? (how much?) & (mod) dma buff / 2. (since 2bytes at the time is read)
943 while(((lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
944
489ef36c 945 ci = upTo[0];
946 cq = upTo[1];
947 upTo += 2;
11c2df83 948 samples += 2;
949
950 // restart DMA buffer to receive again.
705bfa10 951 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
489ef36c 952 upTo = dmaBuf;
953 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
705bfa10 954 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
489ef36c 955 }
11c2df83 956
489ef36c 957 lastRxCounter -= 2;
cef590d9 958 if(lastRxCounter <= 0)
959 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
489ef36c 960
6fc68747 961 // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103
11c2df83 962 //gotFrame = Handle14443bTagSamplesDemod(ci & 0xfe, cq & 0xfe);
963 gotFrame = Handle14443bTagSamplesDemod(ci, cq);
964 if ( gotFrame ) break;
965 LED_A_INV();
489ef36c 966 }
967
11c2df83 968 time_stop = GetCountSspClk() - time_0;
969
970 if(time_stop > iso14b_timeout || gotFrame) break;
489ef36c 971 }
11c2df83 972
973 FpgaDisableSscDma();
abb21530 974
dccddaef 975 if (MF_DBGLEVEL >= 3) {
11c2df83 976 Dbprintf("max behindby = %d, samples = %d, gotFrame = %s, Demod.state = %d, Demod.len = %u",
b10a759f 977 max,
978 samples,
ff3e0744 979 (gotFrame) ? "true" : "false",
cef590d9 980 Demod.state,
11c2df83 981 Demod.len
b10a759f 982 );
983 }
11c2df83 984 if ( Demod.len > 0 )
985 LogTrace(Demod.output, Demod.len, Demod.startTime, Demod.endTime, NULL, FALSE);
489ef36c 986}
987
988
489ef36c 989//-----------------------------------------------------------------------------
990// Transmit the command (to the tag) that was placed in ToSend[].
991//-----------------------------------------------------------------------------
11c2df83 992static void TransmitFor14443b_AsReader(void) {
489ef36c 993
11c2df83 994 // we could been in following mode:
995 // FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ
996 // if its second call or more
c3e8413c 997
998 // while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
999 // AT91C_BASE_SSC->SSC_THR = 0XFF;
1000 // }
1001
1002 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1003 SpinDelay(40);
11c2df83 1004
c3e8413c 1005 int c;
1006 volatile uint32_t b;
1007
11c2df83 1008 // What does this loop do? Is it TR1?
c3e8413c 1009 // 0xFF = 8 bits of 1. 1 bit == 1Etu,..
1010 // loop 10 * 8 = 80 ETU of delay, with a non modulated signal. why?
1011 // 80*9 = 720us.
1012 for(c = 0; c < 50;) {
489ef36c 1013 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
11c2df83 1014 AT91C_BASE_SSC->SSC_THR = 0xFF;
cef590d9 1015 ++c;
489ef36c 1016 }
c3e8413c 1017 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1018 b = AT91C_BASE_SSC->SSC_RHR;
1019 (void)b;
1020 }
489ef36c 1021 }
c3e8413c 1022
11c2df83 1023 // Send frame loop
1024 for(c = 0; c < ToSendMax;) {
489ef36c 1025 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
c3e8413c 1026 AT91C_BASE_SSC->SSC_THR = ToSend[c++];
489ef36c 1027 }
c3e8413c 1028 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1029 b = AT91C_BASE_SSC->SSC_RHR;
1030 (void)b;
1031 }
489ef36c 1032 }
c3e8413c 1033 //WaitForFpgaDelayQueueIsEmpty(delay);
1034 // We should wait here for the FPGA to send all bits.
11c2df83 1035 WDT_HIT();
489ef36c 1036}
1037
489ef36c 1038//-----------------------------------------------------------------------------
1039// Code a layer 2 command (string of octets, including CRC) into ToSend[],
abb21530 1040// so that it is ready to transmit to the tag using TransmitFor14443b().
489ef36c 1041//-----------------------------------------------------------------------------
1042static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
1043{
11c2df83 1044 /*
1045 * Reader data transmission:
1046 * - no modulation ONES
1047 * - SOF
1048 * - Command, data and CRC_B
1049 * - EOF
1050 * - no modulation ONES
1051 *
1052 * 1 ETU == 1 BIT!
1053 * TR0 - 8 ETUS minimum.
c3e8413c 1054 *
1055 * QUESTION: how long is a 1 or 0 in pulses in the xcorr_848 mode?
1056 * 1 "stuffbit" = 1ETU (9us)
11c2df83 1057 */
1058 int i;
489ef36c 1059 uint8_t b;
11c2df83 1060
489ef36c 1061 ToSendReset();
1062
489ef36c 1063 // Send SOF
11c2df83 1064 // 10-11 ETUs of ZERO
1065 for(i = 0; i < 10; ++i) ToSendStuffBit(0);
1066
1067 // 2-3 ETUs of ONE
1068 ToSendStuffBit(1);
1069 ToSendStuffBit(1);
1070 ToSendStuffBit(1);
1071
1072 // Sending cmd, LSB
1073 // from here we add BITS
6fc68747 1074 for(i = 0; i < len; ++i) {
11c2df83 1075 // Start bit
489ef36c 1076 ToSendStuffBit(0);
1077 // Data bits
11c2df83 1078 b = cmd[i];
1079 if ( b & 1 ) ToSendStuffBit(1); else ToSendStuffBit(0);
1080 if ( (b>>1) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1081 if ( (b>>2) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1082 if ( (b>>3) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1083 if ( (b>>4) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1084 if ( (b>>5) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1085 if ( (b>>6) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1086 if ( (b>>7) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1087 // Stop bit
489ef36c 1088 ToSendStuffBit(1);
11c2df83 1089 // EGT extra guard time
1090 // For PCD it ranges 0-57us (1etu = 9us)
489ef36c 1091 ToSendStuffBit(1);
11c2df83 1092 ToSendStuffBit(1);
1093 ToSendStuffBit(1);
1094 }
1095
1096 // Send EOF
1097 // 10-11 ETUs of ZERO
1098 for(i = 0; i < 10; ++i) ToSendStuffBit(0);
489ef36c 1099
11c2df83 1100 // Transition time. TR0 - guard time
1101 // 8ETUS minum?
1102 // Per specification, Subcarrier must be stopped no later than 2 ETUs after EOF.
c3e8413c 1103 // I'm guessing this is for the FPGA to be able to send all bits before we switch to listening mode
1104 for(i = 0; i < 32 ; ++i) ToSendStuffBit(1);
11c2df83 1105
1106 // TR1 - Synchronization time
489ef36c 1107 // Convert from last character reference to length
cef590d9 1108 ++ToSendMax;
489ef36c 1109}
1110
1111
489ef36c 1112/**
1113 Convenience function to encode, transmit and trace iso 14443b comms
1114 **/
11c2df83 1115static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) {
1116
489ef36c 1117 CodeIso14443bAsReader(cmd, len);
11c2df83 1118
1119 uint32_t time_start = GetCountSspClk();
6fc68747 1120
11c2df83 1121 TransmitFor14443b_AsReader();
1122
6fc68747 1123 if(trigger) LED_A_ON();
1124
dccddaef 1125 LogTrace(cmd, len, time_start, GetCountSspClk()-time_start, NULL, TRUE);
489ef36c 1126}
1127
a62bf3af 1128/* Sends an APDU to the tag
1129 * TODO: check CRC and preamble
1130 */
6fc68747 1131uint8_t iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response)
a62bf3af 1132{
6fc68747 1133 uint8_t crc[2] = {0x00, 0x00};
a62bf3af 1134 uint8_t message_frame[message_length + 4];
1135 // PCB
1136 message_frame[0] = 0x0A | pcb_blocknum;
1137 pcb_blocknum ^= 1;
1138 // CID
1139 message_frame[1] = 0;
1140 // INF
1141 memcpy(message_frame + 2, message, message_length);
1142 // EDC (CRC)
1143 ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]);
1144 // send
11c2df83 1145 CodeAndTransmit14443bAsReader(message_frame, message_length + 4); //no
a62bf3af 1146 // get response
dccddaef 1147 GetTagSamplesFor14443bDemod(); //no
a62bf3af 1148 if(Demod.len < 3)
a62bf3af 1149 return 0;
cef590d9 1150
6fc68747 1151 // VALIDATE CRC
1152 ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]);
1153 if ( crc[0] != Demod.output[Demod.len-2] || crc[1] != Demod.output[Demod.len-1] )
1154 return 0;
1155
a62bf3af 1156 // copy response contents
1157 if(response != NULL)
a62bf3af 1158 memcpy(response, Demod.output, Demod.len);
cef590d9 1159
a62bf3af 1160 return Demod.len;
1161}
1162
6fc68747 1163/**
1164* SRx Initialise.
1165*/
1166uint8_t iso14443b_select_srx_card(iso14b_card_select_t *card )
1167{
1168 // INITIATE command: wake up the tag using the INITIATE
1169 static const uint8_t init_srx[] = { ISO14443B_INITIATE, 0x00, 0x97, 0x5b };
1170 // SELECT command (with space for CRC)
1171 uint8_t select_srx[] = { ISO14443B_SELECT, 0x00, 0x00, 0x00};
1172 // temp to calc crc.
1173 uint8_t crc[2] = {0x00, 0x00};
1174
1175 CodeAndTransmit14443bAsReader(init_srx, sizeof(init_srx));
dccddaef 1176 GetTagSamplesFor14443bDemod(); //no
6fc68747 1177
1178 if (Demod.len == 0) return 2;
1179
1180 // Randomly generated Chip ID
1181 if (card) card->chipid = Demod.output[0];
1182
1183 select_srx[1] = Demod.output[0];
1184
1185 ComputeCrc14443(CRC_14443_B, select_srx, 2, &select_srx[2], &select_srx[3]);
1186 CodeAndTransmit14443bAsReader(select_srx, sizeof(select_srx));
dccddaef 1187 GetTagSamplesFor14443bDemod(); //no
6fc68747 1188
1189 if (Demod.len != 3) return 2;
1190
1191 // Check the CRC of the answer:
1192 ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2 , &crc[0], &crc[1]);
1193 if(crc[0] != Demod.output[1] || crc[1] != Demod.output[2]) return 3;
1194
1195 // Check response from the tag: should be the same UID as the command we just sent:
1196 if (select_srx[1] != Demod.output[0]) return 1;
1197
1198 // First get the tag's UID:
1199 select_srx[0] = ISO14443B_GET_UID;
1200
1201 ComputeCrc14443(CRC_14443_B, select_srx, 1 , &select_srx[1], &select_srx[2]);
1202 CodeAndTransmit14443bAsReader(select_srx, 3); // Only first three bytes for this one
dccddaef 1203 GetTagSamplesFor14443bDemod(); //no
6fc68747 1204
1205 if (Demod.len != 10) return 2;
1206
1207 // The check the CRC of the answer
1208 ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]);
1209 if(crc[0] != Demod.output[8] || crc[1] != Demod.output[9]) return 3;
1210
1211 if (card) {
1212 card->uidlen = 8;
1213 memcpy(card->uid, Demod.output, 8);
1214 }
1215
1216 return 0;
1217}
a62bf3af 1218/* Perform the ISO 14443 B Card Selection procedure
1219 * Currently does NOT do any collision handling.
1220 * It expects 0-1 cards in the device's range.
1221 * TODO: Support multiple cards (perform anticollision)
1222 * TODO: Verify CRC checksums
1223 */
6fc68747 1224uint8_t iso14443b_select_card(iso14b_card_select_t *card )
a62bf3af 1225{
1226 // WUPB command (including CRC)
1227 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
6fc68747 1228 static const uint8_t wupb[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 };
a62bf3af 1229 // ATTRIB command (with space for CRC)
6fc68747 1230 uint8_t attrib[] = { ISO14443B_ATTRIB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
a62bf3af 1231
6fc68747 1232 // temp to calc crc.
1233 uint8_t crc[2] = {0x00, 0x00};
1234
a62bf3af 1235 // first, wake up the tag
1236 CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
dccddaef 1237 GetTagSamplesFor14443bDemod(); //select_card
6fc68747 1238
a62bf3af 1239 // ATQB too short?
6fc68747 1240 if (Demod.len < 14) return 2;
1241
1242 // VALIDATE CRC
1243 ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]);
1244 if ( crc[0] != Demod.output[12] || crc[1] != Demod.output[13] )
1245 return 3;
1246
1247 if (card) {
1248 card->uidlen = 4;
1249 memcpy(card->uid, Demod.output+1, 4);
1250 memcpy(card->atqb, Demod.output+5, 7);
1251 }
a62bf3af 1252
11c2df83 1253 // copy the PUPI to ATTRIB ( PUPI == UID )
a62bf3af 1254 memcpy(attrib + 1, Demod.output + 1, 4);
6fc68747 1255
1256 // copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into ATTRIB (Param 3)
a62bf3af 1257 attrib[7] = Demod.output[10] & 0x0F;
1258 ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10);
6fc68747 1259
a62bf3af 1260 CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
dccddaef 1261 GetTagSamplesFor14443bDemod();//select_card
6fc68747 1262
a62bf3af 1263 // Answer to ATTRIB too short?
6fc68747 1264 if(Demod.len < 3) return 2;
1265
1266 // VALIDATE CRC
1267 ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]);
1268 if ( crc[0] != Demod.output[1] || crc[1] != Demod.output[2] )
1269 return 3;
1270
1271 // CID
65cdf0e3 1272 if (card) {
1273 card->cid = Demod.output[0];
1274 uint8_t fwt = card->atqb[6] >> 4;
1275 if ( fwt < 16 ){
1276 uint32_t fwt_time = (302 << fwt);
1277 iso14b_set_timeout( fwt_time);
1278 }
11c2df83 1279 }
a62bf3af 1280 // reset PCB block number
1281 pcb_blocknum = 0;
6fc68747 1282 return 0;
a62bf3af 1283}
1284
1285// Set up ISO 14443 Type B communication (similar to iso14443a_setup)
11c2df83 1286// field is setup for "Sending as Reader"
a62bf3af 1287void iso14443b_setup() {
11c2df83 1288 if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup Enter");
1289 LEDsoff();
a62bf3af 1290 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
11c2df83 1291 //BigBuf_free();
1292 //BigBuf_Clear_ext(false);
ff3e0744 1293
11c2df83 1294 // Initialize Demod and Uart structs
1295 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1296 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
cef590d9 1297
a62bf3af 1298 // connect Demodulated Signal to ADC:
1299 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1300
11c2df83 1301 // Set up the synchronous serial port
1302 FpgaSetupSsc();
1303
a62bf3af 1304 // Signal field is on with the appropriate LED
a62bf3af 1305 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
11c2df83 1306 SpinDelay(100);
a62bf3af 1307
1308 // Start the timer
ff3e0744 1309 StartCountSspClk();
11c2df83 1310
1311 LED_D_ON();
1312 if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup Exit");
a62bf3af 1313}
489ef36c 1314
1315//-----------------------------------------------------------------------------
abb21530 1316// Read a SRI512 ISO 14443B tag.
489ef36c 1317//
1318// SRI512 tags are just simple memory tags, here we're looking at making a dump
1319// of the contents of the memory. No anticollision algorithm is done, we assume
1320// we have a single tag in the field.
1321//
1322// I tried to be systematic and check every answer of the tag, every CRC, etc...
1323//-----------------------------------------------------------------------------
6fc68747 1324void ReadSTMemoryIso14443b(uint8_t numofblocks)
489ef36c 1325{
17ad0e09 1326 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
489ef36c 1327
489ef36c 1328 // Make sure that we start from off, since the tags are stateful;
1329 // confusing things will happen if we don't reset them between reads.
11c2df83 1330 switch_off(); // before ReadStMemory
1331
1332 set_tracing(TRUE);
1333
1334 uint8_t i = 0x00;
99cf19d9 1335
489ef36c 1336 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1337 FpgaSetupSsc();
1338
1339 // Now give it time to spin up.
1340 // Signal field is on with the appropriate LED
1341 LED_D_ON();
22e24700 1342 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
11c2df83 1343 SpinDelay(20);
489ef36c 1344
1345 // First command: wake up the tag using the INITIATE command
6fc68747 1346 uint8_t cmd1[] = {ISO14443B_INITIATE, 0x00, 0x97, 0x5b};
11c2df83 1347 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); //no
dccddaef 1348 GetTagSamplesFor14443bDemod(); // no
489ef36c 1349
1350 if (Demod.len == 0) {
22e24700 1351 DbpString("No response from tag");
5ee53a0e 1352 set_tracing(FALSE);
22e24700 1353 return;
489ef36c 1354 } else {
705bfa10 1355 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1356 Demod.output[0], Demod.output[1], Demod.output[2]);
489ef36c 1357 }
705bfa10 1358
489ef36c 1359 // There is a response, SELECT the uid
1360 DbpString("Now SELECT tag:");
6fc68747 1361 cmd1[0] = ISO14443B_SELECT; // 0x0E is SELECT
489ef36c 1362 cmd1[1] = Demod.output[0];
1363 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
11c2df83 1364 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); //no
dccddaef 1365 GetTagSamplesFor14443bDemod(); //no
489ef36c 1366 if (Demod.len != 3) {
22e24700 1367 Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
5ee53a0e 1368 set_tracing(FALSE);
22e24700 1369 return;
489ef36c 1370 }
1371 // Check the CRC of the answer:
1372 ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
1373 if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
22e24700 1374 DbpString("CRC Error reading select response.");
5ee53a0e 1375 set_tracing(FALSE);
22e24700 1376 return;
489ef36c 1377 }
1378 // Check response from the tag: should be the same UID as the command we just sent:
1379 if (cmd1[1] != Demod.output[0]) {
22e24700 1380 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
5ee53a0e 1381 set_tracing(FALSE);
22e24700 1382 return;
489ef36c 1383 }
705bfa10 1384
489ef36c 1385 // Tag is now selected,
1386 // First get the tag's UID:
6fc68747 1387 cmd1[0] = ISO14443B_GET_UID;
489ef36c 1388 ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
11c2df83 1389 CodeAndTransmit14443bAsReader(cmd1, 3); // no -- Only first three bytes for this one
dccddaef 1390 GetTagSamplesFor14443bDemod(); //no
489ef36c 1391 if (Demod.len != 10) {
22e24700 1392 Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
5ee53a0e 1393 set_tracing(FALSE);
22e24700 1394 return;
489ef36c 1395 }
1396 // The check the CRC of the answer (use cmd1 as temporary variable):
1397 ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
51d4f6f1 1398 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
22e24700 1399 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
705bfa10 1400 (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
489ef36c 1401 // Do not return;, let's go on... (we should retry, maybe ?)
1402 }
1403 Dbprintf("Tag UID (64 bits): %08x %08x",
705bfa10 1404 (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
1405 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
489ef36c 1406
1407 // Now loop to read all 16 blocks, address from 0 to last block
6fc68747 1408 Dbprintf("Tag memory dump, block 0 to %d", numofblocks);
489ef36c 1409 cmd1[0] = 0x08;
1410 i = 0x00;
6fc68747 1411 ++numofblocks;
1412
489ef36c 1413 for (;;) {
6fc68747 1414 if (i == numofblocks) {
489ef36c 1415 DbpString("System area block (0xff):");
1416 i = 0xff;
1417 }
1418 cmd1[1] = i;
1419 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
11c2df83 1420 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); //no
dccddaef 1421 GetTagSamplesFor14443bDemod(); //no
6fc68747 1422
489ef36c 1423 if (Demod.len != 6) { // Check if we got an answer from the tag
6fc68747 1424 DbpString("Expected 6 bytes from tag, got less...");
1425 return;
489ef36c 1426 }
1427 // The check the CRC of the answer (use cmd1 as temporary variable):
1428 ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
1429 if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
132a0217 1430 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
705bfa10 1431 (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
489ef36c 1432 // Do not return;, let's go on... (we should retry, maybe ?)
1433 }
1434 // Now print out the memory location:
22e24700 1435 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
705bfa10 1436 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
17ad0e09 1437 (Demod.output[4]<<8)+Demod.output[5]);
6fc68747 1438
1439 if (i == 0xff) break;
1440 ++i;
489ef36c 1441 }
5ee53a0e 1442
1443 set_tracing(FALSE);
489ef36c 1444}
1445
11c2df83 1446
1447static void iso1444b_setup_snoop(void){
1448 if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup_snoop Enter");
1449 LEDsoff();
1450 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1451 BigBuf_free();
1452 BigBuf_Clear_ext(false);
1453 clear_trace();//setup snoop
1454 set_tracing(TRUE);
1455
1456 // Initialize Demod and Uart structs
1457 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1458 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
1459
1460 if (MF_DBGLEVEL > 1) {
1461 // Print debug information about the buffer sizes
1462 Dbprintf("Snooping buffers initialized:");
1463 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1464 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
1465 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
1466 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
1467 }
1468
1469 // connect Demodulated Signal to ADC:
1470 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1471
1472 // Setup for the DMA.
1473 FpgaSetupSsc();
1474
1475 // Set FPGA in the appropriate mode
1476 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
1477 SpinDelay(20);
1478
1479 // Start the SSP timer
1480 StartCountSspClk();
1481 if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup_snoop Exit");
1482}
1483
489ef36c 1484//=============================================================================
1485// Finally, the `sniffer' combines elements from both the reader and
1486// simulated tag, to show both sides of the conversation.
1487//=============================================================================
1488
1489//-----------------------------------------------------------------------------
1490// Record the sequence of commands sent by the reader to the tag, with
1491// triggering so that we start recording at the point that the tag is moved
1492// near the reader.
1493//-----------------------------------------------------------------------------
1494/*
1495 * Memory usage for this function, (within BigBuf)
47286d89 1496 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1497 * Last Received command (tag->reader) - MAX_FRAME_SIZE
705bfa10 1498 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
47286d89 1499 * Demodulated samples received - all the rest
489ef36c 1500 */
11c2df83 1501void RAMFUNC SnoopIso14443b(void) {
1502
1503 uint32_t time_0 = 0, time_start = 0, time_stop = 0;
1504
489ef36c 1505 // We won't start recording the frames that we acquire until we trigger;
1506 // a good trigger condition to get started is probably when we see a
1507 // response from the tag.
11c2df83 1508 int triggered = TRUE; // TODO: set and evaluate trigger condition
489ef36c 1509 int ci, cq;
1510 int maxBehindBy = 0;
11c2df83 1511 //int behindBy = 0;
1512 int lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
1513
f53020e7 1514 bool TagIsActive = FALSE;
1515 bool ReaderIsActive = FALSE;
11c2df83 1516
1517 iso1444b_setup_snoop();
1518
1519 // The DMA buffer, used to stream samples from the FPGA
1520 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
1521 int8_t *upTo = dmaBuf;
1522
1523 // Setup and start DMA.
1524 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE) ){
1525 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1526 BigBuf_free();
1527 return;
1528 }
1529
1530 time_0 = GetCountSspClk();
489ef36c 1531
1532 // And now we loop, receiving samples.
1533 for(;;) {
abb21530 1534
11c2df83 1535 WDT_HIT();
1536
1537 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1);
489ef36c 1538
11c2df83 1539 if ( behindBy > maxBehindBy )
1540 maxBehindBy = behindBy;
1541
1542 if ( behindBy < 2 ) continue;
1543
489ef36c 1544 ci = upTo[0];
1545 cq = upTo[1];
1546 upTo += 2;
11c2df83 1547
489ef36c 1548 lastRxCounter -= 2;
11c2df83 1549
1550 if (upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
489ef36c 1551 upTo = dmaBuf;
705bfa10 1552 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
489ef36c 1553 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
705bfa10 1554 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
51d4f6f1 1555 WDT_HIT();
11c2df83 1556
1557 // TODO: understand whether we can increase/decrease as we want or not?
1558 if ( behindBy > ( 9 * ISO14443B_DMA_BUFFER_SIZE/10) ) {
132a0217 1559 Dbprintf("blew circular buffer! behindBy=%d", behindBy);
51d4f6f1 1560 break;
abb21530 1561 }
810f5379 1562
abb21530 1563 if(!tracing) {
810f5379 1564 DbpString("Trace full");
abb21530 1565 break;
1566 }
11c2df83 1567
abb21530 1568 if(BUTTON_PRESS()) {
1569 DbpString("cancelled");
1570 break;
1571 }
489ef36c 1572 }
11c2df83 1573
1574 if (!TagIsActive) {
1575
1576 LED_A_ON();
1577
1578 // no need to try decoding reader data if the tag is sending
1579 if (Handle14443bReaderUartBit(ci & 0x01)) {
489ef36c 1580
11c2df83 1581 time_stop = (GetCountSspClk()-time_0);
1582
1583 if (triggered)
1584 LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, TRUE);
6fc68747 1585
810f5379 1586 /* And ready to receive another command. */
1587 UartReset();
1588 /* And also reset the demod code, which might have been */
1589 /* false-triggered by the commands from the reader. */
1590 DemodReset();
11c2df83 1591 } else {
1592 time_start = (GetCountSspClk()-time_0);
489ef36c 1593 }
6fc68747 1594
11c2df83 1595 if (Handle14443bReaderUartBit(cq & 0x01)) {
1596
1597 time_stop = (GetCountSspClk()-time_0);
1598
1599 if (triggered)
1600 LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, TRUE);
6fc68747 1601
810f5379 1602 /* And ready to receive another command. */
1603 UartReset();
1604 /* And also reset the demod code, which might have been */
1605 /* false-triggered by the commands from the reader. */
1606 DemodReset();
11c2df83 1607 } else {
1608 time_start = (GetCountSspClk()-time_0);
6fc68747 1609 }
36f84d47 1610 ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
11c2df83 1611 LED_A_OFF();
47286d89 1612 }
11c2df83 1613
1614 if(!ReaderIsActive) {
1615 // no need to try decoding tag data if the reader is sending - and we cannot afford the time
d8af608f 1616 // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103
11c2df83 1617 if(Handle14443bTagSamplesDemod(ci & 0xFE, cq & 0xFE)) {
1618
1619 time_stop = (GetCountSspClk()-time_0);
1620
1621 LogTrace(Demod.output, Demod.len, time_start, time_stop, NULL, FALSE);
489ef36c 1622
810f5379 1623 triggered = TRUE;
1624
1625 // And ready to receive another response.
1626 DemodReset();
11c2df83 1627 } else {
1628 time_start = (GetCountSspClk()-time_0);
810f5379 1629 }
22e24700 1630 TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
47286d89 1631 }
489ef36c 1632 }
abb21530 1633
11c2df83 1634 switch_off(); // Snoop
810f5379 1635
489ef36c 1636 DbpString("Snoop statistics:");
1637 Dbprintf(" Max behind by: %i", maxBehindBy);
11c2df83 1638 Dbprintf(" Uart State: %x ByteCount: %i ByteCountMax: %i", Uart.state, Uart.byteCnt, Uart.byteCntMax);
489ef36c 1639 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
11c2df83 1640
1641 // free mem refs.
11c2df83 1642 if ( upTo ) upTo = NULL;
c3e8413c 1643
11c2df83 1644 // Uart.byteCntMax should be set with ATQB value..
489ef36c 1645}
1646
6fc68747 1647void iso14b_set_trigger(bool enable) {
1648 trigger = enable;
1649}
489ef36c 1650
1651/*
1652 * Send raw command to tag ISO14443B
1653 * @Input
6fc68747 1654 * param flags enum ISO14B_COMMAND. (mifare.h)
1655 * len len of buffer data
1656 * data buffer with bytes to send
489ef36c 1657 *
1658 * @Output
1659 * none
1660 *
1661 */
6fc68747 1662void SendRawCommand14443B_Ex(UsbCommand *c)
489ef36c 1663{
6fc68747 1664 iso14b_command_t param = c->arg[0];
1665 size_t len = c->arg[1] & 0xffff;
1666 uint8_t *cmd = c->d.asBytes;
1667 uint8_t status = 0;
1668 uint32_t sendlen = sizeof(iso14b_card_select_t);
1669 uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
1670
11c2df83 1671 if (MF_DBGLEVEL > 3) Dbprintf("14b raw: param, %04x", param );
b10a759f 1672
6fc68747 1673 // turn on trigger (LED_A)
11c2df83 1674 if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
6fc68747 1675 iso14b_set_trigger(TRUE);
1676
11c2df83 1677 if ((param & ISO14B_CONNECT) == ISO14B_CONNECT) {
6fc68747 1678 // Make sure that we start from off, since the tags are stateful;
1679 // confusing things will happen if we don't reset them between reads.
11c2df83 1680 //switch_off(); // before connect in raw
6fc68747 1681 iso14443b_setup();
99cf19d9 1682 }
6fc68747 1683
1684 set_tracing(TRUE);
489ef36c 1685
11c2df83 1686 if ((param & ISO14B_SELECT_STD) == ISO14B_SELECT_STD) {
6fc68747 1687 iso14b_card_select_t *card = (iso14b_card_select_t*)buf;
1688 status = iso14443b_select_card(card);
1689 cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen);
1690 // 0: OK 2: attrib fail, 3:crc fail,
1691 if ( status > 0 ) return;
1692 }
1693
11c2df83 1694 if ((param & ISO14B_SELECT_SR) == ISO14B_SELECT_SR) {
6fc68747 1695 iso14b_card_select_t *card = (iso14b_card_select_t*)buf;
1696 status = iso14443b_select_srx_card(card);
1697 cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen);
1698 // 0: OK 2: attrib fail, 3:crc fail,
1699 if ( status > 0 ) return;
1700 }
1701
11c2df83 1702 if ((param & ISO14B_APDU) == ISO14B_APDU) {
6fc68747 1703 status = iso14443b_apdu(cmd, len, buf);
1704 cmd_send(CMD_ACK, status, status, 0, buf, status);
489ef36c 1705 }
abb21530 1706
11c2df83 1707 if ((param & ISO14B_RAW) == ISO14B_RAW) {
1708 if((param & ISO14B_APPEND_CRC) == ISO14B_APPEND_CRC) {
6fc68747 1709 AppendCrc14443b(cmd, len);
1710 len += 2;
1711 }
1712
11c2df83 1713 CodeAndTransmit14443bAsReader(cmd, len); // raw
dccddaef 1714 GetTagSamplesFor14443bDemod(); // raw
6fc68747 1715
1716 sendlen = MIN(Demod.len, USB_CMD_DATA_SIZE);
1717 status = (Demod.len > 0) ? 0 : 1;
1718 cmd_send(CMD_ACK, status, sendlen, 0, Demod.output, sendlen);
1719 }
1720
1721 // turn off trigger (LED_A)
11c2df83 1722 if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
1723 iso14b_set_trigger(FALSE);
6fc68747 1724
1725 // turn off antenna et al
1726 // we don't send a HALT command.
11c2df83 1727 if ((param & ISO14B_DISCONNECT) == ISO14B_DISCONNECT) {
6fc68747 1728 if (MF_DBGLEVEL > 3) Dbprintf("disconnect");
11c2df83 1729 switch_off(); // disconnect raw
1730 } else {
1731 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
489ef36c 1732 }
11c2df83 1733
6fc68747 1734}
Impressum, Datenschutz