1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
41 #include "proxmark3.h"
47 #include "iso14443a.h"
48 // Needed for CRC in emulation mode;
49 // same construction as in ISO 14443;
50 // different initial value (CRC_ICLASS)
51 #include "iso14443crc.h"
52 #include "iso15693tools.h"
53 #include "protocols.h"
54 #include "optimized_cipher.h"
55 #include "usb_cdc.h" // for usb_poll_validate_length
56 #include "fpgaloader.h"
58 static int timeout
= 4096;
60 //-----------------------------------------------------------------------------
61 // The software UART that receives commands from the reader, and its state
63 //-----------------------------------------------------------------------------
67 STATE_START_OF_COMMUNICATION
,
87 static RAMFUNC
int OutOfNDecoding(int bit
) {
91 if (!Uart
.bitBuffer
) {
92 Uart
.bitBuffer
= bit
^ 0xFF0;
96 Uart
.bitBuffer
^= bit
;
100 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
103 if (Uart.byteCnt > 15) { return true; }
109 if (Uart
.state
!= STATE_UNSYNCD
) {
112 if ((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
117 if (((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
122 if (bit
!= bitright
) {
127 // So, now we only have to deal with *bit*, lets see...
128 if (Uart
.posCnt
== 1) {
129 // measurement first half bitperiod
131 // Drop in first half means that we are either seeing
134 if (Uart
.nOutOfCnt
== 1) {
135 // End of Communication
136 Uart
.state
= STATE_UNSYNCD
;
138 if (Uart
.byteCnt
== 0) {
139 // Its not straightforward to show single EOFs
140 // So just leave it and do not return true
141 Uart
.output
[0] = 0xf0;
146 } else if (Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
147 // When not part of SOF or EOF, it is an error
148 Uart
.state
= STATE_UNSYNCD
;
154 // measurement second half bitperiod
155 // Count the bitslot we are in... (ISO 15693)
159 if (Uart
.dropPosition
) {
160 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
165 // It is an error if we already have seen a drop in current frame
166 Uart
.state
= STATE_UNSYNCD
;
169 Uart
.dropPosition
= Uart
.nOutOfCnt
;
176 if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
179 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
180 if (Uart
.dropPosition
== 4) {
181 Uart
.state
= STATE_RECEIVING
;
183 } else if (Uart
.dropPosition
== 3) {
184 Uart
.state
= STATE_RECEIVING
;
186 //Uart.output[Uart.byteCnt] = 0xdd;
189 Uart
.state
= STATE_UNSYNCD
;
192 Uart
.dropPosition
= 0;
196 if (!Uart
.dropPosition
) {
197 Uart
.state
= STATE_UNSYNCD
;
205 //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
206 //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
208 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
210 Uart
.dropPosition
= 0;
212 if (Uart
.bitCnt
== 8) {
213 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
220 } else if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
223 if (!Uart
.dropPosition
) {
224 Uart
.state
= STATE_UNSYNCD
;
229 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
234 Uart
.dropPosition
= 0;
239 Uart.output[Uart.byteCnt] = 0xAA;
241 Uart.output[Uart.byteCnt] = error & 0xFF;
243 Uart.output[Uart.byteCnt] = 0xAA;
245 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
247 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
249 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
251 Uart.output[Uart.byteCnt] = 0xAA;
258 bit
= Uart
.bitBuffer
& 0xf0;
260 bit
^= 0x0F; // drops become 1s ;-)
262 // should have been high or at least (4 * 128) / fc
263 // according to ISO this should be at least (9 * 128 + 20) / fc
264 if (Uart
.highCnt
== 8) {
265 // we went low, so this could be start of communication
266 // it turns out to be safer to choose a less significant
267 // syncbit... so we check whether the neighbour also represents the drop
268 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
269 Uart
.syncBit
= bit
& 8;
271 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
272 else if (bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
273 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
274 else if (bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
275 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
276 if (Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
279 // the first half bit period is expected in next sample
283 } else if (bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
286 Uart
.state
= STATE_START_OF_COMMUNICATION
;
290 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
291 Uart
.dropPosition
= 0;
297 } else if (Uart
.highCnt
< 8) {
306 //=============================================================================
308 //=============================================================================
313 DEMOD_START_OF_COMMUNICATION
,
314 DEMOD_START_OF_COMMUNICATION2
,
315 DEMOD_START_OF_COMMUNICATION3
,
319 DEMOD_END_OF_COMMUNICATION
,
320 DEMOD_END_OF_COMMUNICATION2
,
343 static RAMFUNC
int ManchesterDecoding(int v
) {
349 Demod
.buffer
= Demod
.buffer2
;
350 Demod
.buffer2
= Demod
.buffer3
;
353 if (Demod
.buff
< 3) {
358 if (Demod
.state
==DEMOD_UNSYNCD
) {
359 Demod
.output
[Demod
.len
] = 0xfa;
362 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
365 Demod
.syncBit
= 0x08;
372 Demod
.syncBit
= 0x04;
379 Demod
.syncBit
= 0x02;
382 if (bit
& 0x01 && Demod
.syncBit
) {
383 Demod
.syncBit
= 0x01;
388 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
389 Demod
.sub
= SUB_FIRST_HALF
;
393 if (Demod
.posCount
) {
394 //if (trigger) LED_A_OFF(); // Not useful in this case...
395 switch(Demod
.syncBit
) {
396 case 0x08: Demod
.samples
= 3; break;
397 case 0x04: Demod
.samples
= 2; break;
398 case 0x02: Demod
.samples
= 1; break;
399 case 0x01: Demod
.samples
= 0; break;
401 // SOF must be long burst... otherwise stay unsynced!!!
402 if (!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
403 Demod
.state
= DEMOD_UNSYNCD
;
406 // SOF must be long burst... otherwise stay unsynced!!!
407 if (!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
408 Demod
.state
= DEMOD_UNSYNCD
;
417 modulation
= bit
& Demod
.syncBit
;
418 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
422 if (Demod
.posCount
==0) {
425 Demod
.sub
= SUB_FIRST_HALF
;
427 Demod
.sub
= SUB_NONE
;
431 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
432 if (Demod.state!=DEMOD_ERROR_WAIT) {
433 Demod.state = DEMOD_ERROR_WAIT;
434 Demod.output[Demod.len] = 0xaa;
438 //else if (modulation) {
440 if (Demod
.sub
== SUB_FIRST_HALF
) {
441 Demod
.sub
= SUB_BOTH
;
443 Demod
.sub
= SUB_SECOND_HALF
;
445 } else if (Demod
.sub
== SUB_NONE
) {
446 if (Demod
.state
== DEMOD_SOF_COMPLETE
) {
447 Demod
.output
[Demod
.len
] = 0x0f;
449 Demod
.state
= DEMOD_UNSYNCD
;
453 Demod
.state
= DEMOD_ERROR_WAIT
;
456 /*if (Demod.state!=DEMOD_ERROR_WAIT) {
457 Demod.state = DEMOD_ERROR_WAIT;
458 Demod.output[Demod.len] = 0xaa;
463 switch(Demod
.state
) {
464 case DEMOD_START_OF_COMMUNICATION
:
465 if (Demod
.sub
== SUB_BOTH
) {
466 //Demod.state = DEMOD_MANCHESTER_D;
467 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
469 Demod
.sub
= SUB_NONE
;
471 Demod
.output
[Demod
.len
] = 0xab;
472 Demod
.state
= DEMOD_ERROR_WAIT
;
476 case DEMOD_START_OF_COMMUNICATION2
:
477 if (Demod
.sub
== SUB_SECOND_HALF
) {
478 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
480 Demod
.output
[Demod
.len
] = 0xab;
481 Demod
.state
= DEMOD_ERROR_WAIT
;
485 case DEMOD_START_OF_COMMUNICATION3
:
486 if (Demod
.sub
== SUB_SECOND_HALF
) {
487 // Demod.state = DEMOD_MANCHESTER_D;
488 Demod
.state
= DEMOD_SOF_COMPLETE
;
489 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
492 Demod
.output
[Demod
.len
] = 0xab;
493 Demod
.state
= DEMOD_ERROR_WAIT
;
497 case DEMOD_SOF_COMPLETE
:
498 case DEMOD_MANCHESTER_D
:
499 case DEMOD_MANCHESTER_E
:
500 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
501 // 00001111 = 1 (0 in 14443)
502 if (Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
504 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
505 Demod
.state
= DEMOD_MANCHESTER_D
;
506 } else if (Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
508 Demod
.shiftReg
>>= 1;
509 Demod
.state
= DEMOD_MANCHESTER_E
;
510 } else if (Demod
.sub
== SUB_BOTH
) {
511 Demod
.state
= DEMOD_MANCHESTER_F
;
513 Demod
.state
= DEMOD_ERROR_WAIT
;
518 case DEMOD_MANCHESTER_F
:
519 // Tag response does not need to be a complete byte!
520 if (Demod
.len
> 0 || Demod
.bitCount
> 0) {
521 if (Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
522 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
523 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
527 Demod
.state
= DEMOD_UNSYNCD
;
530 Demod
.output
[Demod
.len
] = 0xad;
531 Demod
.state
= DEMOD_ERROR_WAIT
;
536 case DEMOD_ERROR_WAIT
:
537 Demod
.state
= DEMOD_UNSYNCD
;
541 Demod
.output
[Demod
.len
] = 0xdd;
542 Demod
.state
= DEMOD_UNSYNCD
;
546 /*if (Demod.bitCount>=9) {
547 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
550 Demod.parityBits <<= 1;
551 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
556 if (Demod
.bitCount
>= 8) {
557 Demod
.shiftReg
>>= 1;
558 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
565 Demod
.output
[Demod
.len
] = 0xBB;
567 Demod
.output
[Demod
.len
] = error
& 0xFF;
569 Demod
.output
[Demod
.len
] = 0xBB;
571 Demod
.output
[Demod
.len
] = bit
& 0xFF;
573 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
576 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
578 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
580 Demod
.output
[Demod
.len
] = 0xBB;
587 } // end (state != UNSYNCED)
592 //=============================================================================
593 // Finally, a `sniffer' for iClass communication
594 // Both sides of communication!
595 //=============================================================================
597 //-----------------------------------------------------------------------------
598 // Record the sequence of commands sent by the reader to the tag, with
599 // triggering so that we start recording at the point that the tag is moved
601 //-----------------------------------------------------------------------------
602 void RAMFUNC
SnoopIClass(void) {
604 // We won't start recording the frames that we acquire until we trigger;
605 // a good trigger condition to get started is probably when we see a
606 // response from the tag.
607 //int triggered = false; // false to wait first for card
609 // The command (reader -> tag) that we're receiving.
610 // The length of a received command will in most cases be no more than 18 bytes.
611 // So 32 should be enough!
612 #define ICLASS_BUFFER_SIZE 32
613 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
614 // The response (tag -> reader) that we're receiving.
615 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
617 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
619 // free all BigBuf memory
621 // The DMA buffer, used to stream samples from the FPGA
622 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
626 iso14a_set_trigger(false);
633 // Count of samples received so far, so that we can include timing
634 // information in the trace buffer.
638 // Set up the demodulator for tag -> reader responses.
639 Demod
.output
= tagToReaderResponse
;
641 Demod
.state
= DEMOD_UNSYNCD
;
643 // Setup for the DMA.
644 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
646 lastRxCounter
= DMA_BUFFER_SIZE
;
647 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
649 // And the reader -> tag commands
650 memset(&Uart
, 0, sizeof(Uart
));
651 Uart
.output
= readerToTagCmd
;
652 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
653 Uart
.state
= STATE_UNSYNCD
;
655 // And put the FPGA in the appropriate mode
656 // Signal field is off with the appropriate LED
658 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
659 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
661 uint32_t time_0
= GetCountSspClk();
662 uint32_t time_start
= 0;
663 uint32_t time_stop
= 0;
670 // And now we loop, receiving samples.
674 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1);
675 if (behindBy
> maxBehindBy
) {
676 maxBehindBy
= behindBy
;
677 if (behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
678 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
682 if (behindBy
< 1) continue;
688 if (upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
689 upTo
-= DMA_BUFFER_SIZE
;
690 lastRxCounter
+= DMA_BUFFER_SIZE
;
691 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
692 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
699 decbyte
^= (1 << (3 - div
));
702 // FOR READER SIDE COMMUMICATION...
705 decbyter
^= (smpl
& 0x30);
709 if ((div
+ 1) % 2 == 0) {
711 if (OutOfNDecoding((smpl
& 0xF0) >> 4)) {
712 rsamples
= samples
- Uart
.samples
;
713 time_stop
= (GetCountSspClk()-time_0
) << 4;
716 //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
717 //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
718 uint8_t parity
[MAX_PARITY_SIZE
];
719 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
720 LogTrace(Uart
.output
, Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
722 /* And ready to receive another command. */
723 Uart
.state
= STATE_UNSYNCD
;
724 /* And also reset the demod code, which might have been */
725 /* false-triggered by the commands from the reader. */
726 Demod
.state
= DEMOD_UNSYNCD
;
730 time_start
= (GetCountSspClk()-time_0
) << 4;
737 if (ManchesterDecoding(smpl
& 0x0F)) {
738 time_stop
= (GetCountSspClk()-time_0
) << 4;
740 rsamples
= samples
- Demod
.samples
;
743 uint8_t parity
[MAX_PARITY_SIZE
];
744 GetParity(Demod
.output
, Demod
.len
, parity
);
745 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
747 // And ready to receive another response.
748 memset(&Demod
, 0, sizeof(Demod
));
749 Demod
.output
= tagToReaderResponse
;
750 Demod
.state
= DEMOD_UNSYNCD
;
753 time_start
= (GetCountSspClk()-time_0
) << 4;
760 if (BUTTON_PRESS()) {
761 DbpString("cancelled_a");
766 DbpString("COMMAND FINISHED");
768 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
769 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
772 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
773 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
774 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
778 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
780 for (i
= 0; i
< 8; i
++) {
781 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
785 //-----------------------------------------------------------------------------
786 // Wait for commands from reader
787 // Stop when button is pressed
788 // Or return true when command is captured
789 //-----------------------------------------------------------------------------
790 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
792 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
793 // only, since we are receiving, not transmitting).
794 // Signal field is off with the appropriate LED
796 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
798 // Now run a `software UART' on the stream of incoming samples.
799 Uart
.output
= received
;
800 Uart
.byteCntMax
= maxLen
;
801 Uart
.state
= STATE_UNSYNCD
;
806 if (BUTTON_PRESS()) return false;
808 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
809 AT91C_BASE_SSC
->SSC_THR
= 0x00;
811 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
812 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
814 if (OutOfNDecoding(b
& 0x0f)) {
822 static uint8_t encode4Bits(const uint8_t b
) {
824 // OTA, the least significant bits first
826 // 1 - Bit value to send
827 // 2 - Reversed (big-endian)
833 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
834 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
835 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
836 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
837 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
838 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
839 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
840 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
841 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
842 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
843 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
844 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
845 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
846 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
847 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
848 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
853 //-----------------------------------------------------------------------------
854 // Prepare tag messages
855 //-----------------------------------------------------------------------------
856 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
) {
859 * SOF comprises 3 parts;
860 * * An unmodulated time of 56.64 us
861 * * 24 pulses of 423.75 kHz (fc/32)
862 * * A logic 1, which starts with an unmodulated time of 18.88us
863 * followed by 8 pulses of 423.75kHz (fc/32)
866 * EOF comprises 3 parts:
867 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
869 * - 24 pulses of fc/32
870 * - An unmodulated time of 56.64 us
873 * A logic 0 starts with 8 pulses of fc/32
874 * followed by an unmodulated time of 256/fc (~18,88us).
876 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
877 * 8 pulses of fc/32 (also 18.88us)
879 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
881 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
882 * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
884 * In this mode the SOF can be written as 00011101 = 0x1D
885 * The EOF can be written as 10111000 = 0xb8
896 ToSend
[++ToSendMax
] = 0x1D;
898 for (i
= 0; i
< len
; i
++) {
900 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); // Least significant half
901 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF); // Most significant half
905 ToSend
[++ToSendMax
] = 0xB8;
906 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
907 // Convert from last byte pos to length
912 static void CodeIClassTagSOF() {
913 //So far a dummy implementation, not used
914 //int lastProxToAirDuration =0;
918 ToSend
[++ToSendMax
] = 0x1D;
919 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
921 // Convert from last byte pos to length
925 static void AppendCrc(uint8_t *data
, int len
) {
926 ComputeCrc14443(CRC_ICLASS
, data
, len
, data
+len
, data
+len
+1);
929 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
) {
930 int i
= 0, d
= 0;//, u = 0, d = 0;
933 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
936 AT91C_BASE_SSC
->SSC_THR
= 0x00;
937 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
938 while (!BUTTON_PRESS()) {
939 if ((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
940 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
942 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
955 AT91C_BASE_SSC
->SSC_THR
= b
;
958 // if (i > respLen +4) break;
959 if (i
> respLen
+ 1) break;
966 #define MODE_SIM_CSN 0
967 #define MODE_EXIT_AFTER_MAC 1
968 #define MODE_FULLSIM 2
971 * @brief Does the actual simulation
972 * @param csn - csn to use
973 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
975 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
) {
976 // free eventually allocated BigBuf memory
977 BigBuf_free_keep_EM();
980 // State cipher_state_reserve;
981 uint8_t *csn
= BigBuf_get_EM_addr();
982 uint8_t *emulator
= csn
;
983 uint8_t sof_data
[] = { 0x0F} ;
984 // CSN followed by two CRC bytes
985 uint8_t anticoll_data
[10] = { 0 };
986 uint8_t csn_data
[10] = { 0 };
987 memcpy(csn_data
, csn
, sizeof(csn_data
));
988 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn
[0], csn
[1], csn
[2], csn
[3], csn
[4], csn
[5], csn
[6], csn
[7]);
990 // Construct anticollision-CSN
991 rotateCSN(csn_data
, anticoll_data
);
993 // Compute CRC on both CSNs
994 ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]);
995 ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]);
997 uint8_t diversified_key
[8] = { 0 };
999 uint8_t card_challenge_data
[8] = { 0x00 };
1000 if (simulationMode
== MODE_FULLSIM
) {
1001 //The diversified key should be stored on block 3
1002 //Get the diversified key from emulator memory
1003 memcpy(diversified_key
, emulator
+ (8*3), 8);
1004 //Card challenge, a.k.a e-purse is on block 2
1005 memcpy(card_challenge_data
, emulator
+ (8 * 2), 8);
1006 //Precalculate the cipher state, feeding it the CC
1007 cipher_state
= opt_doTagMAC_1(card_challenge_data
, diversified_key
);
1014 // Tag anticoll. CSN
1015 // Reader 81 anticoll. CSN
1018 uint8_t *modulated_response
;
1019 int modulated_response_size
= 0;
1020 uint8_t *trace_data
= NULL
;
1021 int trace_data_size
= 0;
1023 // Respond SOF -- takes 1 bytes
1024 uint8_t *resp_sof
= BigBuf_malloc(2);
1027 // Anticollision CSN (rotated CSN)
1028 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1029 uint8_t *resp_anticoll
= BigBuf_malloc(28);
1030 int resp_anticoll_len
;
1033 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1034 uint8_t *resp_csn
= BigBuf_malloc(30);
1038 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1039 uint8_t *resp_cc
= BigBuf_malloc(20);
1042 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1045 // Prepare card messages
1048 // First card answer: SOF
1050 memcpy(resp_sof
, ToSend
, ToSendMax
);
1051 resp_sof_Len
= ToSendMax
;
1053 // Anticollision CSN
1054 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1055 memcpy(resp_anticoll
, ToSend
, ToSendMax
);
1056 resp_anticoll_len
= ToSendMax
;
1059 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1060 memcpy(resp_csn
, ToSend
, ToSendMax
);
1061 resp_csn_len
= ToSendMax
;
1064 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1065 memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len
= ToSendMax
;
1067 //This is used for responding to READ-block commands or other data which is dynamically generated
1068 //First the 'trace'-data, not encoded for FPGA
1069 uint8_t *data_generic_trace
= BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1070 //Then storage for the modulated data
1071 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1072 uint8_t *data_response
= BigBuf_malloc( (8+2) * 2 + 2);
1074 // Start from off (no field generated)
1075 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1077 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1080 // We need to listen to the high-frequency, peak-detected path.
1081 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1082 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1084 // To control where we are in the protocol
1086 uint32_t time_0
= GetCountSspClk();
1087 uint32_t t2r_time
=0;
1088 uint32_t r2t_time
=0;
1091 bool buttonPressed
= false;
1092 uint8_t response_delay
= 1;
1097 // Can be used to get a trigger for an oscilloscope..
1100 if (!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1101 buttonPressed
= true;
1104 r2t_time
= GetCountSspClk();
1108 // Okay, look at the command now.
1109 if (receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1110 // Reader in anticollission phase
1111 modulated_response
= resp_sof
;
1112 modulated_response_size
= resp_sof_Len
; //order = 1;
1113 trace_data
= sof_data
;
1114 trace_data_size
= sizeof(sof_data
);
1115 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) {
1116 // Reader asks for anticollission CSN
1117 modulated_response
= resp_anticoll
;
1118 modulated_response_size
= resp_anticoll_len
; //order = 2;
1119 trace_data
= anticoll_data
;
1120 trace_data_size
= sizeof(anticoll_data
);
1121 //DbpString("Reader requests anticollission CSN:");
1122 } else if (receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1123 // Reader selects anticollission CSN.
1124 // Tag sends the corresponding real CSN
1125 modulated_response
= resp_csn
;
1126 modulated_response_size
= resp_csn_len
; //order = 3;
1127 trace_data
= csn_data
;
1128 trace_data_size
= sizeof(csn_data
);
1129 //DbpString("Reader selects anticollission CSN:");
1130 } else if (receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) {
1131 // Read e-purse (88 02)
1132 modulated_response
= resp_cc
;
1133 modulated_response_size
= resp_cc_len
; //order = 4;
1134 trace_data
= card_challenge_data
;
1135 trace_data_size
= sizeof(card_challenge_data
);
1137 } else if (receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1138 // Reader random and reader MAC!!!
1139 if (simulationMode
== MODE_FULLSIM
) {
1140 //NR, from reader, is in receivedCmd +1
1141 opt_doTagMAC_2(cipher_state
, receivedCmd
+1, data_generic_trace
, diversified_key
);
1143 trace_data
= data_generic_trace
;
1144 trace_data_size
= 4;
1145 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1146 memcpy(data_response
, ToSend
, ToSendMax
);
1147 modulated_response
= data_response
;
1148 modulated_response_size
= ToSendMax
;
1149 response_delay
= 0; //We need to hurry here... (but maybe not too much... ??)
1151 } else { //Not fullsim, we don't respond
1152 // We do not know what to answer, so lets keep quiet
1153 modulated_response
= resp_sof
;
1154 modulated_response_size
= 0;
1156 trace_data_size
= 0;
1157 if (simulationMode
== MODE_EXIT_AFTER_MAC
) {
1159 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1160 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1161 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1162 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1163 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1164 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1165 if (reader_mac_buf
!= NULL
) {
1166 memcpy(reader_mac_buf
, receivedCmd
+1, 8);
1172 } else if (receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1173 // Reader ends the session
1174 modulated_response
= resp_sof
;
1175 modulated_response_size
= 0; //order = 0;
1177 trace_data_size
= 0;
1178 } else if (simulationMode
== MODE_FULLSIM
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4) {
1180 uint16_t blk
= receivedCmd
[1];
1182 memcpy(data_generic_trace
, emulator
+ (blk
<< 3), 8);
1184 AppendCrc(data_generic_trace
, 8);
1185 trace_data
= data_generic_trace
;
1186 trace_data_size
= 10;
1187 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1188 memcpy(data_response
, ToSend
, ToSendMax
);
1189 modulated_response
= data_response
;
1190 modulated_response_size
= ToSendMax
;
1191 } else if (receivedCmd
[0] == ICLASS_CMD_UPDATE
&& simulationMode
== MODE_FULLSIM
) {
1192 //Probably the reader wants to update the nonce. Let's just ignore that for now.
1193 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1194 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1195 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1198 memcpy(data_generic_trace
, receivedCmd
+2, 8);
1200 AppendCrc(data_generic_trace
, 8);
1201 trace_data
= data_generic_trace
;
1202 trace_data_size
= 10;
1203 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1204 memcpy(data_response
, ToSend
, ToSendMax
);
1205 modulated_response
= data_response
;
1206 modulated_response_size
= ToSendMax
;
1207 } else if (receivedCmd
[0] == ICLASS_CMD_PAGESEL
) {
1209 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1210 //Chips with a single page will not answer to this command
1211 // It appears we're fine ignoring this.
1212 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1214 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1215 // Never seen this command before
1216 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1218 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1219 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1220 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1222 modulated_response
= resp_sof
;
1223 modulated_response_size
= 0; //order = 0;
1225 trace_data_size
= 0;
1228 if (cmdsRecvd
> 100) {
1229 //DbpString("100 commands later...");
1235 A legit tag has about 380us delay between reader EOT and tag SOF.
1237 if (modulated_response_size
> 0) {
1238 SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
);
1239 t2r_time
= GetCountSspClk();
1242 uint8_t parity
[MAX_PARITY_SIZE
];
1243 GetParity(receivedCmd
, len
, parity
);
1244 LogTrace(receivedCmd
, len
, (r2t_time
-time_0
) << 4, (r2t_time
-time_0
) << 4, parity
, true);
1246 if (trace_data
!= NULL
) {
1247 GetParity(trace_data
, trace_data_size
, parity
);
1248 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, false);
1250 if (!get_tracing()) {
1251 DbpString("Trace full");
1256 //Dbprintf("%x", cmdsRecvd);
1263 DbpString("Button pressed");
1265 return buttonPressed
;
1269 * @brief SimulateIClass simulates an iClass card.
1270 * @param arg0 type of simulation
1271 * - 0 uses the first 8 bytes in usb data as CSN
1272 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
1273 * in the usb data. This mode collects MAC from the reader, in order to do an offline
1274 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
1275 * - Other : Uses the default CSN (031fec8af7ff12e0)
1276 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
1280 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) {
1281 uint32_t simType
= arg0
;
1282 uint32_t numberOfCSNS
= arg1
;
1283 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1285 // Enable and clear the trace
1288 //Use the emulator memory for SIM
1289 uint8_t *emulator
= BigBuf_get_EM_addr();
1292 // Use the CSN from commandline
1293 memcpy(emulator
, datain
, 8);
1294 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1295 } else if (simType
== 1) {
1297 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1298 // Use the CSN from commandline
1299 memcpy(emulator
, csn_crc
, 8);
1300 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1301 } else if (simType
== 2) {
1302 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1303 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1304 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1305 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1306 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1308 for ( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++) {
1309 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1310 memcpy(emulator
, datain
+(i
*8), 8);
1311 if (doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8)) {
1312 cmd_send(CMD_ACK
, CMD_SIMULATE_TAG_ICLASS
, i
, 0, mac_responses
, i
*8);
1313 return; // Button pressed
1316 cmd_send(CMD_ACK
, CMD_SIMULATE_TAG_ICLASS
, i
, 0, mac_responses
, i
*8);
1317 } else if (simType
== 3) {
1318 //This is 'full sim' mode, where we use the emulator storage for data.
1319 doIClassSimulation(MODE_FULLSIM
, NULL
);
1321 // We may want a mode here where we hardcode the csns to use (from proxclone).
1322 // That will speed things up a little, but not required just yet.
1323 Dbprintf("The mode is not implemented, reserved for future use");
1325 Dbprintf("Done...");
1332 //-----------------------------------------------------------------------------
1333 // Transmit the command (to the tag) that was placed in ToSend[].
1334 //-----------------------------------------------------------------------------
1335 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
) {
1337 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1338 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1339 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1342 if (*wait
< 10) *wait
= 10;
1344 for (c
= 0; c
< *wait
;) {
1345 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1346 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1349 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1350 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1358 bool firstpart
= true;
1361 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1363 // DOUBLE THE SAMPLES!
1365 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1367 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1370 if (sendbyte
== 0xff) {
1373 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1374 firstpart
= !firstpart
;
1380 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1381 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1386 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1390 //-----------------------------------------------------------------------------
1391 // Prepare iClass reader command to send to FPGA
1392 //-----------------------------------------------------------------------------
1393 void CodeIClassCommand(const uint8_t *cmd
, int len
) {
1398 // Start of Communication: 1 out of 4
1399 ToSend
[++ToSendMax
] = 0xf0;
1400 ToSend
[++ToSendMax
] = 0x00;
1401 ToSend
[++ToSendMax
] = 0x0f;
1402 ToSend
[++ToSendMax
] = 0x00;
1404 // Modulate the bytes
1405 for (i
= 0; i
< len
; i
++) {
1407 for (j
= 0; j
< 4; j
++) {
1408 for (k
= 0; k
< 4; k
++) {
1410 ToSend
[++ToSendMax
] = 0x0f;
1412 ToSend
[++ToSendMax
] = 0x00;
1419 // End of Communication
1420 ToSend
[++ToSendMax
] = 0x00;
1421 ToSend
[++ToSendMax
] = 0x00;
1422 ToSend
[++ToSendMax
] = 0xf0;
1423 ToSend
[++ToSendMax
] = 0x00;
1425 // Convert from last character reference to length
1429 static void ReaderTransmitIClass(uint8_t *frame
, int len
) {
1433 // This is tied to other size changes
1434 CodeIClassCommand(frame
, len
);
1437 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1441 // Store reader command in buffer
1442 uint8_t par
[MAX_PARITY_SIZE
];
1443 GetParity(frame
, len
, par
);
1444 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1447 //-----------------------------------------------------------------------------
1448 // Wait a certain time for tag response
1449 // If a response is captured return true
1450 // If it takes too long return false
1451 //-----------------------------------------------------------------------------
1452 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) {
1454 // buffer needs to be 512 bytes
1457 // Set FPGA mode to "reader listen mode", no modulation (listen
1458 // only, since we are receiving, not transmitting).
1459 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1461 // Now get the answer from the card
1462 Demod
.output
= receivedResponse
;
1464 Demod
.state
= DEMOD_UNSYNCD
;
1467 if (elapsed
) *elapsed
= 0;
1475 if (BUTTON_PRESS()) return false;
1477 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1478 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1479 if (elapsed
) (*elapsed
)++;
1481 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1487 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1491 if (ManchesterDecoding(b
& 0x0f)) {
1499 static int ReaderReceiveIClass(uint8_t *receivedAnswer
) {
1501 if (!GetIClassAnswer(receivedAnswer
, 160, &samples
, 0)) {
1504 rsamples
+= samples
;
1505 uint8_t parity
[MAX_PARITY_SIZE
];
1506 GetParity(receivedAnswer
, Demod
.len
, parity
);
1507 LogTrace(receivedAnswer
, Demod
.len
, rsamples
, rsamples
, parity
, false);
1508 if (samples
== 0) return false;
1512 static void setupIclassReader() {
1513 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1514 // Reset trace buffer
1519 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1520 // Start from off (no field generated)
1521 // Signal field is off with the appropriate LED
1523 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1526 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1528 // Now give it time to spin up.
1529 // Signal field is on with the appropriate LED
1530 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1536 static bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
) {
1537 while (retries
-- > 0) {
1538 ReaderTransmitIClass(command
, cmdsize
);
1539 if (expected_size
== ReaderReceiveIClass(resp
)) {
1543 return false;//Error
1547 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1548 * @param card_data where the CSN and CC are stored for return
1551 * 2 = Got CSN and CC
1553 static uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
) {
1554 static uint8_t act_all
[] = { 0x0a };
1555 //static uint8_t identify[] = { 0x0c };
1556 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1557 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1558 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1560 readcheck_cc
[0] = 0x18;
1562 readcheck_cc
[0] = 0x88;
1564 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1566 uint8_t read_status
= 0;
1569 ReaderTransmitIClass(act_all
, 1);
1571 if (!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1573 ReaderTransmitIClass(identify
, 1);
1574 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1575 uint8_t len
= ReaderReceiveIClass(resp
);
1576 if (len
!= 10) return read_status
;//Fail
1578 //Copy the Anti-collision CSN to our select-packet
1579 memcpy(&select
[1], resp
, 8);
1581 ReaderTransmitIClass(select
, sizeof(select
));
1582 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1583 len
= ReaderReceiveIClass(resp
);
1584 if (len
!= 10) return read_status
;//Fail
1586 //Success - level 1, we got CSN
1587 //Save CSN in response data
1588 memcpy(card_data
, resp
, 8);
1590 //Flag that we got to at least stage 1, read CSN
1593 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1594 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1595 if (ReaderReceiveIClass(resp
) == 8) {
1596 //Save CC (e-purse) in response data
1597 memcpy(card_data
+8, resp
, 8);
1604 static uint8_t handshakeIclassTag(uint8_t *card_data
) {
1605 return handshakeIclassTag_ext(card_data
, false);
1609 // Reader iClass Anticollission
1610 void ReaderIClass(uint8_t arg0
) {
1612 uint8_t card_data
[6 * 8] = {0};
1613 memset(card_data
, 0xFF, sizeof(card_data
));
1614 uint8_t last_csn
[8] = {0,0,0,0,0,0,0,0};
1615 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1616 memset(resp
, 0xFF, sizeof(resp
));
1617 //Read conf block CRC(0x01) => 0xfa 0x22
1618 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x01, 0xfa, 0x22};
1619 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1620 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x05, 0xde, 0x64};
1623 uint8_t result_status
= 0;
1624 // flag to read until one tag is found successfully
1625 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1626 // flag to only try 5 times to find one tag then return
1627 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1628 // if neither abort_after_read nor try_once then continue reading until button pressed.
1630 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1631 // test flags for what blocks to be sure to read
1632 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1633 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1634 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1637 setupIclassReader();
1639 uint16_t tryCnt
= 0;
1640 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1641 while (!userCancelled
) {
1642 // if only looking for one card try 2 times if we missed it the first time
1643 if (try_once
&& tryCnt
> 2) {
1647 if (!get_tracing()) {
1648 DbpString("Trace full");
1653 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1655 if (read_status
== 0) continue;
1656 if (read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1657 if (read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
| FLAG_ICLASS_READER_CC
;
1659 // handshakeIclass returns CSN|CC, but the actual block
1660 // layout is CSN|CONFIG|CC, so here we reorder the data,
1661 // moving CC forward 8 bytes
1662 memcpy(card_data
+16, card_data
+8, 8);
1663 //Read block 1, config
1664 if (flagReadConfig
) {
1665 if (sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10)) {
1666 result_status
|= FLAG_ICLASS_READER_CONF
;
1667 memcpy(card_data
+8, resp
, 8);
1669 Dbprintf("Failed to dump config block");
1675 if (sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10)) {
1676 result_status
|= FLAG_ICLASS_READER_AA
;
1677 memcpy(card_data
+ (8*5), resp
, 8);
1679 //Dbprintf("Failed to dump AA block");
1684 // 1 : Configuration
1686 // (3,4 write-only, kc and kd)
1687 // 5 Application issuer area
1689 //Then we can 'ship' back the 8 * 6 bytes of data,
1690 // with 0xFF:s in block 3 and 4.
1693 //Send back to client, but don't bother if we already sent this -
1694 // only useful if looping in arm (not try_once && not abort_after_read)
1695 if (memcmp(last_csn
, card_data
, 8) != 0) {
1696 // If caller requires that we get Conf, CC, AA, continue until we got it
1697 if ( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1698 cmd_send(CMD_ACK
, result_status
, 0, 0, card_data
, sizeof(card_data
));
1699 if (abort_after_read
) {
1700 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1705 //Save that we already sent this....
1706 memcpy(last_csn
, card_data
, 8);
1711 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1713 if (userCancelled
) {
1714 cmd_send(CMD_ACK
, 0xFF, 0, 0, card_data
, 0);
1716 cmd_send(CMD_ACK
, 0, 0, 0, card_data
, 0);
1721 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1723 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1724 uint16_t block_crc_LUT
[255] = {0};
1726 //Generate a lookup table for block crc
1727 for (int block
= 0; block
< 255; block
++){
1729 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1731 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1733 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1734 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1737 uint8_t cardsize
= 0;
1740 static struct memory_t
{
1748 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1750 setupIclassReader();
1753 while (!BUTTON_PRESS()) {
1757 if (!get_tracing()) {
1758 DbpString("Trace full");
1762 uint8_t read_status
= handshakeIclassTag(card_data
);
1763 if (read_status
< 2) continue;
1765 //for now replay captured auth (as cc not updated)
1766 memcpy(check
+5, MAC
, 4);
1768 if (!sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 5)) {
1769 Dbprintf("Error: Authentication Fail!");
1773 //first get configuration block (block 1)
1774 crc
= block_crc_LUT
[1];
1777 read
[3] = crc
& 0xff;
1779 if (!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10)) {
1780 Dbprintf("Dump config (block 1) failed");
1785 memory
.k16
= (mem
& 0x80);
1786 memory
.book
= (mem
& 0x20);
1787 memory
.k2
= (mem
& 0x8);
1788 memory
.lockauth
= (mem
& 0x2);
1789 memory
.keyaccess
= (mem
& 0x1);
1791 cardsize
= memory
.k16
? 255 : 32;
1793 //Set card_data to all zeroes, we'll fill it with data
1794 memset(card_data
, 0x0, USB_CMD_DATA_SIZE
);
1795 uint8_t failedRead
= 0;
1796 uint32_t stored_data_length
= 0;
1797 //then loop around remaining blocks
1798 for (int block
= 0; block
< cardsize
; block
++) {
1800 crc
= block_crc_LUT
[block
];
1802 read
[3] = crc
& 0xff;
1804 if (sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10)) {
1805 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1806 block
, resp
[0], resp
[1], resp
[2],
1807 resp
[3], resp
[4], resp
[5],
1810 //Fill up the buffer
1811 memcpy(card_data
+stored_data_length
, resp
, 8);
1812 stored_data_length
+= 8;
1813 if (stored_data_length
+8 > USB_CMD_DATA_SIZE
) {
1814 //Time to send this off and start afresh
1816 stored_data_length
,//data length
1817 failedRead
,//Failed blocks?
1819 card_data
, stored_data_length
);
1821 stored_data_length
= 0;
1827 stored_data_length
+= 8;//Otherwise, data becomes misaligned
1828 Dbprintf("Failed to dump block %d", block
);
1832 //Send off any remaining data
1833 if (stored_data_length
> 0) {
1835 stored_data_length
,//data length
1836 failedRead
,//Failed blocks?
1839 stored_data_length
);
1841 //If we got here, let's break
1844 //Signal end of transmission
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1856 void iClass_Authentication(uint8_t *MAC
) {
1857 uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1858 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1859 memcpy(check
+5, MAC
, 4);
1861 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1862 cmd_send(CMD_ACK
,isOK
, 0, 0, 0, 0);
1865 static bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1866 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1868 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1869 readcmd
[2] = rdCrc
>> 8;
1870 readcmd
[3] = rdCrc
& 0xff;
1871 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1874 //readcmd[1] = blockNo;
1875 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1876 memcpy(readdata
, resp
, sizeof(resp
));
1881 void iClass_ReadBlk(uint8_t blockno
) {
1882 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1884 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1885 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1886 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1889 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1890 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1895 uint8_t *dataout
= BigBuf_malloc(255*8);
1896 if (dataout
== NULL
) {
1897 Dbprintf("out of memory");
1898 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1900 cmd_send(CMD_ACK
, 0, 1, 0, 0, 0);
1904 memset(dataout
, 0xFF, 255*8);
1906 for ( ; blkCnt
< numblks
; blkCnt
++) {
1907 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1908 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1909 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1911 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1915 memcpy(dataout
+ (blkCnt
*8), readblockdata
, 8);
1917 //return pointer to dump memory in arg3
1918 cmd_send(CMD_ACK
, isOK
, blkCnt
, BigBuf_max_traceLen(), 0, 0);
1919 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1924 static bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1925 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1926 //uint8_t readblockdata[10];
1927 //write[1] = blockNo;
1928 memcpy(write
+2, data
, 12); // data + mac
1929 char *wrCmd
= (char *)(write
+1);
1930 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1931 write
[14] = wrCrc
>> 8;
1932 write
[15] = wrCrc
& 0xff;
1933 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1936 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1937 if (isOK
) { //if reader responded correctly
1938 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1939 if (memcmp(write
+2, resp
, 8)) { //if response is not equal to write values
1940 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
1942 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1949 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
1950 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
1952 Dbprintf("Write block [%02x] successful", blockNo
);
1954 Dbprintf("Write block [%02x] failed", blockNo
);
1956 cmd_send(CMD_ACK
, isOK
, 0, 0, 0, 0);
1957 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1960 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
1963 int total_block
= (endblock
- startblock
) + 1;
1964 for (i
= 0; i
< total_block
; i
++) {
1966 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1967 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1970 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1971 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1974 Dbprintf("Write block [%02x] failed", i
+ startblock
);
1978 if (written
== total_block
)
1979 Dbprintf("Clone complete");
1981 Dbprintf("Clone incomplete");
1983 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
1984 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);