]>
Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
b62a5a84 | 2 | // Merlok - June 2011, 2012 |
15c4dc5a | 3 | // Gerhard de Koning Gans - May 2008 |
534983d7 | 4 | // Hagen Fritsch - June 2010 |
bd20f8f4 | 5 | // |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
15c4dc5a | 9 | //----------------------------------------------------------------------------- |
bd20f8f4 | 10 | // Routines to support ISO 14443 type A. |
11 | //----------------------------------------------------------------------------- | |
12 | ||
de77d4ac | 13 | #include "iso14443a.h" |
14 | ||
b7d3e899 | 15 | #include <stdio.h> |
16 | #include <string.h> | |
e30c654b | 17 | #include "proxmark3.h" |
15c4dc5a | 18 | #include "apps.h" |
f7e3ed82 | 19 | #include "util.h" |
902cb3c0 | 20 | #include "cmd.h" |
15c4dc5a | 21 | #include "iso14443crc.h" |
33443e7c | 22 | #include "crapto1/crapto1.h" |
20f9a2a1 | 23 | #include "mifareutil.h" |
de77d4ac | 24 | #include "mifaresniff.h" |
3000dc4e | 25 | #include "BigBuf.h" |
c872d8c1 | 26 | #include "protocols.h" |
1f065e1d | 27 | #include "parity.h" |
28 | ||
de77d4ac | 29 | typedef struct { |
30 | enum { | |
31 | DEMOD_UNSYNCD, | |
32 | // DEMOD_HALF_SYNCD, | |
33 | // DEMOD_MOD_FIRST_HALF, | |
34 | // DEMOD_NOMOD_FIRST_HALF, | |
35 | DEMOD_MANCHESTER_DATA | |
36 | } state; | |
37 | uint16_t twoBits; | |
38 | uint16_t highCnt; | |
39 | uint16_t bitCount; | |
40 | uint16_t collisionPos; | |
41 | uint16_t syncBit; | |
42 | uint8_t parityBits; | |
43 | uint8_t parityLen; | |
44 | uint16_t shiftReg; | |
45 | uint16_t samples; | |
46 | uint16_t len; | |
47 | uint32_t startTime, endTime; | |
48 | uint8_t *output; | |
49 | uint8_t *parity; | |
50 | } tDemod; | |
51 | ||
52 | typedef enum { | |
53 | MOD_NOMOD = 0, | |
54 | MOD_SECOND_HALF, | |
55 | MOD_FIRST_HALF, | |
56 | MOD_BOTH_HALVES | |
57 | } Modulation_t; | |
58 | ||
59 | typedef struct { | |
60 | enum { | |
61 | STATE_UNSYNCD, | |
62 | STATE_START_OF_COMMUNICATION, | |
63 | STATE_MILLER_X, | |
64 | STATE_MILLER_Y, | |
65 | STATE_MILLER_Z, | |
66 | // DROP_NONE, | |
67 | // DROP_FIRST_HALF, | |
68 | } state; | |
69 | uint16_t shiftReg; | |
70 | int16_t bitCount; | |
71 | uint16_t len; | |
72 | uint16_t byteCntMax; | |
73 | uint16_t posCnt; | |
74 | uint16_t syncBit; | |
75 | uint8_t parityBits; | |
76 | uint8_t parityLen; | |
77 | uint32_t fourBits; | |
78 | uint32_t startTime, endTime; | |
79 | uint8_t *output; | |
80 | uint8_t *parity; | |
81 | } tUart; | |
c872d8c1 | 82 | |
534983d7 | 83 | static uint32_t iso14a_timeout; |
1e262141 | 84 | int rsamples = 0; |
1e262141 | 85 | uint8_t trigger = 0; |
b0127e65 | 86 | // the block number for the ISO14443-4 PCB |
87 | static uint8_t iso14_pcb_blocknum = 0; | |
15c4dc5a | 88 | |
7bc95e2e | 89 | // |
90 | // ISO14443 timing: | |
91 | // | |
92 | // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles | |
93 | #define REQUEST_GUARD_TIME (7000/16 + 1) | |
94 | // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles | |
95 | #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) | |
de77d4ac | 96 | // bool LastCommandWasRequest = false; |
7bc95e2e | 97 | |
98 | // | |
99 | // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) | |
100 | // | |
d714d3ef | 101 | // When the PM acts as reader and is receiving tag data, it takes |
102 | // 3 ticks delay in the AD converter | |
103 | // 16 ticks until the modulation detector completes and sets curbit | |
104 | // 8 ticks until bit_to_arm is assigned from curbit | |
105 | // 8*16 ticks for the transfer from FPGA to ARM | |
7bc95e2e | 106 | // 4*16 ticks until we measure the time |
107 | // - 8*16 ticks because we measure the time of the previous transfer | |
d714d3ef | 108 | #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) |
7bc95e2e | 109 | |
110 | // When the PM acts as a reader and is sending, it takes | |
111 | // 4*16 ticks until we can write data to the sending hold register | |
112 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register | |
113 | // 8 ticks until the first transfer starts | |
114 | // 8 ticks later the FPGA samples the data | |
115 | // 1 tick to assign mod_sig_coil | |
116 | #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) | |
117 | ||
118 | // When the PM acts as tag and is receiving it takes | |
d714d3ef | 119 | // 2 ticks delay in the RF part (for the first falling edge), |
7bc95e2e | 120 | // 3 ticks for the A/D conversion, |
121 | // 8 ticks on average until the start of the SSC transfer, | |
122 | // 8 ticks until the SSC samples the first data | |
123 | // 7*16 ticks to complete the transfer from FPGA to ARM | |
124 | // 8 ticks until the next ssp_clk rising edge | |
d714d3ef | 125 | // 4*16 ticks until we measure the time |
7bc95e2e | 126 | // - 8*16 ticks because we measure the time of the previous transfer |
d714d3ef | 127 | #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) |
7bc95e2e | 128 | |
129 | // The FPGA will report its internal sending delay in | |
130 | uint16_t FpgaSendQueueDelay; | |
131 | // the 5 first bits are the number of bits buffered in mod_sig_buf | |
132 | // the last three bits are the remaining ticks/2 after the mod_sig_buf shift | |
133 | #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) | |
134 | ||
135 | // When the PM acts as tag and is sending, it takes | |
6e49717b | 136 | // 4*16 + 8 ticks until we can write data to the sending hold register |
7bc95e2e | 137 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register |
6e49717b | 138 | // 8 ticks later the FPGA samples the first data |
139 | // + 16 ticks until assigned to mod_sig | |
7bc95e2e | 140 | // + 1 tick to assign mod_sig_coil |
6e49717b | 141 | // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) |
142 | #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE) | |
7bc95e2e | 143 | |
144 | // When the PM acts as sniffer and is receiving tag data, it takes | |
145 | // 3 ticks A/D conversion | |
d714d3ef | 146 | // 14 ticks to complete the modulation detection |
147 | // 8 ticks (on average) until the result is stored in to_arm | |
7bc95e2e | 148 | // + the delays in transferring data - which is the same for |
149 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 150 | #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) |
7bc95e2e | 151 | |
d714d3ef | 152 | // When the PM acts as sniffer and is receiving reader data, it takes |
153 | // 2 ticks delay in analogue RF receiver (for the falling edge of the | |
154 | // start bit, which marks the start of the communication) | |
7bc95e2e | 155 | // 3 ticks A/D conversion |
d714d3ef | 156 | // 8 ticks on average until the data is stored in to_arm. |
7bc95e2e | 157 | // + the delays in transferring data - which is the same for |
158 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 159 | #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) |
7bc95e2e | 160 | |
161 | //variables used for timing purposes: | |
162 | //these are in ssp_clk cycles: | |
6a1f2d82 | 163 | static uint32_t NextTransferTime; |
164 | static uint32_t LastTimeProxToAirStart; | |
165 | static uint32_t LastProxToAirDuration; | |
7bc95e2e | 166 | |
167 | ||
168 | ||
8f51ddb0 | 169 | // CARD TO READER - manchester |
72934aa3 | 170 | // Sequence D: 11110000 modulation with subcarrier during first half |
171 | // Sequence E: 00001111 modulation with subcarrier during second half | |
172 | // Sequence F: 00000000 no modulation with subcarrier | |
8f51ddb0 | 173 | // READER TO CARD - miller |
72934aa3 | 174 | // Sequence X: 00001100 drop after half a period |
175 | // Sequence Y: 00000000 no drop | |
176 | // Sequence Z: 11000000 drop at start | |
177 | #define SEC_D 0xf0 | |
178 | #define SEC_E 0x0f | |
179 | #define SEC_F 0x00 | |
180 | #define SEC_X 0x0c | |
181 | #define SEC_Y 0x00 | |
182 | #define SEC_Z 0xc0 | |
15c4dc5a | 183 | |
902cb3c0 | 184 | void iso14a_set_trigger(bool enable) { |
534983d7 | 185 | trigger = enable; |
186 | } | |
187 | ||
d19929cb | 188 | |
bb04ef21 | 189 | void iso14a_set_timeout(uint32_t timeout) { |
b0127e65 | 190 | iso14a_timeout = timeout; |
19a700a8 | 191 | if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); |
b0127e65 | 192 | } |
8556b852 | 193 | |
19a700a8 | 194 | |
6e49717b | 195 | static void iso14a_set_ATS_timeout(uint8_t *ats) { |
19a700a8 | 196 | |
197 | uint8_t tb1; | |
198 | uint8_t fwi; | |
199 | uint32_t fwt; | |
200 | ||
201 | if (ats[0] > 1) { // there is a format byte T0 | |
202 | if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) | |
203 | if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) | |
204 | tb1 = ats[3]; | |
205 | } else { | |
206 | tb1 = ats[2]; | |
207 | } | |
208 | fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) | |
209 | fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc | |
210 | ||
211 | iso14a_set_timeout(fwt/(8*16)); | |
212 | } | |
213 | } | |
214 | } | |
215 | ||
216 | ||
15c4dc5a | 217 | //----------------------------------------------------------------------------- |
218 | // Generate the parity value for a byte sequence | |
e30c654b | 219 | // |
15c4dc5a | 220 | //----------------------------------------------------------------------------- |
6a1f2d82 | 221 | void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) |
15c4dc5a | 222 | { |
6a1f2d82 | 223 | uint16_t paritybit_cnt = 0; |
224 | uint16_t paritybyte_cnt = 0; | |
225 | uint8_t parityBits = 0; | |
226 | ||
227 | for (uint16_t i = 0; i < iLen; i++) { | |
228 | // Generate the parity bits | |
1f065e1d | 229 | parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt)); |
6a1f2d82 | 230 | if (paritybit_cnt == 7) { |
231 | par[paritybyte_cnt] = parityBits; // save 8 Bits parity | |
232 | parityBits = 0; // and advance to next Parity Byte | |
233 | paritybyte_cnt++; | |
234 | paritybit_cnt = 0; | |
235 | } else { | |
236 | paritybit_cnt++; | |
237 | } | |
5f6d6c90 | 238 | } |
6a1f2d82 | 239 | |
240 | // save remaining parity bits | |
241 | par[paritybyte_cnt] = parityBits; | |
242 | ||
15c4dc5a | 243 | } |
244 | ||
534983d7 | 245 | void AppendCrc14443a(uint8_t* data, int len) |
15c4dc5a | 246 | { |
5f6d6c90 | 247 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); |
15c4dc5a | 248 | } |
249 | ||
6e49717b | 250 | static void AppendCrc14443b(uint8_t* data, int len) |
48ece4a7 | 251 | { |
252 | ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); | |
253 | } | |
254 | ||
255 | ||
7bc95e2e | 256 | //============================================================================= |
257 | // ISO 14443 Type A - Miller decoder | |
258 | //============================================================================= | |
259 | // Basics: | |
260 | // This decoder is used when the PM3 acts as a tag. | |
261 | // The reader will generate "pauses" by temporarily switching of the field. | |
262 | // At the PM3 antenna we will therefore measure a modulated antenna voltage. | |
263 | // The FPGA does a comparison with a threshold and would deliver e.g.: | |
264 | // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... | |
265 | // The Miller decoder needs to identify the following sequences: | |
266 | // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") | |
267 | // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") | |
268 | // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") | |
269 | // Note 1: the bitstream may start at any time. We therefore need to sync. | |
270 | // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. | |
15c4dc5a | 271 | //----------------------------------------------------------------------------- |
b62a5a84 | 272 | static tUart Uart; |
15c4dc5a | 273 | |
d7aa3739 | 274 | // Lookup-Table to decide if 4 raw bits are a modulation. |
05ddb52c | 275 | // We accept the following: |
276 | // 0001 - a 3 tick wide pause | |
277 | // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left | |
278 | // 0111 - a 2 tick wide pause shifted left | |
279 | // 1001 - a 2 tick wide pause shifted right | |
d7aa3739 | 280 | const bool Mod_Miller_LUT[] = { |
de77d4ac | 281 | false, true, false, true, false, false, false, true, |
282 | false, true, false, false, false, false, false, false | |
d7aa3739 | 283 | }; |
05ddb52c | 284 | #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) |
285 | #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) | |
d7aa3739 | 286 | |
6e49717b | 287 | static void UartReset() |
15c4dc5a | 288 | { |
7bc95e2e | 289 | Uart.state = STATE_UNSYNCD; |
290 | Uart.bitCount = 0; | |
291 | Uart.len = 0; // number of decoded data bytes | |
6a1f2d82 | 292 | Uart.parityLen = 0; // number of decoded parity bytes |
7bc95e2e | 293 | Uart.shiftReg = 0; // shiftreg to hold decoded data bits |
6a1f2d82 | 294 | Uart.parityBits = 0; // holds 8 parity bits |
7bc95e2e | 295 | Uart.startTime = 0; |
296 | Uart.endTime = 0; | |
297 | } | |
15c4dc5a | 298 | |
6e49717b | 299 | static void UartInit(uint8_t *data, uint8_t *parity) |
6a1f2d82 | 300 | { |
301 | Uart.output = data; | |
302 | Uart.parity = parity; | |
05ddb52c | 303 | Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits |
6a1f2d82 | 304 | UartReset(); |
305 | } | |
d714d3ef | 306 | |
7bc95e2e | 307 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
308 | static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) | |
309 | { | |
15c4dc5a | 310 | |
ef00343c | 311 | Uart.fourBits = (Uart.fourBits << 8) | bit; |
7bc95e2e | 312 | |
0c8d25eb | 313 | if (Uart.state == STATE_UNSYNCD) { // not yet synced |
3fe4ff4f | 314 | |
ef00343c | 315 | Uart.syncBit = 9999; // not set |
05ddb52c | 316 | // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from |
317 | // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) | |
318 | // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern | |
319 | // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) | |
48ece4a7 | 320 | #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000 |
321 | #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000 | |
05ddb52c | 322 | if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; |
323 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6; | |
324 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5; | |
325 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4; | |
326 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3; | |
327 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2; | |
328 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1; | |
329 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0; | |
330 | ||
ef00343c | 331 | if (Uart.syncBit != 9999) { // found a sync bit |
332 | Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); | |
333 | Uart.startTime -= Uart.syncBit; | |
334 | Uart.endTime = Uart.startTime; | |
335 | Uart.state = STATE_START_OF_COMMUNICATION; | |
7bc95e2e | 336 | } |
15c4dc5a | 337 | |
7bc95e2e | 338 | } else { |
15c4dc5a | 339 | |
ef00343c | 340 | if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { |
341 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error | |
d7aa3739 | 342 | UartReset(); |
d7aa3739 | 343 | } else { // Modulation in first half = Sequence Z = logic "0" |
7bc95e2e | 344 | if (Uart.state == STATE_MILLER_X) { // error - must not follow after X |
345 | UartReset(); | |
7bc95e2e | 346 | } else { |
347 | Uart.bitCount++; | |
348 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
349 | Uart.state = STATE_MILLER_Z; | |
350 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; | |
351 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
352 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
353 | Uart.parityBits <<= 1; // make room for the parity bit | |
354 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
355 | Uart.bitCount = 0; | |
356 | Uart.shiftReg = 0; | |
6a1f2d82 | 357 | if((Uart.len&0x0007) == 0) { // every 8 data bytes |
358 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
359 | Uart.parityBits = 0; | |
360 | } | |
15c4dc5a | 361 | } |
7bc95e2e | 362 | } |
d7aa3739 | 363 | } |
364 | } else { | |
ef00343c | 365 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" |
7bc95e2e | 366 | Uart.bitCount++; |
367 | Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg | |
368 | Uart.state = STATE_MILLER_X; | |
369 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; | |
370 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
371 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
372 | Uart.parityBits <<= 1; // make room for the new parity bit | |
373 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
374 | Uart.bitCount = 0; | |
375 | Uart.shiftReg = 0; | |
6a1f2d82 | 376 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
377 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
378 | Uart.parityBits = 0; | |
379 | } | |
7bc95e2e | 380 | } |
d7aa3739 | 381 | } else { // no modulation in both halves - Sequence Y |
7bc95e2e | 382 | if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication |
15c4dc5a | 383 | Uart.state = STATE_UNSYNCD; |
6a1f2d82 | 384 | Uart.bitCount--; // last "0" was part of EOC sequence |
385 | Uart.shiftReg <<= 1; // drop it | |
386 | if(Uart.bitCount > 0) { // if we decoded some bits | |
387 | Uart.shiftReg >>= (9 - Uart.bitCount); // right align them | |
388 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output | |
389 | Uart.parityBits <<= 1; // add a (void) parity bit | |
390 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits | |
391 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it | |
de77d4ac | 392 | return true; |
6a1f2d82 | 393 | } else if (Uart.len & 0x0007) { // there are some parity bits to store |
394 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits | |
395 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them | |
52bfb955 | 396 | } |
397 | if (Uart.len) { | |
de77d4ac | 398 | return true; // we are finished with decoding the raw data sequence |
52bfb955 | 399 | } else { |
0c8d25eb | 400 | UartReset(); // Nothing received - start over |
7bc95e2e | 401 | } |
15c4dc5a | 402 | } |
7bc95e2e | 403 | if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC |
404 | UartReset(); | |
7bc95e2e | 405 | } else { // a logic "0" |
406 | Uart.bitCount++; | |
407 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
408 | Uart.state = STATE_MILLER_Y; | |
409 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
410 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
411 | Uart.parityBits <<= 1; // make room for the parity bit | |
412 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
413 | Uart.bitCount = 0; | |
414 | Uart.shiftReg = 0; | |
6a1f2d82 | 415 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
416 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
417 | Uart.parityBits = 0; | |
418 | } | |
15c4dc5a | 419 | } |
420 | } | |
d7aa3739 | 421 | } |
15c4dc5a | 422 | } |
7bc95e2e | 423 | |
424 | } | |
15c4dc5a | 425 | |
de77d4ac | 426 | return false; // not finished yet, need more data |
15c4dc5a | 427 | } |
428 | ||
7bc95e2e | 429 | |
430 | ||
15c4dc5a | 431 | //============================================================================= |
e691fc45 | 432 | // ISO 14443 Type A - Manchester decoder |
15c4dc5a | 433 | //============================================================================= |
e691fc45 | 434 | // Basics: |
7bc95e2e | 435 | // This decoder is used when the PM3 acts as a reader. |
e691fc45 | 436 | // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage |
437 | // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: | |
438 | // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... | |
439 | // The Manchester decoder needs to identify the following sequences: | |
440 | // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") | |
441 | // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 | |
442 | // 8 ticks unmodulated: Sequence F = end of communication | |
443 | // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D | |
7bc95e2e | 444 | // Note 1: the bitstream may start at any time. We therefore need to sync. |
e691fc45 | 445 | // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) |
b62a5a84 | 446 | static tDemod Demod; |
15c4dc5a | 447 | |
d7aa3739 | 448 | // Lookup-Table to decide if 4 raw bits are a modulation. |
d714d3ef | 449 | // We accept three or four "1" in any position |
7bc95e2e | 450 | const bool Mod_Manchester_LUT[] = { |
de77d4ac | 451 | false, false, false, false, false, false, false, true, |
452 | false, false, false, true, false, true, true, true | |
7bc95e2e | 453 | }; |
454 | ||
455 | #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) | |
456 | #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) | |
15c4dc5a | 457 | |
2f2d9fc5 | 458 | |
6e49717b | 459 | static void DemodReset() |
e691fc45 | 460 | { |
7bc95e2e | 461 | Demod.state = DEMOD_UNSYNCD; |
462 | Demod.len = 0; // number of decoded data bytes | |
6a1f2d82 | 463 | Demod.parityLen = 0; |
7bc95e2e | 464 | Demod.shiftReg = 0; // shiftreg to hold decoded data bits |
465 | Demod.parityBits = 0; // | |
466 | Demod.collisionPos = 0; // Position of collision bit | |
467 | Demod.twoBits = 0xffff; // buffer for 2 Bits | |
468 | Demod.highCnt = 0; | |
469 | Demod.startTime = 0; | |
470 | Demod.endTime = 0; | |
e691fc45 | 471 | } |
15c4dc5a | 472 | |
6e49717b | 473 | static void DemodInit(uint8_t *data, uint8_t *parity) |
6a1f2d82 | 474 | { |
475 | Demod.output = data; | |
476 | Demod.parity = parity; | |
477 | DemodReset(); | |
478 | } | |
479 | ||
7bc95e2e | 480 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
481 | static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) | |
e691fc45 | 482 | { |
7bc95e2e | 483 | |
484 | Demod.twoBits = (Demod.twoBits << 8) | bit; | |
e691fc45 | 485 | |
7bc95e2e | 486 | if (Demod.state == DEMOD_UNSYNCD) { |
487 | ||
488 | if (Demod.highCnt < 2) { // wait for a stable unmodulated signal | |
489 | if (Demod.twoBits == 0x0000) { | |
490 | Demod.highCnt++; | |
491 | } else { | |
492 | Demod.highCnt = 0; | |
493 | } | |
494 | } else { | |
495 | Demod.syncBit = 0xFFFF; // not set | |
496 | if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; | |
497 | else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; | |
498 | else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; | |
499 | else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; | |
500 | else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; | |
501 | else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; | |
502 | else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; | |
503 | else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; | |
d7aa3739 | 504 | if (Demod.syncBit != 0xFFFF) { |
7bc95e2e | 505 | Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); |
506 | Demod.startTime -= Demod.syncBit; | |
507 | Demod.bitCount = offset; // number of decoded data bits | |
e691fc45 | 508 | Demod.state = DEMOD_MANCHESTER_DATA; |
2f2d9fc5 | 509 | } |
7bc95e2e | 510 | } |
15c4dc5a | 511 | |
7bc95e2e | 512 | } else { |
15c4dc5a | 513 | |
7bc95e2e | 514 | if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half |
515 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision | |
e691fc45 | 516 | if (!Demod.collisionPos) { |
517 | Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; | |
518 | } | |
519 | } // modulation in first half only - Sequence D = 1 | |
7bc95e2e | 520 | Demod.bitCount++; |
521 | Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg | |
522 | if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) | |
e691fc45 | 523 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 524 | Demod.parityBits <<= 1; // make room for the parity bit |
e691fc45 | 525 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
526 | Demod.bitCount = 0; | |
527 | Demod.shiftReg = 0; | |
6a1f2d82 | 528 | if((Demod.len&0x0007) == 0) { // every 8 data bytes |
529 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits | |
530 | Demod.parityBits = 0; | |
531 | } | |
15c4dc5a | 532 | } |
7bc95e2e | 533 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; |
534 | } else { // no modulation in first half | |
535 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 | |
e691fc45 | 536 | Demod.bitCount++; |
7bc95e2e | 537 | Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg |
e691fc45 | 538 | if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) |
e691fc45 | 539 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 540 | Demod.parityBits <<= 1; // make room for the new parity bit |
e691fc45 | 541 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
542 | Demod.bitCount = 0; | |
543 | Demod.shiftReg = 0; | |
6a1f2d82 | 544 | if ((Demod.len&0x0007) == 0) { // every 8 data bytes |
545 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 | |
546 | Demod.parityBits = 0; | |
547 | } | |
15c4dc5a | 548 | } |
7bc95e2e | 549 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); |
e691fc45 | 550 | } else { // no modulation in both halves - End of communication |
6a1f2d82 | 551 | if(Demod.bitCount > 0) { // there are some remaining data bits |
552 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits | |
553 | Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output | |
554 | Demod.parityBits <<= 1; // add a (void) parity bit | |
555 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
556 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
de77d4ac | 557 | return true; |
6a1f2d82 | 558 | } else if (Demod.len & 0x0007) { // there are some parity bits to store |
559 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
560 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
52bfb955 | 561 | } |
562 | if (Demod.len) { | |
de77d4ac | 563 | return true; // we are finished with decoding the raw data sequence |
d7aa3739 | 564 | } else { // nothing received. Start over |
565 | DemodReset(); | |
e691fc45 | 566 | } |
15c4dc5a | 567 | } |
7bc95e2e | 568 | } |
e691fc45 | 569 | |
570 | } | |
15c4dc5a | 571 | |
de77d4ac | 572 | return false; // not finished yet, need more data |
15c4dc5a | 573 | } |
574 | ||
575 | //============================================================================= | |
576 | // Finally, a `sniffer' for ISO 14443 Type A | |
577 | // Both sides of communication! | |
578 | //============================================================================= | |
579 | ||
580 | //----------------------------------------------------------------------------- | |
581 | // Record the sequence of commands sent by the reader to the tag, with | |
582 | // triggering so that we start recording at the point that the tag is moved | |
583 | // near the reader. | |
584 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
585 | void RAMFUNC SnoopIso14443a(uint8_t param) { |
586 | // param: | |
587 | // bit 0 - trigger from first card answer | |
588 | // bit 1 - trigger from first reader 7-bit request | |
589 | ||
590 | LEDsoff(); | |
5cd9ec01 | 591 | |
09ffd16e | 592 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); |
593 | ||
f71f4deb | 594 | // Allocate memory from BigBuf for some buffers |
595 | // free all previous allocations first | |
596 | BigBuf_free(); | |
597 | ||
5cd9ec01 | 598 | // The command (reader -> tag) that we're receiving. |
f71f4deb | 599 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
600 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
6a1f2d82 | 601 | |
5cd9ec01 | 602 | // The response (tag -> reader) that we're receiving. |
f71f4deb | 603 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); |
604 | uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); | |
5cd9ec01 M |
605 | |
606 | // The DMA buffer, used to stream samples from the FPGA | |
f71f4deb | 607 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); |
608 | ||
609 | // init trace buffer | |
3000dc4e | 610 | clear_trace(); |
de77d4ac | 611 | set_tracing(true); |
f71f4deb | 612 | |
7bc95e2e | 613 | uint8_t *data = dmaBuf; |
614 | uint8_t previous_data = 0; | |
5cd9ec01 M |
615 | int maxDataLen = 0; |
616 | int dataLen = 0; | |
de77d4ac | 617 | bool TagIsActive = false; |
618 | bool ReaderIsActive = false; | |
7bc95e2e | 619 | |
5cd9ec01 | 620 | // Set up the demodulator for tag -> reader responses. |
6a1f2d82 | 621 | DemodInit(receivedResponse, receivedResponsePar); |
622 | ||
5cd9ec01 | 623 | // Set up the demodulator for the reader -> tag commands |
6a1f2d82 | 624 | UartInit(receivedCmd, receivedCmdPar); |
625 | ||
7bc95e2e | 626 | // Setup and start DMA. |
5cd9ec01 | 627 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
7bc95e2e | 628 | |
09ffd16e | 629 | // We won't start recording the frames that we acquire until we trigger; |
630 | // a good trigger condition to get started is probably when we see a | |
631 | // response from the tag. | |
de77d4ac | 632 | // triggered == false -- to wait first for card |
09ffd16e | 633 | bool triggered = !(param & 0x03); |
634 | ||
5cd9ec01 | 635 | // And now we loop, receiving samples. |
de77d4ac | 636 | for(uint32_t rsamples = 0; true; ) { |
7bc95e2e | 637 | |
5cd9ec01 M |
638 | if(BUTTON_PRESS()) { |
639 | DbpString("cancelled by button"); | |
7bc95e2e | 640 | break; |
5cd9ec01 | 641 | } |
15c4dc5a | 642 | |
5cd9ec01 M |
643 | LED_A_ON(); |
644 | WDT_HIT(); | |
15c4dc5a | 645 | |
5cd9ec01 M |
646 | int register readBufDataP = data - dmaBuf; |
647 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
648 | if (readBufDataP <= dmaBufDataP){ | |
649 | dataLen = dmaBufDataP - readBufDataP; | |
650 | } else { | |
7bc95e2e | 651 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; |
5cd9ec01 M |
652 | } |
653 | // test for length of buffer | |
654 | if(dataLen > maxDataLen) { | |
655 | maxDataLen = dataLen; | |
f71f4deb | 656 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
7bc95e2e | 657 | Dbprintf("blew circular buffer! dataLen=%d", dataLen); |
658 | break; | |
5cd9ec01 M |
659 | } |
660 | } | |
661 | if(dataLen < 1) continue; | |
662 | ||
663 | // primary buffer was stopped( <-- we lost data! | |
664 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
665 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
666 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
7bc95e2e | 667 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
668 | } |
669 | // secondary buffer sets as primary, secondary buffer was stopped | |
670 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
671 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
672 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
673 | } | |
674 | ||
675 | LED_A_OFF(); | |
7bc95e2e | 676 | |
677 | if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder | |
3be2a5ae | 678 | |
7bc95e2e | 679 | if(!TagIsActive) { // no need to try decoding reader data if the tag is sending |
680 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
681 | if (MillerDecoding(readerdata, (rsamples-1)*4)) { | |
682 | LED_C_ON(); | |
5cd9ec01 | 683 | |
7bc95e2e | 684 | // check - if there is a short 7bit request from reader |
de77d4ac | 685 | if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true; |
5cd9ec01 | 686 | |
7bc95e2e | 687 | if(triggered) { |
6a1f2d82 | 688 | if (!LogTrace(receivedCmd, |
689 | Uart.len, | |
690 | Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
691 | Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
692 | Uart.parity, | |
de77d4ac | 693 | true)) break; |
7bc95e2e | 694 | } |
695 | /* And ready to receive another command. */ | |
48ece4a7 | 696 | UartReset(); |
7bc95e2e | 697 | /* And also reset the demod code, which might have been */ |
698 | /* false-triggered by the commands from the reader. */ | |
699 | DemodReset(); | |
700 | LED_B_OFF(); | |
701 | } | |
702 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
5cd9ec01 | 703 | } |
3be2a5ae | 704 | |
7bc95e2e | 705 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
706 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
707 | if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { | |
708 | LED_B_ON(); | |
5cd9ec01 | 709 | |
6a1f2d82 | 710 | if (!LogTrace(receivedResponse, |
711 | Demod.len, | |
712 | Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
713 | Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
714 | Demod.parity, | |
de77d4ac | 715 | false)) break; |
5cd9ec01 | 716 | |
de77d4ac | 717 | if ((!triggered) && (param & 0x01)) triggered = true; |
5cd9ec01 | 718 | |
7bc95e2e | 719 | // And ready to receive another response. |
720 | DemodReset(); | |
48ece4a7 | 721 | // And reset the Miller decoder including itS (now outdated) input buffer |
722 | UartInit(receivedCmd, receivedCmdPar); | |
723 | ||
7bc95e2e | 724 | LED_C_OFF(); |
725 | } | |
726 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
727 | } | |
5cd9ec01 M |
728 | } |
729 | ||
7bc95e2e | 730 | previous_data = *data; |
731 | rsamples++; | |
5cd9ec01 | 732 | data++; |
d714d3ef | 733 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 M |
734 | data = dmaBuf; |
735 | } | |
736 | } // main cycle | |
737 | ||
738 | DbpString("COMMAND FINISHED"); | |
15c4dc5a | 739 | |
7bc95e2e | 740 | FpgaDisableSscDma(); |
741 | Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); | |
3000dc4e | 742 | Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); |
5cd9ec01 | 743 | LEDsoff(); |
15c4dc5a | 744 | } |
745 | ||
15c4dc5a | 746 | //----------------------------------------------------------------------------- |
747 | // Prepare tag messages | |
748 | //----------------------------------------------------------------------------- | |
6a1f2d82 | 749 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) |
15c4dc5a | 750 | { |
8f51ddb0 | 751 | ToSendReset(); |
15c4dc5a | 752 | |
753 | // Correction bit, might be removed when not needed | |
754 | ToSendStuffBit(0); | |
755 | ToSendStuffBit(0); | |
756 | ToSendStuffBit(0); | |
757 | ToSendStuffBit(0); | |
758 | ToSendStuffBit(1); // 1 | |
759 | ToSendStuffBit(0); | |
760 | ToSendStuffBit(0); | |
761 | ToSendStuffBit(0); | |
8f51ddb0 | 762 | |
15c4dc5a | 763 | // Send startbit |
72934aa3 | 764 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 765 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 766 | |
6a1f2d82 | 767 | for(uint16_t i = 0; i < len; i++) { |
8f51ddb0 | 768 | uint8_t b = cmd[i]; |
15c4dc5a | 769 | |
770 | // Data bits | |
6a1f2d82 | 771 | for(uint16_t j = 0; j < 8; j++) { |
15c4dc5a | 772 | if(b & 1) { |
72934aa3 | 773 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a | 774 | } else { |
72934aa3 | 775 | ToSend[++ToSendMax] = SEC_E; |
8f51ddb0 M |
776 | } |
777 | b >>= 1; | |
778 | } | |
15c4dc5a | 779 | |
0014cb46 | 780 | // Get the parity bit |
6a1f2d82 | 781 | if (parity[i>>3] & (0x80>>(i&0x0007))) { |
8f51ddb0 | 782 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 783 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 784 | } else { |
72934aa3 | 785 | ToSend[++ToSendMax] = SEC_E; |
7bc95e2e | 786 | LastProxToAirDuration = 8 * ToSendMax; |
15c4dc5a | 787 | } |
8f51ddb0 | 788 | } |
15c4dc5a | 789 | |
8f51ddb0 M |
790 | // Send stopbit |
791 | ToSend[++ToSendMax] = SEC_F; | |
15c4dc5a | 792 | |
8f51ddb0 M |
793 | // Convert from last byte pos to length |
794 | ToSendMax++; | |
8f51ddb0 M |
795 | } |
796 | ||
15c4dc5a | 797 | |
8f51ddb0 M |
798 | static void Code4bitAnswerAsTag(uint8_t cmd) |
799 | { | |
800 | int i; | |
801 | ||
5f6d6c90 | 802 | ToSendReset(); |
8f51ddb0 M |
803 | |
804 | // Correction bit, might be removed when not needed | |
805 | ToSendStuffBit(0); | |
806 | ToSendStuffBit(0); | |
807 | ToSendStuffBit(0); | |
808 | ToSendStuffBit(0); | |
809 | ToSendStuffBit(1); // 1 | |
810 | ToSendStuffBit(0); | |
811 | ToSendStuffBit(0); | |
812 | ToSendStuffBit(0); | |
813 | ||
814 | // Send startbit | |
815 | ToSend[++ToSendMax] = SEC_D; | |
816 | ||
817 | uint8_t b = cmd; | |
818 | for(i = 0; i < 4; i++) { | |
819 | if(b & 1) { | |
820 | ToSend[++ToSendMax] = SEC_D; | |
7bc95e2e | 821 | LastProxToAirDuration = 8 * ToSendMax - 4; |
8f51ddb0 M |
822 | } else { |
823 | ToSend[++ToSendMax] = SEC_E; | |
7bc95e2e | 824 | LastProxToAirDuration = 8 * ToSendMax; |
8f51ddb0 M |
825 | } |
826 | b >>= 1; | |
827 | } | |
828 | ||
829 | // Send stopbit | |
830 | ToSend[++ToSendMax] = SEC_F; | |
831 | ||
5f6d6c90 | 832 | // Convert from last byte pos to length |
833 | ToSendMax++; | |
15c4dc5a | 834 | } |
835 | ||
6e49717b | 836 | |
837 | static uint8_t *LastReaderTraceTime = NULL; | |
838 | ||
839 | static void EmLogTraceReader(void) { | |
840 | // remember last reader trace start to fix timing info later | |
841 | LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen(); | |
842 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); | |
843 | } | |
844 | ||
845 | ||
846 | static void FixLastReaderTraceTime(uint32_t tag_StartTime) { | |
847 | uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG; | |
848 | uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG; | |
849 | uint16_t reader_modlen = reader_EndTime - reader_StartTime; | |
850 | uint16_t approx_fdt = tag_StartTime - reader_EndTime; | |
851 | uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; | |
852 | reader_StartTime = tag_StartTime - exact_fdt - reader_modlen; | |
853 | LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff; | |
854 | LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff; | |
855 | LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff; | |
856 | LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff; | |
857 | } | |
858 | ||
859 | ||
860 | static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) { | |
861 | uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG; | |
862 | uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG; | |
863 | LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false); | |
864 | FixLastReaderTraceTime(tag_StartTime); | |
865 | } | |
866 | ||
867 | ||
15c4dc5a | 868 | //----------------------------------------------------------------------------- |
869 | // Wait for commands from reader | |
870 | // Stop when button is pressed | |
de77d4ac | 871 | // Or return true when command is captured |
15c4dc5a | 872 | //----------------------------------------------------------------------------- |
6a1f2d82 | 873 | static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) |
15c4dc5a | 874 | { |
875 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
876 | // only, since we are receiving, not transmitting). | |
877 | // Signal field is off with the appropriate LED | |
878 | LED_D_OFF(); | |
879 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
880 | ||
881 | // Now run a `software UART' on the stream of incoming samples. | |
6a1f2d82 | 882 | UartInit(received, parity); |
7bc95e2e | 883 | |
884 | // clear RXRDY: | |
885 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
15c4dc5a | 886 | |
887 | for(;;) { | |
888 | WDT_HIT(); | |
889 | ||
de77d4ac | 890 | if(BUTTON_PRESS()) return false; |
7bc95e2e | 891 | |
15c4dc5a | 892 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
7bc95e2e | 893 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
894 | if(MillerDecoding(b, 0)) { | |
895 | *len = Uart.len; | |
6e49717b | 896 | EmLogTraceReader(); |
de77d4ac | 897 | return true; |
15c4dc5a | 898 | } |
7bc95e2e | 899 | } |
15c4dc5a | 900 | } |
901 | } | |
28afbd2b | 902 | |
6e49717b | 903 | |
b35e04a7 | 904 | static int EmSend4bitEx(uint8_t resp); |
28afbd2b | 905 | int EmSend4bit(uint8_t resp); |
b35e04a7 | 906 | static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par); |
907 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen); | |
908 | int EmSendPrecompiledCmd(tag_response_info_t *response_info); | |
15c4dc5a | 909 | |
ce02f6f9 | 910 | |
6e49717b | 911 | static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { |
7bc95e2e | 912 | // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes |
ce02f6f9 | 913 | // This will need the following byte array for a modulation sequence |
914 | // 144 data bits (18 * 8) | |
915 | // 18 parity bits | |
916 | // 2 Start and stop | |
917 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
918 | // 1 just for the case | |
919 | // ----------- + | |
920 | // 166 bytes, since every bit that needs to be send costs us a byte | |
921 | // | |
f71f4deb | 922 | |
923 | ||
ce02f6f9 | 924 | // Prepare the tag modulation bits from the message |
6e49717b | 925 | GetParity(response_info->response, response_info->response_n, &(response_info->par)); |
926 | CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par)); | |
ce02f6f9 | 927 | |
928 | // Make sure we do not exceed the free buffer space | |
929 | if (ToSendMax > max_buffer_size) { | |
930 | Dbprintf("Out of memory, when modulating bits for tag answer:"); | |
6e49717b | 931 | Dbhexdump(response_info->response_n, response_info->response, false); |
ce02f6f9 | 932 | return false; |
933 | } | |
934 | ||
935 | // Copy the byte array, used for this modulation to the buffer position | |
6e49717b | 936 | memcpy(response_info->modulation, ToSend, ToSendMax); |
ce02f6f9 | 937 | |
7bc95e2e | 938 | // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them |
ce02f6f9 | 939 | response_info->modulation_n = ToSendMax; |
7bc95e2e | 940 | response_info->ProxToAirDuration = LastProxToAirDuration; |
ce02f6f9 | 941 | |
942 | return true; | |
943 | } | |
944 | ||
f71f4deb | 945 | |
946 | // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. | |
947 | // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) | |
6e49717b | 948 | // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation |
f71f4deb | 949 | // -> need 273 bytes buffer |
950 | #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 | |
951 | ||
6e49717b | 952 | bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) { |
953 | ||
ce02f6f9 | 954 | // Retrieve and store the current buffer index |
6e49717b | 955 | response_info->modulation = *buffer; |
ce02f6f9 | 956 | |
957 | // Forward the prepare tag modulation function to the inner function | |
6e49717b | 958 | if (prepare_tag_modulation(response_info, *max_buffer_size)) { |
959 | // Update the free buffer offset and the remaining buffer size | |
960 | *buffer += ToSendMax; | |
961 | *max_buffer_size -= ToSendMax; | |
ce02f6f9 | 962 | return true; |
963 | } else { | |
964 | return false; | |
965 | } | |
966 | } | |
967 | ||
15c4dc5a | 968 | //----------------------------------------------------------------------------- |
969 | // Main loop of simulated tag: receive commands from reader, decide what | |
970 | // response to send, and send it. | |
971 | //----------------------------------------------------------------------------- | |
28afbd2b | 972 | void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) |
15c4dc5a | 973 | { |
81cd0474 | 974 | uint8_t sak; |
975 | ||
976 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
977 | uint8_t response1[2]; | |
978 | ||
979 | switch (tagType) { | |
980 | case 1: { // MIFARE Classic | |
981 | // Says: I am Mifare 1k - original line | |
982 | response1[0] = 0x04; | |
983 | response1[1] = 0x00; | |
984 | sak = 0x08; | |
985 | } break; | |
986 | case 2: { // MIFARE Ultralight | |
987 | // Says: I am a stupid memory tag, no crypto | |
988 | response1[0] = 0x04; | |
989 | response1[1] = 0x00; | |
990 | sak = 0x00; | |
991 | } break; | |
992 | case 3: { // MIFARE DESFire | |
993 | // Says: I am a DESFire tag, ph33r me | |
994 | response1[0] = 0x04; | |
995 | response1[1] = 0x03; | |
996 | sak = 0x20; | |
997 | } break; | |
998 | case 4: { // ISO/IEC 14443-4 | |
999 | // Says: I am a javacard (JCOP) | |
1000 | response1[0] = 0x04; | |
1001 | response1[1] = 0x00; | |
1002 | sak = 0x28; | |
1003 | } break; | |
3fe4ff4f | 1004 | case 5: { // MIFARE TNP3XXX |
1005 | // Says: I am a toy | |
1006 | response1[0] = 0x01; | |
1007 | response1[1] = 0x0f; | |
1008 | sak = 0x01; | |
1009 | } break; | |
81cd0474 | 1010 | default: { |
1011 | Dbprintf("Error: unkown tagtype (%d)",tagType); | |
1012 | return; | |
1013 | } break; | |
1014 | } | |
1015 | ||
1016 | // The second response contains the (mandatory) first 24 bits of the UID | |
c8b6da22 | 1017 | uint8_t response2[5] = {0x00}; |
81cd0474 | 1018 | |
1019 | // Check if the uid uses the (optional) part | |
c8b6da22 | 1020 | uint8_t response2a[5] = {0x00}; |
1021 | ||
81cd0474 | 1022 | if (uid_2nd) { |
1023 | response2[0] = 0x88; | |
1024 | num_to_bytes(uid_1st,3,response2+1); | |
1025 | num_to_bytes(uid_2nd,4,response2a); | |
1026 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; | |
1027 | ||
1028 | // Configure the ATQA and SAK accordingly | |
1029 | response1[0] |= 0x40; | |
1030 | sak |= 0x04; | |
1031 | } else { | |
1032 | num_to_bytes(uid_1st,4,response2); | |
1033 | // Configure the ATQA and SAK accordingly | |
1034 | response1[0] &= 0xBF; | |
1035 | sak &= 0xFB; | |
1036 | } | |
1037 | ||
1038 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
1039 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; | |
1040 | ||
1041 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
c8b6da22 | 1042 | uint8_t response3[3] = {0x00}; |
81cd0474 | 1043 | response3[0] = sak; |
1044 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
1045 | ||
1046 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
c8b6da22 | 1047 | uint8_t response3a[3] = {0x00}; |
81cd0474 | 1048 | response3a[0] = sak & 0xFB; |
1049 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
1050 | ||
254b70a4 | 1051 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce |
6a1f2d82 | 1052 | uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: |
1053 | // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, | |
1054 | // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 | |
1055 | // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) | |
1056 | // TC(1) = 0x02: CID supported, NAD not supported | |
ce02f6f9 | 1057 | ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); |
1058 | ||
7bc95e2e | 1059 | #define TAG_RESPONSE_COUNT 7 |
1060 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { | |
1061 | { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type | |
1062 | { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid | |
1063 | { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1064 | { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 | |
1065 | { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 | |
1066 | { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) | |
1067 | { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS | |
1068 | }; | |
1069 | ||
1070 | // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it | |
1071 | // Such a response is less time critical, so we can prepare them on the fly | |
1072 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 | |
1073 | #define DYNAMIC_MODULATION_BUFFER_SIZE 512 | |
1074 | uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; | |
1075 | uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; | |
1076 | tag_response_info_t dynamic_response_info = { | |
1077 | .response = dynamic_response_buffer, | |
1078 | .response_n = 0, | |
1079 | .modulation = dynamic_modulation_buffer, | |
1080 | .modulation_n = 0 | |
1081 | }; | |
ce02f6f9 | 1082 | |
09ffd16e | 1083 | // We need to listen to the high-frequency, peak-detected path. |
1084 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1085 | ||
f71f4deb | 1086 | BigBuf_free_keep_EM(); |
1087 | ||
1088 | // allocate buffers: | |
1089 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
1090 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
6e49717b | 1091 | uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); |
1092 | size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; | |
f71f4deb | 1093 | // clear trace |
3000dc4e | 1094 | clear_trace(); |
de77d4ac | 1095 | set_tracing(true); |
f71f4deb | 1096 | |
7bc95e2e | 1097 | // Prepare the responses of the anticollision phase |
ce02f6f9 | 1098 | // there will be not enough time to do this at the moment the reader sends it REQA |
7bc95e2e | 1099 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) { |
6e49717b | 1100 | prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size); |
7bc95e2e | 1101 | } |
15c4dc5a | 1102 | |
7bc95e2e | 1103 | int len = 0; |
15c4dc5a | 1104 | |
1105 | // To control where we are in the protocol | |
1106 | int order = 0; | |
1107 | int lastorder; | |
1108 | ||
1109 | // Just to allow some checks | |
1110 | int happened = 0; | |
1111 | int happened2 = 0; | |
81cd0474 | 1112 | int cmdsRecvd = 0; |
15c4dc5a | 1113 | |
254b70a4 | 1114 | cmdsRecvd = 0; |
7bc95e2e | 1115 | tag_response_info_t* p_response; |
15c4dc5a | 1116 | |
254b70a4 | 1117 | LED_A_ON(); |
1118 | for(;;) { | |
7bc95e2e | 1119 | // Clean receive command buffer |
6a1f2d82 | 1120 | if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { |
ce02f6f9 | 1121 | DbpString("Button press"); |
254b70a4 | 1122 | break; |
1123 | } | |
7bc95e2e | 1124 | |
1125 | p_response = NULL; | |
1126 | ||
254b70a4 | 1127 | // Okay, look at the command now. |
1128 | lastorder = order; | |
1129 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
ce02f6f9 | 1130 | p_response = &responses[0]; order = 1; |
254b70a4 | 1131 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP |
ce02f6f9 | 1132 | p_response = &responses[0]; order = 6; |
254b70a4 | 1133 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) |
ce02f6f9 | 1134 | p_response = &responses[1]; order = 2; |
6a1f2d82 | 1135 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) |
ce02f6f9 | 1136 | p_response = &responses[2]; order = 20; |
254b70a4 | 1137 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) |
ce02f6f9 | 1138 | p_response = &responses[3]; order = 3; |
254b70a4 | 1139 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) |
ce02f6f9 | 1140 | p_response = &responses[4]; order = 30; |
254b70a4 | 1141 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ |
b35e04a7 | 1142 | EmSendCmdEx(data+(4*receivedCmd[1]),16); |
7bc95e2e | 1143 | // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); |
5f6d6c90 | 1144 | // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below |
7bc95e2e | 1145 | p_response = NULL; |
254b70a4 | 1146 | } else if(receivedCmd[0] == 0x50) { // Received a HALT |
7bc95e2e | 1147 | p_response = NULL; |
254b70a4 | 1148 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request |
ce02f6f9 | 1149 | p_response = &responses[5]; order = 7; |
254b70a4 | 1150 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request |
7bc95e2e | 1151 | if (tagType == 1 || tagType == 2) { // RATS not supported |
1152 | EmSend4bit(CARD_NACK_NA); | |
1153 | p_response = NULL; | |
1154 | } else { | |
1155 | p_response = &responses[6]; order = 70; | |
1156 | } | |
6a1f2d82 | 1157 | } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) |
7bc95e2e | 1158 | uint32_t nr = bytes_to_num(receivedCmd,4); |
1159 | uint32_t ar = bytes_to_num(receivedCmd+4,4); | |
1160 | Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); | |
1161 | } else { | |
1162 | // Check for ISO 14443A-4 compliant commands, look at left nibble | |
1163 | switch (receivedCmd[0]) { | |
1164 | ||
1165 | case 0x0B: | |
1166 | case 0x0A: { // IBlock (command) | |
1167 | dynamic_response_info.response[0] = receivedCmd[0]; | |
1168 | dynamic_response_info.response[1] = 0x00; | |
1169 | dynamic_response_info.response[2] = 0x90; | |
1170 | dynamic_response_info.response[3] = 0x00; | |
1171 | dynamic_response_info.response_n = 4; | |
1172 | } break; | |
1173 | ||
1174 | case 0x1A: | |
1175 | case 0x1B: { // Chaining command | |
1176 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); | |
1177 | dynamic_response_info.response_n = 2; | |
1178 | } break; | |
1179 | ||
1180 | case 0xaa: | |
1181 | case 0xbb: { | |
1182 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; | |
1183 | dynamic_response_info.response_n = 2; | |
1184 | } break; | |
1185 | ||
1186 | case 0xBA: { // | |
1187 | memcpy(dynamic_response_info.response,"\xAB\x00",2); | |
1188 | dynamic_response_info.response_n = 2; | |
1189 | } break; | |
1190 | ||
1191 | case 0xCA: | |
1192 | case 0xC2: { // Readers sends deselect command | |
1193 | memcpy(dynamic_response_info.response,"\xCA\x00",2); | |
1194 | dynamic_response_info.response_n = 2; | |
1195 | } break; | |
1196 | ||
1197 | default: { | |
1198 | // Never seen this command before | |
7bc95e2e | 1199 | Dbprintf("Received unknown command (len=%d):",len); |
1200 | Dbhexdump(len,receivedCmd,false); | |
1201 | // Do not respond | |
1202 | dynamic_response_info.response_n = 0; | |
1203 | } break; | |
1204 | } | |
ce02f6f9 | 1205 | |
7bc95e2e | 1206 | if (dynamic_response_info.response_n > 0) { |
1207 | // Copy the CID from the reader query | |
1208 | dynamic_response_info.response[1] = receivedCmd[1]; | |
ce02f6f9 | 1209 | |
7bc95e2e | 1210 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards |
1211 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); | |
1212 | dynamic_response_info.response_n += 2; | |
ce02f6f9 | 1213 | |
7bc95e2e | 1214 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { |
1215 | Dbprintf("Error preparing tag response"); | |
7bc95e2e | 1216 | break; |
1217 | } | |
1218 | p_response = &dynamic_response_info; | |
1219 | } | |
81cd0474 | 1220 | } |
15c4dc5a | 1221 | |
1222 | // Count number of wakeups received after a halt | |
1223 | if(order == 6 && lastorder == 5) { happened++; } | |
1224 | ||
1225 | // Count number of other messages after a halt | |
1226 | if(order != 6 && lastorder == 5) { happened2++; } | |
1227 | ||
15c4dc5a | 1228 | if(cmdsRecvd > 999) { |
1229 | DbpString("1000 commands later..."); | |
254b70a4 | 1230 | break; |
15c4dc5a | 1231 | } |
ce02f6f9 | 1232 | cmdsRecvd++; |
1233 | ||
1234 | if (p_response != NULL) { | |
b35e04a7 | 1235 | EmSendPrecompiledCmd(p_response); |
7bc95e2e | 1236 | } |
1237 | ||
1238 | if (!tracing) { | |
1239 | Dbprintf("Trace Full. Simulation stopped."); | |
1240 | break; | |
1241 | } | |
1242 | } | |
15c4dc5a | 1243 | |
1244 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1245 | LED_A_OFF(); | |
f71f4deb | 1246 | BigBuf_free_keep_EM(); |
15c4dc5a | 1247 | } |
1248 | ||
9492e0b0 | 1249 | |
1250 | // prepare a delayed transfer. This simply shifts ToSend[] by a number | |
1251 | // of bits specified in the delay parameter. | |
6e49717b | 1252 | static void PrepareDelayedTransfer(uint16_t delay) |
9492e0b0 | 1253 | { |
1254 | uint8_t bitmask = 0; | |
1255 | uint8_t bits_to_shift = 0; | |
1256 | uint8_t bits_shifted = 0; | |
1257 | ||
1258 | delay &= 0x07; | |
1259 | if (delay) { | |
1260 | for (uint16_t i = 0; i < delay; i++) { | |
1261 | bitmask |= (0x01 << i); | |
1262 | } | |
7bc95e2e | 1263 | ToSend[ToSendMax++] = 0x00; |
9492e0b0 | 1264 | for (uint16_t i = 0; i < ToSendMax; i++) { |
1265 | bits_to_shift = ToSend[i] & bitmask; | |
1266 | ToSend[i] = ToSend[i] >> delay; | |
1267 | ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); | |
1268 | bits_shifted = bits_to_shift; | |
1269 | } | |
1270 | } | |
1271 | } | |
1272 | ||
7bc95e2e | 1273 | |
1274 | //------------------------------------------------------------------------------------- | |
15c4dc5a | 1275 | // Transmit the command (to the tag) that was placed in ToSend[]. |
9492e0b0 | 1276 | // Parameter timing: |
7bc95e2e | 1277 | // if NULL: transfer at next possible time, taking into account |
1278 | // request guard time and frame delay time | |
1279 | // if == 0: transfer immediately and return time of transfer | |
9492e0b0 | 1280 | // if != 0: delay transfer until time specified |
7bc95e2e | 1281 | //------------------------------------------------------------------------------------- |
6a1f2d82 | 1282 | static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) |
15c4dc5a | 1283 | { |
7bc95e2e | 1284 | |
9492e0b0 | 1285 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b | 1286 | |
7bc95e2e | 1287 | uint32_t ThisTransferTime = 0; |
e30c654b | 1288 | |
9492e0b0 | 1289 | if (timing) { |
1290 | if(*timing == 0) { // Measure time | |
7bc95e2e | 1291 | *timing = (GetCountSspClk() + 8) & 0xfffffff8; |
9492e0b0 | 1292 | } else { |
1293 | PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) | |
1294 | } | |
7bc95e2e | 1295 | if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); |
1296 | while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) | |
1297 | LastTimeProxToAirStart = *timing; | |
1298 | } else { | |
1299 | ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); | |
1300 | while(GetCountSspClk() < ThisTransferTime); | |
1301 | LastTimeProxToAirStart = ThisTransferTime; | |
9492e0b0 | 1302 | } |
1303 | ||
7bc95e2e | 1304 | // clear TXRDY |
1305 | AT91C_BASE_SSC->SSC_THR = SEC_Y; | |
1306 | ||
7bc95e2e | 1307 | uint16_t c = 0; |
9492e0b0 | 1308 | for(;;) { |
1309 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1310 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1311 | c++; | |
1312 | if(c >= len) { | |
1313 | break; | |
1314 | } | |
1315 | } | |
1316 | } | |
7bc95e2e | 1317 | |
1318 | NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); | |
15c4dc5a | 1319 | } |
1320 | ||
7bc95e2e | 1321 | |
15c4dc5a | 1322 | //----------------------------------------------------------------------------- |
195af472 | 1323 | // Prepare reader command (in bits, support short frames) to send to FPGA |
15c4dc5a | 1324 | //----------------------------------------------------------------------------- |
6e49717b | 1325 | static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) |
15c4dc5a | 1326 | { |
7bc95e2e | 1327 | int i, j; |
1328 | int last; | |
1329 | uint8_t b; | |
e30c654b | 1330 | |
7bc95e2e | 1331 | ToSendReset(); |
e30c654b | 1332 | |
7bc95e2e | 1333 | // Start of Communication (Seq. Z) |
1334 | ToSend[++ToSendMax] = SEC_Z; | |
1335 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1336 | last = 0; | |
1337 | ||
1338 | size_t bytecount = nbytes(bits); | |
1339 | // Generate send structure for the data bits | |
1340 | for (i = 0; i < bytecount; i++) { | |
1341 | // Get the current byte to send | |
1342 | b = cmd[i]; | |
1343 | size_t bitsleft = MIN((bits-(i*8)),8); | |
1344 | ||
1345 | for (j = 0; j < bitsleft; j++) { | |
1346 | if (b & 1) { | |
1347 | // Sequence X | |
1348 | ToSend[++ToSendMax] = SEC_X; | |
1349 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1350 | last = 1; | |
1351 | } else { | |
1352 | if (last == 0) { | |
1353 | // Sequence Z | |
1354 | ToSend[++ToSendMax] = SEC_Z; | |
1355 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1356 | } else { | |
1357 | // Sequence Y | |
1358 | ToSend[++ToSendMax] = SEC_Y; | |
1359 | last = 0; | |
1360 | } | |
1361 | } | |
1362 | b >>= 1; | |
1363 | } | |
1364 | ||
6a1f2d82 | 1365 | // Only transmit parity bit if we transmitted a complete byte |
48ece4a7 | 1366 | if (j == 8 && parity != NULL) { |
7bc95e2e | 1367 | // Get the parity bit |
6a1f2d82 | 1368 | if (parity[i>>3] & (0x80 >> (i&0x0007))) { |
7bc95e2e | 1369 | // Sequence X |
1370 | ToSend[++ToSendMax] = SEC_X; | |
1371 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1372 | last = 1; | |
1373 | } else { | |
1374 | if (last == 0) { | |
1375 | // Sequence Z | |
1376 | ToSend[++ToSendMax] = SEC_Z; | |
1377 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1378 | } else { | |
1379 | // Sequence Y | |
1380 | ToSend[++ToSendMax] = SEC_Y; | |
1381 | last = 0; | |
1382 | } | |
1383 | } | |
1384 | } | |
1385 | } | |
e30c654b | 1386 | |
7bc95e2e | 1387 | // End of Communication: Logic 0 followed by Sequence Y |
1388 | if (last == 0) { | |
1389 | // Sequence Z | |
1390 | ToSend[++ToSendMax] = SEC_Z; | |
1391 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1392 | } else { | |
1393 | // Sequence Y | |
1394 | ToSend[++ToSendMax] = SEC_Y; | |
1395 | last = 0; | |
1396 | } | |
1397 | ToSend[++ToSendMax] = SEC_Y; | |
e30c654b | 1398 | |
7bc95e2e | 1399 | // Convert to length of command: |
1400 | ToSendMax++; | |
15c4dc5a | 1401 | } |
1402 | ||
0c8d25eb | 1403 | |
9ca155ba M |
1404 | //----------------------------------------------------------------------------- |
1405 | // Wait for commands from reader | |
1406 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1407 | // Or return 0 when command is captured | |
1408 | //----------------------------------------------------------------------------- | |
6e49717b | 1409 | int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) |
9ca155ba M |
1410 | { |
1411 | *len = 0; | |
1412 | ||
1413 | uint32_t timer = 0, vtime = 0; | |
1414 | int analogCnt = 0; | |
1415 | int analogAVG = 0; | |
1416 | ||
9ca155ba M |
1417 | // Set ADC to read field strength |
1418 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1419 | AT91C_BASE_ADC->ADC_MR = | |
0c8d25eb | 1420 | ADC_MODE_PRESCALE(63) | |
1421 | ADC_MODE_STARTUP_TIME(1) | | |
1422 | ADC_MODE_SAMPLE_HOLD_TIME(15); | |
9ca155ba M |
1423 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); |
1424 | // start ADC | |
1425 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1426 | ||
b35e04a7 | 1427 | // Run a 'software UART' on the stream of incoming samples. |
6a1f2d82 | 1428 | UartInit(received, parity); |
7bc95e2e | 1429 | |
b35e04a7 | 1430 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN |
1431 | do { | |
1432 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1433 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1434 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1435 | } | |
1436 | } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3)); | |
1437 | ||
1438 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1439 | // only, since we are receiving, not transmitting). | |
1440 | // Signal field is off with the appropriate LED | |
1441 | LED_D_OFF(); | |
1442 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1443 | ||
9ca155ba M |
1444 | for(;;) { |
1445 | WDT_HIT(); | |
1446 | ||
1447 | if (BUTTON_PRESS()) return 1; | |
1448 | ||
1449 | // test if the field exists | |
1450 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1451 | analogCnt++; | |
1452 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1453 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1454 | if (analogCnt >= 32) { | |
0c8d25eb | 1455 | if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { |
9ca155ba M |
1456 | vtime = GetTickCount(); |
1457 | if (!timer) timer = vtime; | |
1458 | // 50ms no field --> card to idle state | |
1459 | if (vtime - timer > 50) return 2; | |
1460 | } else | |
1461 | if (timer) timer = 0; | |
1462 | analogCnt = 0; | |
1463 | analogAVG = 0; | |
1464 | } | |
1465 | } | |
7bc95e2e | 1466 | |
9ca155ba | 1467 | // receive and test the miller decoding |
7bc95e2e | 1468 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
b35e04a7 | 1469 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
7bc95e2e | 1470 | if(MillerDecoding(b, 0)) { |
1471 | *len = Uart.len; | |
6e49717b | 1472 | EmLogTraceReader(); |
9ca155ba M |
1473 | return 0; |
1474 | } | |
7bc95e2e | 1475 | } |
1476 | ||
9ca155ba M |
1477 | } |
1478 | } | |
1479 | ||
9ca155ba | 1480 | |
b35e04a7 | 1481 | static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) |
7bc95e2e | 1482 | { |
1483 | uint8_t b; | |
1484 | uint16_t i = 0; | |
b35e04a7 | 1485 | bool correctionNeeded; |
1486 | ||
9ca155ba M |
1487 | // Modulate Manchester |
1488 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
7bc95e2e | 1489 | |
1490 | // include correction bit if necessary | |
b35e04a7 | 1491 | if (Uart.bitCount == 7) |
1492 | { | |
1493 | // Short tags (7 bits) don't have parity, determine the correct value from MSB | |
1494 | correctionNeeded = Uart.output[0] & 0x40; | |
1495 | } | |
1496 | else | |
1497 | { | |
1498 | // Look at the last parity bit | |
1499 | correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7)); | |
7bc95e2e | 1500 | } |
b35e04a7 | 1501 | |
7bc95e2e | 1502 | if(correctionNeeded) { |
9ca155ba M |
1503 | // 1236, so correction bit needed |
1504 | i = 0; | |
7bc95e2e | 1505 | } else { |
1506 | i = 1; | |
9ca155ba | 1507 | } |
7bc95e2e | 1508 | |
d714d3ef | 1509 | // clear receiving shift register and holding register |
7bc95e2e | 1510 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); |
1511 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1512 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1513 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
9ca155ba | 1514 | |
7bc95e2e | 1515 | // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) |
1516 | for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never | |
1517 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1518 | if (AT91C_BASE_SSC->SSC_RHR) break; | |
1519 | } | |
1520 | ||
6e49717b | 1521 | LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0); |
7bc95e2e | 1522 | |
9ca155ba | 1523 | // send cycle |
bb42a03e | 1524 | for(; i < respLen; ) { |
9ca155ba | 1525 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
7bc95e2e | 1526 | AT91C_BASE_SSC->SSC_THR = resp[i++]; |
1527 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
9ca155ba | 1528 | } |
7bc95e2e | 1529 | |
9ca155ba M |
1530 | if(BUTTON_PRESS()) { |
1531 | break; | |
1532 | } | |
1533 | } | |
1534 | ||
1535 | return 0; | |
1536 | } | |
1537 | ||
6e49717b | 1538 | |
b35e04a7 | 1539 | static int EmSend4bitEx(uint8_t resp){ |
7bc95e2e | 1540 | Code4bitAnswerAsTag(resp); |
b35e04a7 | 1541 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax); |
7bc95e2e | 1542 | // do the tracing for the previous reader request and this tag answer: |
6e49717b | 1543 | EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration); |
0a39986e | 1544 | return res; |
9ca155ba M |
1545 | } |
1546 | ||
6e49717b | 1547 | |
8f51ddb0 | 1548 | int EmSend4bit(uint8_t resp){ |
b35e04a7 | 1549 | return EmSend4bitEx(resp); |
8f51ddb0 M |
1550 | } |
1551 | ||
6e49717b | 1552 | |
b35e04a7 | 1553 | static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ |
7bc95e2e | 1554 | CodeIso14443aAsTagPar(resp, respLen, par); |
b35e04a7 | 1555 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax); |
7bc95e2e | 1556 | // do the tracing for the previous reader request and this tag answer: |
6e49717b | 1557 | EmLogTraceTag(resp, respLen, par, LastProxToAirDuration); |
8f51ddb0 M |
1558 | return res; |
1559 | } | |
1560 | ||
6e49717b | 1561 | |
b35e04a7 | 1562 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen){ |
6a1f2d82 | 1563 | uint8_t par[MAX_PARITY_SIZE]; |
1564 | GetParity(resp, respLen, par); | |
b35e04a7 | 1565 | return EmSendCmdExPar(resp, respLen, par); |
8f51ddb0 M |
1566 | } |
1567 | ||
6e49717b | 1568 | |
6a1f2d82 | 1569 | int EmSendCmd(uint8_t *resp, uint16_t respLen){ |
1570 | uint8_t par[MAX_PARITY_SIZE]; | |
1571 | GetParity(resp, respLen, par); | |
b35e04a7 | 1572 | return EmSendCmdExPar(resp, respLen, par); |
8f51ddb0 M |
1573 | } |
1574 | ||
6e49717b | 1575 | |
6a1f2d82 | 1576 | int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ |
b35e04a7 | 1577 | return EmSendCmdExPar(resp, respLen, par); |
7bc95e2e | 1578 | } |
1579 | ||
6e49717b | 1580 | |
b35e04a7 | 1581 | int EmSendPrecompiledCmd(tag_response_info_t *response_info) { |
1582 | int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n); | |
6e49717b | 1583 | // do the tracing for the previous reader request and this tag answer: |
1584 | EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration); | |
1585 | return ret; | |
9ca155ba M |
1586 | } |
1587 | ||
6e49717b | 1588 | |
15c4dc5a | 1589 | //----------------------------------------------------------------------------- |
1590 | // Wait a certain time for tag response | |
de77d4ac | 1591 | // If a response is captured return true |
1592 | // If it takes too long return false | |
15c4dc5a | 1593 | //----------------------------------------------------------------------------- |
6a1f2d82 | 1594 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) |
15c4dc5a | 1595 | { |
52bfb955 | 1596 | uint32_t c; |
e691fc45 | 1597 | |
15c4dc5a | 1598 | // Set FPGA mode to "reader listen mode", no modulation (listen |
534983d7 | 1599 | // only, since we are receiving, not transmitting). |
1600 | // Signal field is on with the appropriate LED | |
1601 | LED_D_ON(); | |
1602 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1c611bbd | 1603 | |
534983d7 | 1604 | // Now get the answer from the card |
6a1f2d82 | 1605 | DemodInit(receivedResponse, receivedResponsePar); |
15c4dc5a | 1606 | |
7bc95e2e | 1607 | // clear RXRDY: |
1608 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
0c8d25eb | 1609 | |
15c4dc5a | 1610 | c = 0; |
1611 | for(;;) { | |
534983d7 | 1612 | WDT_HIT(); |
15c4dc5a | 1613 | |
534983d7 | 1614 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
534983d7 | 1615 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
7bc95e2e | 1616 | if(ManchesterDecoding(b, offset, 0)) { |
1617 | NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); | |
de77d4ac | 1618 | return true; |
19a700a8 | 1619 | } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { |
de77d4ac | 1620 | return false; |
15c4dc5a | 1621 | } |
534983d7 | 1622 | } |
1623 | } | |
15c4dc5a | 1624 | } |
1625 | ||
48ece4a7 | 1626 | |
6a1f2d82 | 1627 | void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) |
15c4dc5a | 1628 | { |
6a1f2d82 | 1629 | CodeIso14443aBitsAsReaderPar(frame, bits, par); |
dfc3c505 | 1630 | |
7bc95e2e | 1631 | // Send command to tag |
1632 | TransmitFor14443a(ToSend, ToSendMax, timing); | |
1633 | if(trigger) | |
1634 | LED_A_ON(); | |
dfc3c505 | 1635 | |
7bc95e2e | 1636 | // Log reader command in trace buffer |
1637 | if (tracing) { | |
de77d4ac | 1638 | LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true); |
7bc95e2e | 1639 | } |
15c4dc5a | 1640 | } |
1641 | ||
48ece4a7 | 1642 | |
6a1f2d82 | 1643 | void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) |
dfc3c505 | 1644 | { |
6a1f2d82 | 1645 | ReaderTransmitBitsPar(frame, len*8, par, timing); |
dfc3c505 | 1646 | } |
15c4dc5a | 1647 | |
48ece4a7 | 1648 | |
6e49717b | 1649 | static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) |
e691fc45 | 1650 | { |
1651 | // Generate parity and redirect | |
6a1f2d82 | 1652 | uint8_t par[MAX_PARITY_SIZE]; |
1653 | GetParity(frame, len/8, par); | |
1654 | ReaderTransmitBitsPar(frame, len, par, timing); | |
e691fc45 | 1655 | } |
1656 | ||
48ece4a7 | 1657 | |
6a1f2d82 | 1658 | void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) |
15c4dc5a | 1659 | { |
1660 | // Generate parity and redirect | |
6a1f2d82 | 1661 | uint8_t par[MAX_PARITY_SIZE]; |
1662 | GetParity(frame, len, par); | |
1663 | ReaderTransmitBitsPar(frame, len*8, par, timing); | |
15c4dc5a | 1664 | } |
1665 | ||
6e49717b | 1666 | |
1667 | static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) | |
e691fc45 | 1668 | { |
de77d4ac | 1669 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false; |
7bc95e2e | 1670 | if (tracing) { |
de77d4ac | 1671 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); |
7bc95e2e | 1672 | } |
e691fc45 | 1673 | return Demod.len; |
1674 | } | |
1675 | ||
6e49717b | 1676 | |
6a1f2d82 | 1677 | int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) |
15c4dc5a | 1678 | { |
de77d4ac | 1679 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false; |
7bc95e2e | 1680 | if (tracing) { |
de77d4ac | 1681 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); |
7bc95e2e | 1682 | } |
e691fc45 | 1683 | return Demod.len; |
f89c7050 M |
1684 | } |
1685 | ||
de77d4ac | 1686 | // performs iso14443a anticollision (optional) and card select procedure |
1687 | // fills the uid and cuid pointer unless NULL | |
1688 | // fills the card info record unless NULL | |
1689 | // if anticollision is false, then the UID must be provided in uid_ptr[] | |
1690 | // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) | |
c04a4b60 | 1691 | // requests ATS unless no_rats is true |
1692 | int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) { | |
6a1f2d82 | 1693 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP |
1694 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1695 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; | |
1696 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 | |
f71f4deb | 1697 | uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller |
1698 | uint8_t resp_par[MAX_PARITY_SIZE]; | |
6a1f2d82 | 1699 | byte_t uid_resp[4]; |
1700 | size_t uid_resp_len; | |
1701 | ||
1702 | uint8_t sak = 0x04; // cascade uid | |
1703 | int cascade_level = 0; | |
1704 | int len; | |
1705 | ||
618c220c OM |
1706 | // init card struct |
1707 | if(p_hi14a_card) { | |
1708 | p_hi14a_card->uidlen = 0; | |
1709 | memset(p_hi14a_card->uid, 0, 10); | |
1710 | p_hi14a_card->ats_len = 0; | |
1711 | } | |
1712 | ||
6a1f2d82 | 1713 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
de77d4ac | 1714 | ReaderTransmitBitsPar(wupa, 7, NULL, NULL); |
7bc95e2e | 1715 | |
6a1f2d82 | 1716 | // Receive the ATQA |
1717 | if(!ReaderReceive(resp, resp_par)) return 0; | |
6a1f2d82 | 1718 | |
1719 | if(p_hi14a_card) { | |
1720 | memcpy(p_hi14a_card->atqa, resp, 2); | |
6a1f2d82 | 1721 | } |
5f6d6c90 | 1722 | |
de77d4ac | 1723 | if (anticollision) { |
1724 | // clear uid | |
1725 | if (uid_ptr) { | |
1726 | memset(uid_ptr,0,10); | |
1727 | } | |
6a1f2d82 | 1728 | } |
79a73ab2 | 1729 | |
ee1eadee | 1730 | // check for proprietary anticollision: |
1731 | if ((resp[0] & 0x1F) == 0) { | |
1732 | return 3; | |
1733 | } | |
1734 | ||
6a1f2d82 | 1735 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in |
1736 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1737 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1738 | for(; sak & 0x04; cascade_level++) { | |
1739 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1740 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1741 | ||
de77d4ac | 1742 | if (anticollision) { |
1743 | // SELECT_ALL | |
1744 | ReaderTransmit(sel_all, sizeof(sel_all), NULL); | |
1745 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1746 | ||
1747 | if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit | |
1748 | memset(uid_resp, 0, 4); | |
1749 | uint16_t uid_resp_bits = 0; | |
1750 | uint16_t collision_answer_offset = 0; | |
1751 | // anti-collision-loop: | |
1752 | while (Demod.collisionPos) { | |
1753 | Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); | |
1754 | for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point | |
1755 | uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; | |
1756 | uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); | |
1757 | } | |
1758 | uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position | |
1759 | uid_resp_bits++; | |
1760 | // construct anticollosion command: | |
1761 | sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits | |
1762 | for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { | |
1763 | sel_uid[2+i] = uid_resp[i]; | |
1764 | } | |
1765 | collision_answer_offset = uid_resp_bits%8; | |
1766 | ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); | |
1767 | if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; | |
6a1f2d82 | 1768 | } |
de77d4ac | 1769 | // finally, add the last bits and BCC of the UID |
1770 | for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { | |
1771 | uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; | |
1772 | uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); | |
6a1f2d82 | 1773 | } |
de77d4ac | 1774 | |
1775 | } else { // no collision, use the response to SELECT_ALL as current uid | |
1776 | memcpy(uid_resp, resp, 4); | |
e691fc45 | 1777 | } |
de77d4ac | 1778 | } else { |
1779 | if (cascade_level < num_cascades - 1) { | |
1780 | uid_resp[0] = 0x88; | |
1781 | memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3); | |
1782 | } else { | |
1783 | memcpy(uid_resp, uid_ptr+cascade_level*3, 4); | |
e691fc45 | 1784 | } |
6a1f2d82 | 1785 | } |
1786 | uid_resp_len = 4; | |
5f6d6c90 | 1787 | |
6a1f2d82 | 1788 | // calculate crypto UID. Always use last 4 Bytes. |
1789 | if(cuid_ptr) { | |
1790 | *cuid_ptr = bytes_to_num(uid_resp, 4); | |
1791 | } | |
e30c654b | 1792 | |
6a1f2d82 | 1793 | // Construct SELECT UID command |
1794 | sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) | |
de77d4ac | 1795 | memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID |
6a1f2d82 | 1796 | sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC |
1797 | AppendCrc14443a(sel_uid, 7); // calculate and add CRC | |
1798 | ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); | |
1799 | ||
1800 | // Receive the SAK | |
1801 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1802 | sak = resp[0]; | |
de77d4ac | 1803 | |
1804 | // Test if more parts of the uid are coming | |
6a1f2d82 | 1805 | if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { |
1806 | // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: | |
1807 | // http://www.nxp.com/documents/application_note/AN10927.pdf | |
6a1f2d82 | 1808 | uid_resp[0] = uid_resp[1]; |
1809 | uid_resp[1] = uid_resp[2]; | |
1810 | uid_resp[2] = uid_resp[3]; | |
6a1f2d82 | 1811 | uid_resp_len = 3; |
1812 | } | |
5f6d6c90 | 1813 | |
de77d4ac | 1814 | if(uid_ptr && anticollision) { |
6a1f2d82 | 1815 | memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); |
1816 | } | |
5f6d6c90 | 1817 | |
6a1f2d82 | 1818 | if(p_hi14a_card) { |
1819 | memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); | |
1820 | p_hi14a_card->uidlen += uid_resp_len; | |
1821 | } | |
1822 | } | |
79a73ab2 | 1823 | |
6a1f2d82 | 1824 | if(p_hi14a_card) { |
1825 | p_hi14a_card->sak = sak; | |
6a1f2d82 | 1826 | } |
534983d7 | 1827 | |
7376da5c | 1828 | // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0) |
3fe4ff4f | 1829 | if( (sak & 0x20) == 0) return 2; |
534983d7 | 1830 | |
c04a4b60 | 1831 | if (!no_rats) { |
1832 | // Request for answer to select | |
1833 | AppendCrc14443a(rats, 2); | |
1834 | ReaderTransmit(rats, sizeof(rats), NULL); | |
1c611bbd | 1835 | |
c04a4b60 | 1836 | if (!(len = ReaderReceive(resp, resp_par))) return 0; |
5191b3d1 | 1837 | |
c04a4b60 | 1838 | if(p_hi14a_card) { |
1839 | memcpy(p_hi14a_card->ats, resp, len); | |
1840 | p_hi14a_card->ats_len = len; | |
1841 | } | |
19a700a8 | 1842 | |
c04a4b60 | 1843 | // reset the PCB block number |
1844 | iso14_pcb_blocknum = 0; | |
19a700a8 | 1845 | |
c04a4b60 | 1846 | // set default timeout based on ATS |
1847 | iso14a_set_ATS_timeout(resp); | |
1848 | } | |
6a1f2d82 | 1849 | return 1; |
7e758047 | 1850 | } |
15c4dc5a | 1851 | |
6e49717b | 1852 | |
7bc95e2e | 1853 | void iso14443a_setup(uint8_t fpga_minor_mode) { |
7cc204bf | 1854 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
9492e0b0 | 1855 | // Set up the synchronous serial port |
1856 | FpgaSetupSsc(); | |
7bc95e2e | 1857 | // connect Demodulated Signal to ADC: |
7e758047 | 1858 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 1859 | |
7e758047 | 1860 | // Signal field is on with the appropriate LED |
7bc95e2e | 1861 | if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD |
1862 | || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { | |
1863 | LED_D_ON(); | |
1864 | } else { | |
1865 | LED_D_OFF(); | |
1866 | } | |
1867 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); | |
534983d7 | 1868 | |
7bc95e2e | 1869 | // Start the timer |
1870 | StartCountSspClk(); | |
1871 | ||
1872 | DemodReset(); | |
1873 | UartReset(); | |
1874 | NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; | |
6e49717b | 1875 | iso14a_set_timeout(1060); // 10ms default |
7e758047 | 1876 | } |
15c4dc5a | 1877 | |
6e49717b | 1878 | |
6a1f2d82 | 1879 | int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { |
1880 | uint8_t parity[MAX_PARITY_SIZE]; | |
b7d3e899 | 1881 | uint8_t real_cmd[cmd_len + 4]; |
1882 | ||
1883 | // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02 | |
1884 | real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00) | |
b0127e65 | 1885 | // put block number into the PCB |
1886 | real_cmd[0] |= iso14_pcb_blocknum; | |
b7d3e899 | 1887 | memcpy(real_cmd + 1, cmd, cmd_len); |
1888 | AppendCrc14443a(real_cmd, cmd_len + 1); | |
534983d7 | 1889 | |
b7d3e899 | 1890 | ReaderTransmit(real_cmd, cmd_len + 3, NULL); |
1891 | ||
6a1f2d82 | 1892 | size_t len = ReaderReceive(data, parity); |
1893 | uint8_t *data_bytes = (uint8_t *) data; | |
b7d3e899 | 1894 | |
1895 | if (!len) { | |
b0127e65 | 1896 | return 0; //DATA LINK ERROR |
b7d3e899 | 1897 | |
b0127e65 | 1898 | // if we received an I- or R(ACK)-Block with a block number equal to the |
1899 | // current block number, toggle the current block number | |
b7d3e899 | 1900 | } else{ |
1901 | if (len >= 3 // PCB+CRC = 3 bytes | |
b0127e65 | 1902 | && ((data_bytes[0] & 0xC0) == 0 // I-Block |
1903 | || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 | |
1904 | && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers | |
b7d3e899 | 1905 | { |
1906 | iso14_pcb_blocknum ^= 1; | |
1907 | } | |
b0127e65 | 1908 | |
b7d3e899 | 1909 | // crc check |
1910 | if (len >=3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) { | |
1911 | return -1; | |
1912 | } | |
1913 | ||
1914 | } | |
1915 | ||
1916 | // cut frame byte | |
1917 | len -= 1; | |
1918 | // memmove(data_bytes, data_bytes + 1, len); | |
1919 | for (int i = 0; i < len; i++) | |
1920 | data_bytes[i] = data_bytes[i + 1]; | |
1921 | ||
534983d7 | 1922 | return len; |
1923 | } | |
1924 | ||
6e49717b | 1925 | |
7e758047 | 1926 | //----------------------------------------------------------------------------- |
1927 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1928 | // | |
1929 | //----------------------------------------------------------------------------- | |
7bc95e2e | 1930 | void ReaderIso14443a(UsbCommand *c) |
7e758047 | 1931 | { |
534983d7 | 1932 | iso14a_command_t param = c->arg[0]; |
7bc95e2e | 1933 | uint8_t *cmd = c->d.asBytes; |
04bc1c66 | 1934 | size_t len = c->arg[1] & 0xffff; |
1935 | size_t lenbits = c->arg[1] >> 16; | |
1936 | uint32_t timeout = c->arg[2]; | |
9492e0b0 | 1937 | uint32_t arg0 = 0; |
618c220c | 1938 | byte_t buf[USB_CMD_DATA_SIZE] = {0}; |
6a1f2d82 | 1939 | uint8_t par[MAX_PARITY_SIZE]; |
f1a983a3 | 1940 | bool cantSELECT = false; |
902cb3c0 | 1941 | |
eb6e8de4 | 1942 | set_tracing(true); |
1943 | ||
1944 | if(param & ISO14A_CLEAR_TRACE) { | |
3000dc4e | 1945 | clear_trace(); |
5f6d6c90 | 1946 | } |
e691fc45 | 1947 | |
79a73ab2 | 1948 | if(param & ISO14A_REQUEST_TRIGGER) { |
de77d4ac | 1949 | iso14a_set_trigger(true); |
9492e0b0 | 1950 | } |
15c4dc5a | 1951 | |
534983d7 | 1952 | if(param & ISO14A_CONNECT) { |
f1a983a3 | 1953 | LED_A_ON(); |
7bc95e2e | 1954 | iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); |
5f6d6c90 | 1955 | if(!(param & ISO14A_NO_SELECT)) { |
1956 | iso14a_card_select_t *card = (iso14a_card_select_t*)buf; | |
c04a4b60 | 1957 | arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS); |
f1a983a3 | 1958 | |
1959 | // if we cant select then we cant send data | |
499df908 | 1960 | if (arg0 != 1 && arg0 != 2) { |
1961 | // 1 - all is OK with ATS, 2 - without ATS | |
1962 | cantSELECT = true; | |
1963 | } | |
f1a983a3 | 1964 | |
1965 | LED_B_ON(); | |
5f6d6c90 | 1966 | cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); |
f1a983a3 | 1967 | LED_B_OFF(); |
5f6d6c90 | 1968 | } |
534983d7 | 1969 | } |
e30c654b | 1970 | |
534983d7 | 1971 | if(param & ISO14A_SET_TIMEOUT) { |
04bc1c66 | 1972 | iso14a_set_timeout(timeout); |
534983d7 | 1973 | } |
e30c654b | 1974 | |
f1a983a3 | 1975 | if(param & ISO14A_APDU && !cantSELECT) { |
902cb3c0 | 1976 | arg0 = iso14_apdu(cmd, len, buf); |
f1a983a3 | 1977 | LED_B_ON(); |
b7d3e899 | 1978 | cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf)); |
f1a983a3 | 1979 | LED_B_OFF(); |
534983d7 | 1980 | } |
e30c654b | 1981 | |
f1a983a3 | 1982 | if(param & ISO14A_RAW && !cantSELECT) { |
534983d7 | 1983 | if(param & ISO14A_APPEND_CRC) { |
48ece4a7 | 1984 | if(param & ISO14A_TOPAZMODE) { |
1985 | AppendCrc14443b(cmd,len); | |
1986 | } else { | |
1987 | AppendCrc14443a(cmd,len); | |
1988 | } | |
534983d7 | 1989 | len += 2; |
c7324bef | 1990 | if (lenbits) lenbits += 16; |
15c4dc5a | 1991 | } |
48ece4a7 | 1992 | if(lenbits>0) { // want to send a specific number of bits (e.g. short commands) |
1993 | if(param & ISO14A_TOPAZMODE) { | |
1994 | int bits_to_send = lenbits; | |
1995 | uint16_t i = 0; | |
1996 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity | |
1997 | bits_to_send -= 7; | |
1998 | while (bits_to_send > 0) { | |
1999 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity | |
2000 | bits_to_send -= 8; | |
2001 | } | |
2002 | } else { | |
2003 | GetParity(cmd, lenbits/8, par); | |
2004 | ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity | |
2005 | } | |
2006 | } else { // want to send complete bytes only | |
2007 | if(param & ISO14A_TOPAZMODE) { | |
2008 | uint16_t i = 0; | |
2009 | ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy | |
2010 | while (i < len) { | |
2011 | ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy | |
2012 | } | |
2013 | } else { | |
2014 | ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity | |
2015 | } | |
5f6d6c90 | 2016 | } |
6a1f2d82 | 2017 | arg0 = ReaderReceive(buf, par); |
f1a983a3 | 2018 | |
2019 | LED_B_ON(); | |
9492e0b0 | 2020 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); |
f1a983a3 | 2021 | LED_B_OFF(); |
534983d7 | 2022 | } |
15c4dc5a | 2023 | |
79a73ab2 | 2024 | if(param & ISO14A_REQUEST_TRIGGER) { |
de77d4ac | 2025 | iso14a_set_trigger(false); |
9492e0b0 | 2026 | } |
15c4dc5a | 2027 | |
79a73ab2 | 2028 | if(param & ISO14A_NO_DISCONNECT) { |
534983d7 | 2029 | return; |
9492e0b0 | 2030 | } |
15c4dc5a | 2031 | |
15c4dc5a | 2032 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2033 | LEDsoff(); | |
15c4dc5a | 2034 | } |
b0127e65 | 2035 | |
1c611bbd | 2036 | |
1c611bbd | 2037 | // Determine the distance between two nonces. |
2038 | // Assume that the difference is small, but we don't know which is first. | |
2039 | // Therefore try in alternating directions. | |
6e49717b | 2040 | static int32_t dist_nt(uint32_t nt1, uint32_t nt2) { |
1c611bbd | 2041 | |
2042 | uint16_t i; | |
2043 | uint32_t nttmp1, nttmp2; | |
e772353f | 2044 | |
1c611bbd | 2045 | if (nt1 == nt2) return 0; |
2046 | ||
2047 | nttmp1 = nt1; | |
2048 | nttmp2 = nt2; | |
2049 | ||
2050 | for (i = 1; i < 32768; i++) { | |
2051 | nttmp1 = prng_successor(nttmp1, 1); | |
2052 | if (nttmp1 == nt2) return i; | |
2053 | nttmp2 = prng_successor(nttmp2, 1); | |
dc8ba239 | 2054 | if (nttmp2 == nt1) return -i; |
1c611bbd | 2055 | } |
2056 | ||
2057 | return(-99999); // either nt1 or nt2 are invalid nonces | |
e772353f | 2058 | } |
2059 | ||
e772353f | 2060 | |
1c611bbd | 2061 | //----------------------------------------------------------------------------- |
2062 | // Recover several bits of the cypher stream. This implements (first stages of) | |
2063 | // the algorithm described in "The Dark Side of Security by Obscurity and | |
2064 | // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" | |
2065 | // (article by Nicolas T. Courtois, 2009) | |
2066 | //----------------------------------------------------------------------------- | |
2067 | void ReaderMifare(bool first_try) | |
2068 | { | |
2069 | // Mifare AUTH | |
2070 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
2071 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
2072 | static uint8_t mf_nr_ar3; | |
e772353f | 2073 | |
f71f4deb | 2074 | uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; |
2075 | uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; | |
7bc95e2e | 2076 | |
09ffd16e | 2077 | if (first_try) { |
2078 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
2079 | } | |
2080 | ||
f71f4deb | 2081 | // free eventually allocated BigBuf memory. We want all for tracing. |
2082 | BigBuf_free(); | |
2083 | ||
3000dc4e | 2084 | clear_trace(); |
de77d4ac | 2085 | set_tracing(true); |
e772353f | 2086 | |
1c611bbd | 2087 | byte_t nt_diff = 0; |
6a1f2d82 | 2088 | uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough |
1c611bbd | 2089 | static byte_t par_low = 0; |
de77d4ac | 2090 | bool led_on = true; |
ca4714cd | 2091 | uint8_t uid[10] ={0}; |
1c611bbd | 2092 | uint32_t cuid; |
e772353f | 2093 | |
6a1f2d82 | 2094 | uint32_t nt = 0; |
2ed270a8 | 2095 | uint32_t previous_nt = 0; |
1c611bbd | 2096 | static uint32_t nt_attacked = 0; |
3fe4ff4f | 2097 | byte_t par_list[8] = {0x00}; |
2098 | byte_t ks_list[8] = {0x00}; | |
e772353f | 2099 | |
dfb387bf | 2100 | #define PRNG_SEQUENCE_LENGTH (1 << 16); |
1c611bbd | 2101 | static uint32_t sync_time; |
8c6b2298 | 2102 | static int32_t sync_cycles; |
1c611bbd | 2103 | int catch_up_cycles = 0; |
2104 | int last_catch_up = 0; | |
8c6b2298 | 2105 | uint16_t elapsed_prng_sequences; |
1c611bbd | 2106 | uint16_t consecutive_resyncs = 0; |
2107 | int isOK = 0; | |
e772353f | 2108 | |
1c611bbd | 2109 | if (first_try) { |
1c611bbd | 2110 | mf_nr_ar3 = 0; |
7bc95e2e | 2111 | sync_time = GetCountSspClk() & 0xfffffff8; |
dfb387bf | 2112 | sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces). |
1c611bbd | 2113 | nt_attacked = 0; |
6a1f2d82 | 2114 | par[0] = 0; |
1c611bbd | 2115 | } |
2116 | else { | |
2117 | // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) | |
1c611bbd | 2118 | mf_nr_ar3++; |
2119 | mf_nr_ar[3] = mf_nr_ar3; | |
6a1f2d82 | 2120 | par[0] = par_low; |
1c611bbd | 2121 | } |
e30c654b | 2122 | |
15c4dc5a | 2123 | LED_A_ON(); |
2124 | LED_B_OFF(); | |
2125 | LED_C_OFF(); | |
1c611bbd | 2126 | |
dc8ba239 | 2127 | |
dfb387bf | 2128 | #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. |
8c6b2298 | 2129 | #define MAX_SYNC_TRIES 32 |
2130 | #define NUM_DEBUG_INFOS 8 // per strategy | |
2131 | #define MAX_STRATEGY 3 | |
dfb387bf | 2132 | uint16_t unexpected_random = 0; |
2133 | uint16_t sync_tries = 0; | |
2134 | int16_t debug_info_nr = -1; | |
8c6b2298 | 2135 | uint16_t strategy = 0; |
2136 | int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS]; | |
2137 | uint32_t select_time; | |
2138 | uint32_t halt_time; | |
dc8ba239 | 2139 | |
de77d4ac | 2140 | for(uint16_t i = 0; true; i++) { |
1c611bbd | 2141 | |
dc8ba239 | 2142 | LED_C_ON(); |
1c611bbd | 2143 | WDT_HIT(); |
e30c654b | 2144 | |
1c611bbd | 2145 | // Test if the action was cancelled |
2146 | if(BUTTON_PRESS()) { | |
dc8ba239 | 2147 | isOK = -1; |
1c611bbd | 2148 | break; |
2149 | } | |
2150 | ||
8c6b2298 | 2151 | if (strategy == 2) { |
2152 | // test with additional hlt command | |
2153 | halt_time = 0; | |
2154 | int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time); | |
2155 | if (len && MF_DBGLEVEL >= 3) { | |
2156 | Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len); | |
2157 | } | |
2158 | } | |
2159 | ||
2160 | if (strategy == 3) { | |
2161 | // test with FPGA power off/on | |
2162 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2163 | SpinDelay(200); | |
2164 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
2165 | SpinDelay(100); | |
2166 | } | |
2167 | ||
c04a4b60 | 2168 | if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { |
9492e0b0 | 2169 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); |
1c611bbd | 2170 | continue; |
2171 | } | |
8c6b2298 | 2172 | select_time = GetCountSspClk(); |
1c611bbd | 2173 | |
8c6b2298 | 2174 | elapsed_prng_sequences = 1; |
dfb387bf | 2175 | if (debug_info_nr == -1) { |
2176 | sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; | |
2177 | catch_up_cycles = 0; | |
1c611bbd | 2178 | |
dfb387bf | 2179 | // if we missed the sync time already, advance to the next nonce repeat |
2180 | while(GetCountSspClk() > sync_time) { | |
8c6b2298 | 2181 | elapsed_prng_sequences++; |
dfb387bf | 2182 | sync_time = (sync_time & 0xfffffff8) + sync_cycles; |
2183 | } | |
e30c654b | 2184 | |
dfb387bf | 2185 | // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) |
2186 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
2187 | } else { | |
8c6b2298 | 2188 | // collect some information on tag nonces for debugging: |
2189 | #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH | |
2190 | if (strategy == 0) { | |
2191 | // nonce distances at fixed time after card select: | |
2192 | sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES; | |
2193 | } else if (strategy == 1) { | |
2194 | // nonce distances at fixed time between authentications: | |
2195 | sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES; | |
2196 | } else if (strategy == 2) { | |
2197 | // nonce distances at fixed time after halt: | |
2198 | sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES; | |
2199 | } else { | |
2200 | // nonce_distances at fixed time after power on | |
2201 | sync_time = DEBUG_FIXED_SYNC_CYCLES; | |
2202 | } | |
2203 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
dfb387bf | 2204 | } |
f89c7050 | 2205 | |
1c611bbd | 2206 | // Receive the (4 Byte) "random" nonce |
6a1f2d82 | 2207 | if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { |
9492e0b0 | 2208 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); |
1c611bbd | 2209 | continue; |
2210 | } | |
2211 | ||
1c611bbd | 2212 | previous_nt = nt; |
2213 | nt = bytes_to_num(receivedAnswer, 4); | |
2214 | ||
2215 | // Transmit reader nonce with fake par | |
9492e0b0 | 2216 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); |
1c611bbd | 2217 | |
2218 | if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet | |
2219 | int nt_distance = dist_nt(previous_nt, nt); | |
2220 | if (nt_distance == 0) { | |
2221 | nt_attacked = nt; | |
dfb387bf | 2222 | } else { |
dc8ba239 | 2223 | if (nt_distance == -99999) { // invalid nonce received |
dfb387bf | 2224 | unexpected_random++; |
8c6b2298 | 2225 | if (unexpected_random > MAX_UNEXPECTED_RANDOM) { |
dc8ba239 | 2226 | isOK = -3; // Card has an unpredictable PRNG. Give up |
2227 | break; | |
2228 | } else { | |
2229 | continue; // continue trying... | |
2230 | } | |
1c611bbd | 2231 | } |
dfb387bf | 2232 | if (++sync_tries > MAX_SYNC_TRIES) { |
8c6b2298 | 2233 | if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) { |
dfb387bf | 2234 | isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly |
2235 | break; | |
2236 | } else { // continue for a while, just to collect some debug info | |
8c6b2298 | 2237 | debug_info[strategy][debug_info_nr] = nt_distance; |
2238 | debug_info_nr++; | |
2239 | if (debug_info_nr == NUM_DEBUG_INFOS) { | |
2240 | strategy++; | |
2241 | debug_info_nr = 0; | |
2242 | } | |
dfb387bf | 2243 | continue; |
2244 | } | |
2245 | } | |
8c6b2298 | 2246 | sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences); |
dfb387bf | 2247 | if (sync_cycles <= 0) { |
2248 | sync_cycles += PRNG_SEQUENCE_LENGTH; | |
2249 | } | |
2250 | if (MF_DBGLEVEL >= 3) { | |
8c6b2298 | 2251 | Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles); |
dfb387bf | 2252 | } |
1c611bbd | 2253 | continue; |
2254 | } | |
2255 | } | |
2256 | ||
2257 | if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... | |
2258 | catch_up_cycles = -dist_nt(nt_attacked, nt); | |
2259 | if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. | |
2260 | catch_up_cycles = 0; | |
2261 | continue; | |
2262 | } | |
8c6b2298 | 2263 | catch_up_cycles /= elapsed_prng_sequences; |
1c611bbd | 2264 | if (catch_up_cycles == last_catch_up) { |
2265 | consecutive_resyncs++; | |
2266 | } | |
2267 | else { | |
2268 | last_catch_up = catch_up_cycles; | |
2269 | consecutive_resyncs = 0; | |
2270 | } | |
2271 | if (consecutive_resyncs < 3) { | |
9492e0b0 | 2272 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); |
1c611bbd | 2273 | } |
2274 | else { | |
2275 | sync_cycles = sync_cycles + catch_up_cycles; | |
9492e0b0 | 2276 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); |
8c6b2298 | 2277 | last_catch_up = 0; |
2278 | catch_up_cycles = 0; | |
2279 | consecutive_resyncs = 0; | |
1c611bbd | 2280 | } |
2281 | continue; | |
2282 | } | |
2283 | ||
2284 | consecutive_resyncs = 0; | |
2285 | ||
2286 | // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding | |
8c6b2298 | 2287 | if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { |
9492e0b0 | 2288 | catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer |
1c611bbd | 2289 | |
8c6b2298 | 2290 | if (nt_diff == 0) { |
6a1f2d82 | 2291 | par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change |
1c611bbd | 2292 | } |
2293 | ||
2294 | led_on = !led_on; | |
2295 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
2296 | ||
6a1f2d82 | 2297 | par_list[nt_diff] = SwapBits(par[0], 8); |
1c611bbd | 2298 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; |
2299 | ||
2300 | // Test if the information is complete | |
2301 | if (nt_diff == 0x07) { | |
2302 | isOK = 1; | |
2303 | break; | |
2304 | } | |
2305 | ||
2306 | nt_diff = (nt_diff + 1) & 0x07; | |
2307 | mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); | |
6a1f2d82 | 2308 | par[0] = par_low; |
1c611bbd | 2309 | } else { |
2310 | if (nt_diff == 0 && first_try) | |
2311 | { | |
6a1f2d82 | 2312 | par[0]++; |
dc8ba239 | 2313 | if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. |
2314 | isOK = -2; | |
2315 | break; | |
2316 | } | |
1c611bbd | 2317 | } else { |
6a1f2d82 | 2318 | par[0] = ((par[0] & 0x1F) + 1) | par_low; |
1c611bbd | 2319 | } |
2320 | } | |
2321 | } | |
2322 | ||
1c611bbd | 2323 | |
2324 | mf_nr_ar[3] &= 0x1F; | |
dfb387bf | 2325 | |
2326 | if (isOK == -4) { | |
2327 | if (MF_DBGLEVEL >= 3) { | |
8c6b2298 | 2328 | for (uint16_t i = 0; i <= MAX_STRATEGY; i++) { |
2329 | for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) { | |
2330 | Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]); | |
2331 | } | |
dfb387bf | 2332 | } |
2333 | } | |
2334 | } | |
1c611bbd | 2335 | |
2336 | byte_t buf[28]; | |
2337 | memcpy(buf + 0, uid, 4); | |
2338 | num_to_bytes(nt, 4, buf + 4); | |
2339 | memcpy(buf + 8, par_list, 8); | |
2340 | memcpy(buf + 16, ks_list, 8); | |
2341 | memcpy(buf + 24, mf_nr_ar, 4); | |
2342 | ||
dc8ba239 | 2343 | cmd_send(CMD_ACK, isOK, 0, 0, buf, 28); |
1c611bbd | 2344 | |
2345 | // Thats it... | |
2346 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2347 | LEDsoff(); | |
7bc95e2e | 2348 | |
de77d4ac | 2349 | set_tracing(false); |
20f9a2a1 | 2350 | } |
1c611bbd | 2351 | |
d2f487af | 2352 | |
b62a5a84 M |
2353 | //----------------------------------------------------------------------------- |
2354 | // MIFARE sniffer. | |
2355 | // | |
2356 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
2357 | void RAMFUNC SniffMifare(uint8_t param) { |
2358 | // param: | |
2359 | // bit 0 - trigger from first card answer | |
2360 | // bit 1 - trigger from first reader 7-bit request | |
39864b0b M |
2361 | |
2362 | // C(red) A(yellow) B(green) | |
b62a5a84 M |
2363 | LEDsoff(); |
2364 | // init trace buffer | |
3000dc4e | 2365 | clear_trace(); |
de77d4ac | 2366 | set_tracing(true); |
b62a5a84 | 2367 | |
b62a5a84 M |
2368 | // The command (reader -> tag) that we're receiving. |
2369 | // The length of a received command will in most cases be no more than 18 bytes. | |
2370 | // So 32 should be enough! | |
f71f4deb | 2371 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; |
2372 | uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; | |
b62a5a84 | 2373 | // The response (tag -> reader) that we're receiving. |
f71f4deb | 2374 | uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; |
2375 | uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; | |
b62a5a84 | 2376 | |
09ffd16e | 2377 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); |
2378 | ||
f71f4deb | 2379 | // free eventually allocated BigBuf memory |
2380 | BigBuf_free(); | |
2381 | // allocate the DMA buffer, used to stream samples from the FPGA | |
2382 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
7bc95e2e | 2383 | uint8_t *data = dmaBuf; |
2384 | uint8_t previous_data = 0; | |
5cd9ec01 M |
2385 | int maxDataLen = 0; |
2386 | int dataLen = 0; | |
de77d4ac | 2387 | bool ReaderIsActive = false; |
2388 | bool TagIsActive = false; | |
7bc95e2e | 2389 | |
b62a5a84 | 2390 | // Set up the demodulator for tag -> reader responses. |
6a1f2d82 | 2391 | DemodInit(receivedResponse, receivedResponsePar); |
b62a5a84 M |
2392 | |
2393 | // Set up the demodulator for the reader -> tag commands | |
6a1f2d82 | 2394 | UartInit(receivedCmd, receivedCmdPar); |
b62a5a84 M |
2395 | |
2396 | // Setup for the DMA. | |
7bc95e2e | 2397 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
b62a5a84 | 2398 | |
b62a5a84 | 2399 | LED_D_OFF(); |
39864b0b M |
2400 | |
2401 | // init sniffer | |
2402 | MfSniffInit(); | |
b62a5a84 | 2403 | |
b62a5a84 | 2404 | // And now we loop, receiving samples. |
de77d4ac | 2405 | for(uint32_t sniffCounter = 0; true; ) { |
7bc95e2e | 2406 | |
5cd9ec01 M |
2407 | if(BUTTON_PRESS()) { |
2408 | DbpString("cancelled by button"); | |
7bc95e2e | 2409 | break; |
5cd9ec01 M |
2410 | } |
2411 | ||
b62a5a84 M |
2412 | LED_A_ON(); |
2413 | WDT_HIT(); | |
39864b0b | 2414 | |
7bc95e2e | 2415 | if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time |
2416 | // check if a transaction is completed (timeout after 2000ms). | |
2417 | // if yes, stop the DMA transfer and send what we have so far to the client | |
2418 | if (MfSniffSend(2000)) { | |
2419 | // Reset everything - we missed some sniffed data anyway while the DMA was stopped | |
2420 | sniffCounter = 0; | |
2421 | data = dmaBuf; | |
2422 | maxDataLen = 0; | |
de77d4ac | 2423 | ReaderIsActive = false; |
2424 | TagIsActive = false; | |
7bc95e2e | 2425 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
39864b0b | 2426 | } |
39864b0b | 2427 | } |
7bc95e2e | 2428 | |
2429 | int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far | |
2430 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred | |
2431 | if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred | |
2432 | dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed | |
2433 | } else { | |
2434 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed | |
5cd9ec01 M |
2435 | } |
2436 | // test for length of buffer | |
7bc95e2e | 2437 | if(dataLen > maxDataLen) { // we are more behind than ever... |
2438 | maxDataLen = dataLen; | |
f71f4deb | 2439 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
5cd9ec01 | 2440 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); |
7bc95e2e | 2441 | break; |
b62a5a84 M |
2442 | } |
2443 | } | |
5cd9ec01 | 2444 | if(dataLen < 1) continue; |
b62a5a84 | 2445 | |
7bc95e2e | 2446 | // primary buffer was stopped ( <-- we lost data! |
5cd9ec01 M |
2447 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { |
2448 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
2449 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
55acbb2a | 2450 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
2451 | } |
2452 | // secondary buffer sets as primary, secondary buffer was stopped | |
2453 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
2454 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
b62a5a84 M |
2455 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
2456 | } | |
5cd9ec01 M |
2457 | |
2458 | LED_A_OFF(); | |
b62a5a84 | 2459 | |
7bc95e2e | 2460 | if (sniffCounter & 0x01) { |
b62a5a84 | 2461 | |
7bc95e2e | 2462 | if(!TagIsActive) { // no need to try decoding tag data if the reader is sending |
2463 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
2464 | if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { | |
2465 | LED_C_INV(); | |
de77d4ac | 2466 | if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break; |
b62a5a84 | 2467 | |
7bc95e2e | 2468 | /* And ready to receive another command. */ |
05ddb52c | 2469 | UartInit(receivedCmd, receivedCmdPar); |
7bc95e2e | 2470 | |
2471 | /* And also reset the demod code */ | |
2472 | DemodReset(); | |
2473 | } | |
2474 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
2475 | } | |
2476 | ||
2477 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending | |
2478 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
2479 | if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { | |
2480 | LED_C_INV(); | |
b62a5a84 | 2481 | |
de77d4ac | 2482 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break; |
39864b0b | 2483 | |
7bc95e2e | 2484 | // And ready to receive another response. |
2485 | DemodReset(); | |
48ece4a7 | 2486 | // And reset the Miller decoder including its (now outdated) input buffer |
2487 | UartInit(receivedCmd, receivedCmdPar); | |
7bc95e2e | 2488 | } |
2489 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
2490 | } | |
b62a5a84 M |
2491 | } |
2492 | ||
7bc95e2e | 2493 | previous_data = *data; |
2494 | sniffCounter++; | |
5cd9ec01 | 2495 | data++; |
d714d3ef | 2496 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 | 2497 | data = dmaBuf; |
b62a5a84 | 2498 | } |
7bc95e2e | 2499 | |
b62a5a84 M |
2500 | } // main cycle |
2501 | ||
2502 | DbpString("COMMAND FINISHED"); | |
2503 | ||
55acbb2a | 2504 | FpgaDisableSscDma(); |
39864b0b M |
2505 | MfSniffEnd(); |
2506 | ||
7bc95e2e | 2507 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); |
b62a5a84 | 2508 | LEDsoff(); |
3803d529 | 2509 | } |