1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
22 * Function to do a modulation and then get samples.
28 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
31 int divisor_used
= 95; // 125 KHz
32 // see if 'h' was specified
34 if (command
[strlen((char *) command
) - 1] == 'h')
35 divisor_used
= 88; // 134.8 KHz
37 sample_config sc
= { 0,0,1, divisor_used
, 0};
38 setSamplingConfig(&sc
);
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
45 LFSetupFPGAForADC(sc
.divisor
, 1);
47 // And a little more time for the tag to fully power up
50 // now modulate the reader field
51 while(*command
!= '\0' && *command
!= ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
54 SpinDelayUs(delay_off
);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
59 if(*(command
++) == '0')
60 SpinDelayUs(period_0
);
62 SpinDelayUs(period_1
);
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
66 SpinDelayUs(delay_off
);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
72 DoAcquisition_config(false);
77 /* blank r/w tag data stream
78 ...0000000000000000 01111111
79 1010101010101010101010101010101010101010101010101010101010101010
82 101010101010101[0]000...
84 [5555fe852c5555555555555555fe0000]
88 // some hardcoded initial params
89 // when we read a TI tag we sample the zerocross line at 2Mhz
90 // TI tags modulate a 1 as 16 cycles of 123.2Khz
91 // TI tags modulate a 0 as 16 cycles of 134.2Khz
92 #define FSAMPLE 2000000
96 signed char *dest
= (signed char *)BigBuf_get_addr();
97 uint16_t n
= BigBuf_max_traceLen();
98 // 128 bit shift register [shift3:shift2:shift1:shift0]
99 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
101 int i
, cycles
=0, samples
=0;
102 // how many sample points fit in 16 cycles of each frequency
103 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
104 // when to tell if we're close enough to one freq or another
105 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
107 // TI tags charge at 134.2Khz
108 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
111 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
112 // connects to SSP_DIN and the SSP_DOUT logic level controls
113 // whether we're modulating the antenna (high)
114 // or listening to the antenna (low)
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
117 // get TI tag data into the buffer
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
122 for (i
=0; i
<n
-1; i
++) {
123 // count cycles by looking for lo to hi zero crossings
124 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
126 // after 16 cycles, measure the frequency
129 samples
=i
-samples
; // number of samples in these 16 cycles
131 // TI bits are coming to us lsb first so shift them
132 // right through our 128 bit right shift register
133 shift0
= (shift0
>>1) | (shift1
<< 31);
134 shift1
= (shift1
>>1) | (shift2
<< 31);
135 shift2
= (shift2
>>1) | (shift3
<< 31);
138 // check if the cycles fall close to the number
139 // expected for either the low or high frequency
140 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
141 // low frequency represents a 1
143 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
144 // high frequency represents a 0
146 // probably detected a gay waveform or noise
147 // use this as gaydar or discard shift register and start again
148 shift3
= shift2
= shift1
= shift0
= 0;
152 // for each bit we receive, test if we've detected a valid tag
154 // if we see 17 zeroes followed by 6 ones, we might have a tag
155 // remember the bits are backwards
156 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
157 // if start and end bytes match, we have a tag so break out of the loop
158 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
159 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
167 // if flag is set we have a tag
169 DbpString("Info: No valid tag detected.");
171 // put 64 bit data into shift1 and shift0
172 shift0
= (shift0
>>24) | (shift1
<< 8);
173 shift1
= (shift1
>>24) | (shift2
<< 8);
175 // align 16 bit crc into lower half of shift2
176 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
178 // if r/w tag, check ident match
179 if (shift3
& (1<<15) ) {
180 DbpString("Info: TI tag is rewriteable");
181 // only 15 bits compare, last bit of ident is not valid
182 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
183 DbpString("Error: Ident mismatch!");
185 DbpString("Info: TI tag ident is valid");
188 DbpString("Info: TI tag is readonly");
191 // WARNING the order of the bytes in which we calc crc below needs checking
192 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
193 // bytes in reverse or something
197 crc
= update_crc16(crc
, (shift0
)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
201 crc
= update_crc16(crc
, (shift1
)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
206 Dbprintf("Info: Tag data: %x%08x, crc=%x",
207 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
208 if (crc
!= (shift2
&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
211 DbpString("Info: CRC is good");
216 void WriteTIbyte(uint8_t b
)
220 // modulate 8 bits out to the antenna
224 // stop modulating antenna
231 // stop modulating antenna
241 void AcquireTiType(void)
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
246 #define TIBUFLEN 1250
249 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
250 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
254 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
258 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
260 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC
->SSC_CMR
= 12;
267 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
269 AT91C_BASE_SSC
->SSC_TCMR
= 0;
270 AT91C_BASE_SSC
->SSC_TFMR
= 0;
277 // Charge TI tag for 50ms.
280 // stop modulating antenna and listen
287 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
288 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
289 i
++; if(i
>= TIBUFLEN
) break;
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
296 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
298 char *dest
= (char *)BigBuf_get_addr();
301 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
302 for (j
=0; j
<32; j
++) {
303 if(BigBuf
[i
] & (1 << j
)) {
312 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
313 // if crc provided, it will be written with the data verbatim (even if bogus)
314 // if not provided a valid crc will be computed from the data and written.
315 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
317 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
319 crc
= update_crc16(crc
, (idlo
)&0xff);
320 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
323 crc
= update_crc16(crc
, (idhi
)&0xff);
324 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
328 Dbprintf("Writing to tag: %x%08x, crc=%x",
329 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
342 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb firts
352 // finish with 15ms programming time
356 SpinDelay(50); // charge time
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo
)&0xff );
361 WriteTIbyte( (idlo
>>8 )&0xff );
362 WriteTIbyte( (idlo
>>16)&0xff );
363 WriteTIbyte( (idlo
>>24)&0xff );
364 WriteTIbyte( (idhi
)&0xff );
365 WriteTIbyte( (idhi
>>8 )&0xff );
366 WriteTIbyte( (idhi
>>16)&0xff );
367 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc
)&0xff ); // crc lo
369 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
373 SpinDelay(50); // programming time
377 // get TI tag data into the buffer
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
381 DbpString("Now use tiread to check");
384 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
387 uint8_t *tab
= BigBuf_get_addr();
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
392 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
394 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
395 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
397 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
398 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
402 //wait until SSC_CLK goes HIGH
403 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
405 DbpString("Stopped");
420 //wait until SSC_CLK goes LOW
421 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
423 DbpString("Stopped");
441 #define DEBUG_FRAME_CONTENTS 1
442 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
446 // compose fc/8 fc/10 waveform (FSK2)
447 static void fc(int c
, int *n
)
449 uint8_t *dest
= BigBuf_get_addr();
452 // for when we want an fc8 pattern every 4 logical bits
464 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
466 for (idx
=0; idx
<6; idx
++) {
478 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
480 for (idx
=0; idx
<5; idx
++) {
494 // compose fc/X fc/Y waveform (FSKx)
495 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
497 uint8_t *dest
= BigBuf_get_addr();
498 uint8_t halfFC
= fc
/2;
499 uint8_t wavesPerClock
= clock
/fc
;
500 uint8_t mod
= clock
% fc
; //modifier
501 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
502 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
503 // loop through clock - step field clock
504 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
505 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
506 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
507 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
510 if (mod
>0) (*modCnt
)++;
511 if ((mod
>0) && modAdjOk
){ //fsk2
512 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
513 memset(dest
+(*n
), 0, fc
-halfFC
);
514 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
518 if (mod
>0 && !modAdjOk
){ //fsk1
519 memset(dest
+(*n
), 0, mod
-(mod
/2));
520 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
525 // prepare a waveform pattern in the buffer based on the ID given then
526 // simulate a HID tag until the button is pressed
527 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
531 HID tag bitstream format
532 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
533 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
534 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
535 A fc8 is inserted before every 4 bits
536 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
537 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
541 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
545 // special start of frame marker containing invalid bit sequences
546 fc(8, &n
); fc(8, &n
); // invalid
547 fc(8, &n
); fc(10, &n
); // logical 0
548 fc(10, &n
); fc(10, &n
); // invalid
549 fc(8, &n
); fc(10, &n
); // logical 0
552 // manchester encode bits 43 to 32
553 for (i
=11; i
>=0; i
--) {
554 if ((i
%4)==3) fc(0,&n
);
556 fc(10, &n
); fc(8, &n
); // low-high transition
558 fc(8, &n
); fc(10, &n
); // high-low transition
563 // manchester encode bits 31 to 0
564 for (i
=31; i
>=0; i
--) {
565 if ((i
%4)==3) fc(0,&n
);
567 fc(10, &n
); fc(8, &n
); // low-high transition
569 fc(8, &n
); fc(10, &n
); // high-low transition
575 SimulateTagLowFrequency(n
, 0, ledcontrol
);
581 // prepare a waveform pattern in the buffer based on the ID given then
582 // simulate a FSK tag until the button is pressed
583 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
584 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
588 uint8_t fcHigh
= arg1
>> 8;
589 uint8_t fcLow
= arg1
& 0xFF;
591 uint8_t clk
= arg2
& 0xFF;
592 uint8_t invert
= (arg2
>> 8) & 1;
594 for (i
=0; i
<size
; i
++){
595 if (BitStream
[i
] == invert
){
596 fcAll(fcLow
, &n
, clk
, &modCnt
);
598 fcAll(fcHigh
, &n
, clk
, &modCnt
);
601 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
602 /*Dbprintf("DEBUG: First 32:");
603 uint8_t *dest = BigBuf_get_addr();
605 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
607 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
612 SimulateTagLowFrequency(n
, 0, ledcontrol
);
618 // compose ask waveform for one bit(ASK)
619 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
621 uint8_t *dest
= BigBuf_get_addr();
622 uint8_t halfClk
= clock
/2;
623 // c = current bit 1 or 0
625 memset(dest
+(*n
), c
, halfClk
);
626 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
628 memset(dest
+(*n
), c
, clock
);
633 // args clock, ask/man or askraw, invert, transmission separator
634 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
638 uint8_t clk
= (arg1
>> 8) & 0xFF;
639 uint8_t manchester
= arg1
& 1;
640 uint8_t separator
= arg2
& 1;
641 uint8_t invert
= (arg2
>> 8) & 1;
642 for (i
=0; i
<size
; i
++){
643 askSimBit(BitStream
[i
]^invert
, &n
, clk
, manchester
);
645 if (manchester
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
646 for (i
=0; i
<size
; i
++){
647 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, manchester
);
650 if (separator
==1) Dbprintf("sorry but separator option not yet available");
652 Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk
, invert
, manchester
, separator
, n
);
654 //Dbprintf("First 32:");
655 //uint8_t *dest = BigBuf_get_addr();
657 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
659 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
664 SimulateTagLowFrequency(n
, 0, ledcontrol
);
670 //carrier can be 2,4 or 8
671 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
673 uint8_t *dest
= BigBuf_get_addr();
674 uint8_t halfWave
= waveLen
/2;
678 // write phase change
679 memset(dest
+(*n
), *curPhase
^1, halfWave
);
680 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
685 //write each normal clock wave for the clock duration
686 for (; i
< clk
; i
+=waveLen
){
687 memset(dest
+(*n
), *curPhase
, halfWave
);
688 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
693 // args clock, carrier, invert,
694 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
698 uint8_t clk
= arg1
>> 8;
699 uint8_t carrier
= arg1
& 0xFF;
700 uint8_t invert
= arg2
& 0xFF;
701 uint8_t curPhase
= 0;
702 for (i
=0; i
<size
; i
++){
703 if (BitStream
[i
] == curPhase
){
704 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
706 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
709 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
710 //Dbprintf("DEBUG: First 32:");
711 //uint8_t *dest = BigBuf_get_addr();
713 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
715 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
719 SimulateTagLowFrequency(n
, 0, ledcontrol
);
725 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
726 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
728 uint8_t *dest
= BigBuf_get_addr();
729 const size_t sizeOfBigBuff
= BigBuf_max_traceLen();
731 uint32_t hi2
=0, hi
=0, lo
=0;
733 // Configure to go in 125Khz listen mode
734 LFSetupFPGAForADC(95, true);
736 while(!BUTTON_PRESS()) {
739 if (ledcontrol
) LED_A_ON();
741 DoAcquisition_default(-1,true);
743 size
= sizeOfBigBuff
; //variable size will change after demod so re initialize it before use
744 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
747 // final loop, go over previously decoded manchester data and decode into usable tag ID
748 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
749 if (hi2
!= 0){ //extra large HID tags
750 Dbprintf("TAG ID: %x%08x%08x (%d)",
751 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
752 }else { //standard HID tags <38 bits
753 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
756 uint32_t cardnum
= 0;
757 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
759 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
761 while(lo2
> 1){ //find last bit set to 1 (format len bit)
769 cardnum
= (lo
>>1)&0xFFFF;
773 cardnum
= (lo
>>1)&0x7FFFF;
774 fc
= ((hi
&0xF)<<12)|(lo
>>20);
777 cardnum
= (lo
>>1)&0xFFFF;
778 fc
= ((hi
&1)<<15)|(lo
>>17);
781 cardnum
= (lo
>>1)&0xFFFFF;
782 fc
= ((hi
&1)<<11)|(lo
>>21);
785 else { //if bit 38 is not set then 37 bit format is used
790 cardnum
= (lo
>>1)&0x7FFFF;
791 fc
= ((hi
&0xF)<<12)|(lo
>>20);
794 //Dbprintf("TAG ID: %x%08x (%d)",
795 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
796 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
797 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
798 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
801 if (ledcontrol
) LED_A_OFF();
811 DbpString("Stopped");
812 if (ledcontrol
) LED_A_OFF();
815 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
817 uint8_t *dest
= BigBuf_get_addr();
819 size_t size
=0, idx
=0;
820 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
822 // Configure to go in 125Khz listen mode
823 LFSetupFPGAForADC(95, true);
825 while(!BUTTON_PRESS()) {
828 if (ledcontrol
) LED_A_ON();
830 DoAcquisition_default(-1,true);
831 size
= BigBuf_max_traceLen();
832 //Dbprintf("DEBUG: Buffer got");
833 //askdemod and manchester decode
834 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
);
835 //Dbprintf("DEBUG: ASK Got");
839 lo
= Em410xDecode(dest
, &size
, &idx
);
840 //Dbprintf("DEBUG: EM GOT");
842 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
845 (uint32_t)(lo
&0xFFFF),
846 (uint32_t)((lo
>>16LL) & 0xFF),
847 (uint32_t)(lo
& 0xFFFFFF));
850 if (ledcontrol
) LED_A_OFF();
852 *low
=lo
& 0xFFFFFFFF;
856 //Dbprintf("DEBUG: No Tag");
865 DbpString("Stopped");
866 if (ledcontrol
) LED_A_OFF();
869 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
871 uint8_t *dest
= BigBuf_get_addr();
873 uint32_t code
=0, code2
=0;
875 uint8_t facilitycode
=0;
877 // Configure to go in 125Khz listen mode
878 LFSetupFPGAForADC(95, true);
880 while(!BUTTON_PRESS()) {
882 if (ledcontrol
) LED_A_ON();
883 DoAcquisition_default(-1,true);
884 //fskdemod and get start index
886 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
891 //0 10 20 30 40 50 60
893 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
894 //-----------------------------------------------------------------------------
895 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
897 //XSF(version)facility:codeone+codetwo
899 if(findone
){ //only print binary if we are doing one
900 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
901 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
902 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
903 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
904 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
905 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
906 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
908 code
= bytebits_to_byte(dest
+idx
,32);
909 code2
= bytebits_to_byte(dest
+idx
+32,32);
910 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
911 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
912 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
914 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
915 // if we're only looking for one tag
917 if (ledcontrol
) LED_A_OFF();
924 version
=facilitycode
=0;
930 DbpString("Stopped");
931 if (ledcontrol
) LED_A_OFF();
934 /*------------------------------
935 * T5555/T5557/T5567 routines
936 *------------------------------
939 /* T55x7 configuration register definitions */
940 #define T55x7_POR_DELAY 0x00000001
941 #define T55x7_ST_TERMINATOR 0x00000008
942 #define T55x7_PWD 0x00000010
943 #define T55x7_MAXBLOCK_SHIFT 5
944 #define T55x7_AOR 0x00000200
945 #define T55x7_PSKCF_RF_2 0
946 #define T55x7_PSKCF_RF_4 0x00000400
947 #define T55x7_PSKCF_RF_8 0x00000800
948 #define T55x7_MODULATION_DIRECT 0
949 #define T55x7_MODULATION_PSK1 0x00001000
950 #define T55x7_MODULATION_PSK2 0x00002000
951 #define T55x7_MODULATION_PSK3 0x00003000
952 #define T55x7_MODULATION_FSK1 0x00004000
953 #define T55x7_MODULATION_FSK2 0x00005000
954 #define T55x7_MODULATION_FSK1a 0x00006000
955 #define T55x7_MODULATION_FSK2a 0x00007000
956 #define T55x7_MODULATION_MANCHESTER 0x00008000
957 #define T55x7_MODULATION_BIPHASE 0x00010000
958 #define T55x7_BITRATE_RF_8 0
959 #define T55x7_BITRATE_RF_16 0x00040000
960 #define T55x7_BITRATE_RF_32 0x00080000
961 #define T55x7_BITRATE_RF_40 0x000C0000
962 #define T55x7_BITRATE_RF_50 0x00100000
963 #define T55x7_BITRATE_RF_64 0x00140000
964 #define T55x7_BITRATE_RF_100 0x00180000
965 #define T55x7_BITRATE_RF_128 0x001C0000
967 /* T5555 (Q5) configuration register definitions */
968 #define T5555_ST_TERMINATOR 0x00000001
969 #define T5555_MAXBLOCK_SHIFT 0x00000001
970 #define T5555_MODULATION_MANCHESTER 0
971 #define T5555_MODULATION_PSK1 0x00000010
972 #define T5555_MODULATION_PSK2 0x00000020
973 #define T5555_MODULATION_PSK3 0x00000030
974 #define T5555_MODULATION_FSK1 0x00000040
975 #define T5555_MODULATION_FSK2 0x00000050
976 #define T5555_MODULATION_BIPHASE 0x00000060
977 #define T5555_MODULATION_DIRECT 0x00000070
978 #define T5555_INVERT_OUTPUT 0x00000080
979 #define T5555_PSK_RF_2 0
980 #define T5555_PSK_RF_4 0x00000100
981 #define T5555_PSK_RF_8 0x00000200
982 #define T5555_USE_PWD 0x00000400
983 #define T5555_USE_AOR 0x00000800
984 #define T5555_BITRATE_SHIFT 12
985 #define T5555_FAST_WRITE 0x00004000
986 #define T5555_PAGE_SELECT 0x00008000
989 * Relevant times in microsecond
990 * To compensate antenna falling times shorten the write times
991 * and enlarge the gap ones.
993 #define START_GAP 250
994 #define WRITE_GAP 160
995 #define WRITE_0 144 // 192
996 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
998 // Write one bit to card
999 void T55xxWriteBit(int bit
)
1001 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1002 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1003 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1005 SpinDelayUs(WRITE_0
);
1007 SpinDelayUs(WRITE_1
);
1008 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1009 SpinDelayUs(WRITE_GAP
);
1012 // Write one card block in page 0, no lock
1013 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1015 //unsigned int i; //enio adjustment 12/10/14
1018 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1019 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1020 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1022 // Give it a bit of time for the resonant antenna to settle.
1023 // And for the tag to fully power up
1026 // Now start writting
1027 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1028 SpinDelayUs(START_GAP
);
1032 T55xxWriteBit(0); //Page 0
1035 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1036 T55xxWriteBit(Pwd
& i
);
1042 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1043 T55xxWriteBit(Data
& i
);
1046 for (i
= 0x04; i
!= 0; i
>>= 1)
1047 T55xxWriteBit(Block
& i
);
1049 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1050 // so wait a little more)
1051 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1052 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1054 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1057 // Read one card block in page 0
1058 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1060 uint8_t *dest
= BigBuf_get_addr();
1061 //int m=0, i=0; //enio adjustment 12/10/14
1063 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1064 m
= BigBuf_max_traceLen();
1065 // Clear destination buffer before sending the command
1066 memset(dest
, 128, m
);
1067 // Connect the A/D to the peak-detected low-frequency path.
1068 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1069 // Now set up the SSC to get the ADC samples that are now streaming at us.
1073 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1074 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1076 // Give it a bit of time for the resonant antenna to settle.
1077 // And for the tag to fully power up
1080 // Now start writting
1081 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1082 SpinDelayUs(START_GAP
);
1086 T55xxWriteBit(0); //Page 0
1089 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1090 T55xxWriteBit(Pwd
& i
);
1095 for (i
= 0x04; i
!= 0; i
>>= 1)
1096 T55xxWriteBit(Block
& i
);
1098 // Turn field on to read the response
1099 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1100 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1102 // Now do the acquisition
1105 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1106 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1108 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1109 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1110 // we don't care about actual value, only if it's more or less than a
1111 // threshold essentially we capture zero crossings for later analysis
1112 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1123 // Read card traceability data (page 1)
1124 void T55xxReadTrace(void){
1125 uint8_t *dest
= BigBuf_get_addr();
1128 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1129 m
= BigBuf_max_traceLen();
1130 // Clear destination buffer before sending the command
1131 memset(dest
, 128, m
);
1132 // Connect the A/D to the peak-detected low-frequency path.
1133 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1134 // Now set up the SSC to get the ADC samples that are now streaming at us.
1138 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1139 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1141 // Give it a bit of time for the resonant antenna to settle.
1142 // And for the tag to fully power up
1145 // Now start writting
1146 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1147 SpinDelayUs(START_GAP
);
1151 T55xxWriteBit(1); //Page 1
1153 // Turn field on to read the response
1154 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1157 // Now do the acquisition
1160 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1161 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1163 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1164 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1170 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1175 /*-------------- Cloning routines -----------*/
1176 // Copy HID id to card and setup block 0 config
1177 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1179 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1183 // Ensure no more than 84 bits supplied
1185 DbpString("Tags can only have 84 bits.");
1188 // Build the 6 data blocks for supplied 84bit ID
1190 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1191 for (int i
=0;i
<4;i
++) {
1192 if (hi2
& (1<<(19-i
)))
1193 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1195 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1199 for (int i
=0;i
<16;i
++) {
1200 if (hi2
& (1<<(15-i
)))
1201 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1203 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1207 for (int i
=0;i
<16;i
++) {
1208 if (hi
& (1<<(31-i
)))
1209 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1211 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1215 for (int i
=0;i
<16;i
++) {
1216 if (hi
& (1<<(15-i
)))
1217 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1219 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1223 for (int i
=0;i
<16;i
++) {
1224 if (lo
& (1<<(31-i
)))
1225 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1227 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1231 for (int i
=0;i
<16;i
++) {
1232 if (lo
& (1<<(15-i
)))
1233 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1235 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1239 // Ensure no more than 44 bits supplied
1241 DbpString("Tags can only have 44 bits.");
1245 // Build the 3 data blocks for supplied 44bit ID
1248 data1
= 0x1D000000; // load preamble
1250 for (int i
=0;i
<12;i
++) {
1251 if (hi
& (1<<(11-i
)))
1252 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1254 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1258 for (int i
=0;i
<16;i
++) {
1259 if (lo
& (1<<(31-i
)))
1260 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1262 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1266 for (int i
=0;i
<16;i
++) {
1267 if (lo
& (1<<(15-i
)))
1268 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1270 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1275 // Program the data blocks for supplied ID
1276 // and the block 0 for HID format
1277 T55xxWriteBlock(data1
,1,0,0);
1278 T55xxWriteBlock(data2
,2,0,0);
1279 T55xxWriteBlock(data3
,3,0,0);
1281 if (longFMT
) { // if long format there are 6 blocks
1282 T55xxWriteBlock(data4
,4,0,0);
1283 T55xxWriteBlock(data5
,5,0,0);
1284 T55xxWriteBlock(data6
,6,0,0);
1287 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1288 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1289 T55x7_MODULATION_FSK2a
|
1290 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1298 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1300 int data1
=0, data2
=0; //up to six blocks for long format
1302 data1
= hi
; // load preamble
1306 // Program the data blocks for supplied ID
1307 // and the block 0 for HID format
1308 T55xxWriteBlock(data1
,1,0,0);
1309 T55xxWriteBlock(data2
,2,0,0);
1312 T55xxWriteBlock(0x00147040,0,0,0);
1318 // Define 9bit header for EM410x tags
1319 #define EM410X_HEADER 0x1FF
1320 #define EM410X_ID_LENGTH 40
1322 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1325 uint64_t id
= EM410X_HEADER
;
1326 uint64_t rev_id
= 0; // reversed ID
1327 int c_parity
[4]; // column parity
1328 int r_parity
= 0; // row parity
1331 // Reverse ID bits given as parameter (for simpler operations)
1332 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1334 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1337 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1342 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1343 id_bit
= rev_id
& 1;
1346 // Don't write row parity bit at start of parsing
1348 id
= (id
<< 1) | r_parity
;
1349 // Start counting parity for new row
1356 // First elements in column?
1358 // Fill out first elements
1359 c_parity
[i
] = id_bit
;
1361 // Count column parity
1362 c_parity
[i
% 4] ^= id_bit
;
1365 id
= (id
<< 1) | id_bit
;
1369 // Insert parity bit of last row
1370 id
= (id
<< 1) | r_parity
;
1372 // Fill out column parity at the end of tag
1373 for (i
= 0; i
< 4; ++i
)
1374 id
= (id
<< 1) | c_parity
[i
];
1379 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1383 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1384 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1386 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1388 // Clock rate is stored in bits 8-15 of the card value
1389 clock
= (card
& 0xFF00) >> 8;
1390 Dbprintf("Clock rate: %d", clock
);
1394 clock
= T55x7_BITRATE_RF_32
;
1397 clock
= T55x7_BITRATE_RF_16
;
1400 // A value of 0 is assumed to be 64 for backwards-compatibility
1403 clock
= T55x7_BITRATE_RF_64
;
1406 Dbprintf("Invalid clock rate: %d", clock
);
1410 // Writing configuration for T55x7 tag
1411 T55xxWriteBlock(clock
|
1412 T55x7_MODULATION_MANCHESTER
|
1413 2 << T55x7_MAXBLOCK_SHIFT
,
1417 // Writing configuration for T5555(Q5) tag
1418 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1419 T5555_MODULATION_MANCHESTER
|
1420 2 << T5555_MAXBLOCK_SHIFT
,
1424 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1425 (uint32_t)(id
>> 32), (uint32_t)id
);
1428 // Clone Indala 64-bit tag by UID to T55x7
1429 void CopyIndala64toT55x7(int hi
, int lo
)
1432 //Program the 2 data blocks for supplied 64bit UID
1433 // and the block 0 for Indala64 format
1434 T55xxWriteBlock(hi
,1,0,0);
1435 T55xxWriteBlock(lo
,2,0,0);
1436 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1437 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1438 T55x7_MODULATION_PSK1
|
1439 2 << T55x7_MAXBLOCK_SHIFT
,
1441 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1442 // T5567WriteBlock(0x603E1042,0);
1448 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1451 //Program the 7 data blocks for supplied 224bit UID
1452 // and the block 0 for Indala224 format
1453 T55xxWriteBlock(uid1
,1,0,0);
1454 T55xxWriteBlock(uid2
,2,0,0);
1455 T55xxWriteBlock(uid3
,3,0,0);
1456 T55xxWriteBlock(uid4
,4,0,0);
1457 T55xxWriteBlock(uid5
,5,0,0);
1458 T55xxWriteBlock(uid6
,6,0,0);
1459 T55xxWriteBlock(uid7
,7,0,0);
1460 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1461 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1462 T55x7_MODULATION_PSK1
|
1463 7 << T55x7_MAXBLOCK_SHIFT
,
1465 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1466 // T5567WriteBlock(0x603E10E2,0);
1473 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1474 #define max(x,y) ( x<y ? y:x)
1476 int DemodPCF7931(uint8_t **outBlocks
) {
1477 uint8_t BitStream
[256];
1478 uint8_t Blocks
[8][16];
1479 uint8_t *GraphBuffer
= BigBuf_get_addr();
1480 int GraphTraceLen
= BigBuf_max_traceLen();
1481 int i
, j
, lastval
, bitidx
, half_switch
;
1483 int tolerance
= clock
/ 8;
1484 int pmc
, block_done
;
1485 int lc
, warnings
= 0;
1487 int lmin
=128, lmax
=128;
1490 LFSetupFPGAForADC(95, true);
1491 DoAcquisition_default(0, 0);
1499 /* Find first local max/min */
1500 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1501 while(i
< GraphTraceLen
) {
1502 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1509 while(i
< GraphTraceLen
) {
1510 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1522 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1524 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1529 // Switch depending on lc length:
1530 // Tolerance is 1/8 of clock rate (arbitrary)
1531 if (abs(lc
-clock
/4) < tolerance
) {
1533 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1535 i
+= (128+127+16+32+33+16)-1;
1543 } else if (abs(lc
-clock
/2) < tolerance
) {
1545 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1547 i
+= (128+127+16+32+33)-1;
1552 else if(half_switch
== 1) {
1553 BitStream
[bitidx
++] = 0;
1558 } else if (abs(lc
-clock
) < tolerance
) {
1560 BitStream
[bitidx
++] = 1;
1566 Dbprintf("Error: too many detection errors, aborting.");
1571 if(block_done
== 1) {
1573 for(j
=0; j
<16; j
++) {
1574 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1575 64*BitStream
[j
*8+6]+
1576 32*BitStream
[j
*8+5]+
1577 16*BitStream
[j
*8+4]+
1589 if(i
< GraphTraceLen
)
1591 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1598 if(num_blocks
== 4) break;
1600 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1604 int IsBlock0PCF7931(uint8_t *Block
) {
1605 // Assume RFU means 0 :)
1606 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1608 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1613 int IsBlock1PCF7931(uint8_t *Block
) {
1614 // Assume RFU means 0 :)
1615 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1616 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1624 void ReadPCF7931() {
1625 uint8_t Blocks
[8][17];
1626 uint8_t tmpBlocks
[4][16];
1627 int i
, j
, ind
, ind2
, n
;
1634 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1637 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1638 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1641 if(error
==10 && num_blocks
== 0) {
1642 Dbprintf("Error, no tag or bad tag");
1645 else if (tries
==20 || error
==10) {
1646 Dbprintf("Error reading the tag");
1647 Dbprintf("Here is the partial content");
1652 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1653 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1654 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1656 for(i
=0; i
<n
; i
++) {
1657 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1659 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1663 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1664 Blocks
[0][ALLOC
] = 1;
1665 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1666 Blocks
[1][ALLOC
] = 1;
1667 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1669 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1671 // Handle following blocks
1672 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1675 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1676 Blocks
[ind2
][ALLOC
] = 1;
1684 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1685 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1686 for(j
=0; j
<max_blocks
; j
++) {
1687 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1688 // Found an identical block
1689 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1692 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1693 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1694 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1695 Blocks
[ind2
][ALLOC
] = 1;
1697 if(num_blocks
== max_blocks
) goto end
;
1700 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1701 if(ind2
> max_blocks
)
1703 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1704 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1705 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1706 Blocks
[ind2
][ALLOC
] = 1;
1708 if(num_blocks
== max_blocks
) goto end
;
1717 if (BUTTON_PRESS()) return;
1718 } while (num_blocks
!= max_blocks
);
1720 Dbprintf("-----------------------------------------");
1721 Dbprintf("Memory content:");
1722 Dbprintf("-----------------------------------------");
1723 for(i
=0; i
<max_blocks
; i
++) {
1724 if(Blocks
[i
][ALLOC
]==1)
1725 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1726 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1727 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1729 Dbprintf("<missing block %d>", i
);
1731 Dbprintf("-----------------------------------------");
1737 //-----------------------------------
1738 // EM4469 / EM4305 routines
1739 //-----------------------------------
1740 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1741 #define FWD_CMD_WRITE 0xA
1742 #define FWD_CMD_READ 0x9
1743 #define FWD_CMD_DISABLE 0x5
1746 uint8_t forwardLink_data
[64]; //array of forwarded bits
1747 uint8_t * forward_ptr
; //ptr for forward message preparation
1748 uint8_t fwd_bit_sz
; //forwardlink bit counter
1749 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1751 //====================================================================
1752 // prepares command bits
1754 //====================================================================
1755 //--------------------------------------------------------------------
1756 uint8_t Prepare_Cmd( uint8_t cmd
) {
1757 //--------------------------------------------------------------------
1759 *forward_ptr
++ = 0; //start bit
1760 *forward_ptr
++ = 0; //second pause for 4050 code
1762 *forward_ptr
++ = cmd
;
1764 *forward_ptr
++ = cmd
;
1766 *forward_ptr
++ = cmd
;
1768 *forward_ptr
++ = cmd
;
1770 return 6; //return number of emited bits
1773 //====================================================================
1774 // prepares address bits
1776 //====================================================================
1778 //--------------------------------------------------------------------
1779 uint8_t Prepare_Addr( uint8_t addr
) {
1780 //--------------------------------------------------------------------
1782 register uint8_t line_parity
;
1787 *forward_ptr
++ = addr
;
1788 line_parity
^= addr
;
1792 *forward_ptr
++ = (line_parity
& 1);
1794 return 7; //return number of emited bits
1797 //====================================================================
1798 // prepares data bits intreleaved with parity bits
1800 //====================================================================
1802 //--------------------------------------------------------------------
1803 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1804 //--------------------------------------------------------------------
1806 register uint8_t line_parity
;
1807 register uint8_t column_parity
;
1808 register uint8_t i
, j
;
1809 register uint16_t data
;
1814 for(i
=0; i
<4; i
++) {
1816 for(j
=0; j
<8; j
++) {
1817 line_parity
^= data
;
1818 column_parity
^= (data
& 1) << j
;
1819 *forward_ptr
++ = data
;
1822 *forward_ptr
++ = line_parity
;
1827 for(j
=0; j
<8; j
++) {
1828 *forward_ptr
++ = column_parity
;
1829 column_parity
>>= 1;
1833 return 45; //return number of emited bits
1836 //====================================================================
1837 // Forward Link send function
1838 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1839 // fwd_bit_count set with number of bits to be sent
1840 //====================================================================
1841 void SendForward(uint8_t fwd_bit_count
) {
1843 fwd_write_ptr
= forwardLink_data
;
1844 fwd_bit_sz
= fwd_bit_count
;
1849 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1850 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1851 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1853 // Give it a bit of time for the resonant antenna to settle.
1854 // And for the tag to fully power up
1857 // force 1st mod pulse (start gap must be longer for 4305)
1858 fwd_bit_sz
--; //prepare next bit modulation
1860 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1861 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1862 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1863 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1864 SpinDelayUs(16*8); //16 cycles on (8us each)
1866 // now start writting
1867 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1868 if(((*fwd_write_ptr
++) & 1) == 1)
1869 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1871 //These timings work for 4469/4269/4305 (with the 55*8 above)
1872 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1873 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1874 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1875 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1876 SpinDelayUs(9*8); //16 cycles on (8us each)
1881 void EM4xLogin(uint32_t Password
) {
1883 uint8_t fwd_bit_count
;
1885 forward_ptr
= forwardLink_data
;
1886 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1887 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1889 SendForward(fwd_bit_count
);
1891 //Wait for command to complete
1896 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1898 uint8_t fwd_bit_count
;
1899 uint8_t *dest
= BigBuf_get_addr();
1902 //If password mode do login
1903 if (PwdMode
== 1) EM4xLogin(Pwd
);
1905 forward_ptr
= forwardLink_data
;
1906 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1907 fwd_bit_count
+= Prepare_Addr( Address
);
1909 m
= BigBuf_max_traceLen();
1910 // Clear destination buffer before sending the command
1911 memset(dest
, 128, m
);
1912 // Connect the A/D to the peak-detected low-frequency path.
1913 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1914 // Now set up the SSC to get the ADC samples that are now streaming at us.
1917 SendForward(fwd_bit_count
);
1919 // Now do the acquisition
1922 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1923 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1925 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1926 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1931 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1935 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1937 uint8_t fwd_bit_count
;
1939 //If password mode do login
1940 if (PwdMode
== 1) EM4xLogin(Pwd
);
1942 forward_ptr
= forwardLink_data
;
1943 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1944 fwd_bit_count
+= Prepare_Addr( Address
);
1945 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1947 SendForward(fwd_bit_count
);
1949 //Wait for write to complete
1951 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off