]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
CHG: "hf mf hardnested" disabled the tracelogging on deviceside during nonce acquiring.
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
87a513aa 4// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
8ce3e4b4 5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// Implements a card only attack based on crypto text (encrypted nonces
10// received during a nested authentication) only. Unlike other card only
11// attacks this doesn't rely on implementation errors but only on the
12// inherent weaknesses of the crypto1 cypher. Described in
13// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15// Computer and Communications Security, 2015
16//-----------------------------------------------------------------------------
2dcf60f3 17#include "cmdhfmfhard.h"
8ce3e4b4 18
f8ada309 19#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f 20#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
8e4a0b35 21#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
360caaba 22#define CRACKING_THRESHOLD 38.00f // as 2^38
81ba7ee8 23
24#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 25
26static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
27 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0290 };
8ce3e4b4 60
61typedef struct noncelistentry {
62 uint32_t nonce_enc;
63 uint8_t par_enc;
64 void *next;
65} noncelistentry_t;
66
67typedef struct noncelist {
68 uint16_t num;
69 uint16_t Sum;
70 uint16_t Sum8_guess;
71 uint8_t BitFlip[2];
72 float Sum8_prob;
73 bool updated;
74 noncelistentry_t *first;
a531720a 75 float score1, score2;
8ce3e4b4 76} noncelist_t;
77
3130ba4b 78static size_t nonces_to_bruteforce = 0;
79static noncelistentry_t *brute_force_nonces[256];
810f5379 80static uint32_t cuid = 0;
8ce3e4b4 81static noncelist_t nonces[256];
fe8042f2 82static uint8_t best_first_bytes[256];
8ce3e4b4 83static uint16_t first_byte_Sum = 0;
84static uint16_t first_byte_num = 0;
85static uint16_t num_good_first_bytes = 0;
f8ada309 86static uint64_t maximum_states = 0;
87static uint64_t known_target_key;
0d5ee8e2 88static bool write_stats = false;
89static FILE *fstats = NULL;
8ce3e4b4 90
91
92typedef enum {
93 EVEN_STATE = 0,
94 ODD_STATE = 1
95} odd_even_t;
96
97#define STATELIST_INDEX_WIDTH 16
98#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
99
100typedef struct {
101 uint32_t *states[2];
102 uint32_t len[2];
103 uint32_t *index[2][STATELIST_INDEX_SIZE];
104} partial_indexed_statelist_t;
105
106typedef struct {
107 uint32_t *states[2];
108 uint32_t len[2];
109 void* next;
110} statelist_t;
111
112
f8ada309 113static partial_indexed_statelist_t partial_statelist[17];
114static partial_indexed_statelist_t statelist_bitflip;
f8ada309 115static statelist_t *candidates = NULL;
8ce3e4b4 116
383a1fb3
GG
117bool field_off = false;
118
057d2e91
GG
119static bool generate_candidates(uint16_t, uint16_t);
120static bool brute_force(void);
121
8ce3e4b4 122static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
123{
124 uint8_t first_byte = nonce_enc >> 24;
125 noncelistentry_t *p1 = nonces[first_byte].first;
126 noncelistentry_t *p2 = NULL;
127
128 if (p1 == NULL) { // first nonce with this 1st byte
129 first_byte_num++;
f8ada309 130 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 131 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
132 // nonce_enc,
133 // par_enc,
134 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 135 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 136 }
137
138 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
139 p2 = p1;
140 p1 = p1->next;
141 }
142
143 if (p1 == NULL) { // need to add at the end of the list
144 if (p2 == NULL) { // list is empty yet. Add first entry.
145 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
146 } else { // add new entry at end of existing list.
147 p2 = p2->next = malloc(sizeof(noncelistentry_t));
148 }
149 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
150 if (p2 == NULL) { // need to insert at start of list
151 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
152 } else {
153 p2 = p2->next = malloc(sizeof(noncelistentry_t));
154 }
155 } else { // we have seen this 2nd byte before. Nothing to add or insert.
156 return (0);
157 }
158
159 // add or insert new data
160 p2->next = p1;
161 p2->nonce_enc = nonce_enc;
162 p2->par_enc = par_enc;
163
3130ba4b 164 if(nonces_to_bruteforce < 256){
165 brute_force_nonces[nonces_to_bruteforce] = p2;
166 nonces_to_bruteforce++;
167 }
168
8ce3e4b4 169 nonces[first_byte].num++;
f8ada309 170 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 171 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
172
173 return (1); // new nonce added
174}
175
0d5ee8e2 176static void init_nonce_memory(void)
177{
178 for (uint16_t i = 0; i < 256; i++) {
179 nonces[i].num = 0;
180 nonces[i].Sum = 0;
181 nonces[i].Sum8_guess = 0;
182 nonces[i].Sum8_prob = 0.0;
183 nonces[i].updated = true;
184 nonces[i].first = NULL;
185 }
186 first_byte_num = 0;
187 first_byte_Sum = 0;
188 num_good_first_bytes = 0;
189}
190
0d5ee8e2 191static void free_nonce_list(noncelistentry_t *p)
192{
193 if (p == NULL) {
194 return;
195 } else {
196 free_nonce_list(p->next);
197 free(p);
198 }
199}
200
0d5ee8e2 201static void free_nonces_memory(void)
202{
203 for (uint16_t i = 0; i < 256; i++) {
204 free_nonce_list(nonces[i].first);
205 }
206}
207
8ce3e4b4 208static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
209{
210 uint16_t sum = 0;
211 for (uint16_t j = 0; j < 16; j++) {
212 uint32_t st = state;
213 uint16_t part_sum = 0;
214 if (odd_even == ODD_STATE) {
215 for (uint16_t i = 0; i < 5; i++) {
216 part_sum ^= filter(st);
217 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
218 }
f8ada309 219 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 220 } else {
221 for (uint16_t i = 0; i < 4; i++) {
222 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
223 part_sum ^= filter(st);
224 }
225 }
226 sum += part_sum;
227 }
228 return sum;
229}
230
fe8042f2 231// static uint16_t SumProperty(struct Crypto1State *s)
232// {
233 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
234 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
235 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
236// }
8ce3e4b4 237
8ce3e4b4 238static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
239{
240 // for efficient computation we are using the recursive definition
241 // (K-k+1) * (n-k+1)
242 // P(X=k) = P(X=k-1) * --------------------
243 // k * (N-K-n+k)
244 // and
245 // (N-K)*(N-K-1)*...*(N-K-n+1)
246 // P(X=0) = -----------------------------
247 // N*(N-1)*...*(N-n+1)
248
249 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
250 if (k == 0) {
251 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
252 double log_result = 0.0;
253 for (int16_t i = N-K; i >= N-K-n+1; i--) {
254 log_result += log(i);
255 }
256 for (int16_t i = N; i >= N-n+1; i--) {
257 log_result -= log(i);
258 }
8e4a0b35 259 return exp(log_result);
8ce3e4b4 260 } else {
261 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
262 double log_result = 0.0;
263 for (int16_t i = k+1; i <= n; i++) {
264 log_result += log(i);
265 }
266 for (int16_t i = K+1; i <= N; i++) {
267 log_result -= log(i);
268 }
8e4a0b35 269 return exp(log_result);
8ce3e4b4 270 } else { // recursion
271 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
272 }
273 }
274}
3130ba4b 275
8ce3e4b4 276static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
277{
278 const uint16_t N = 256;
8ce3e4b4 279
4b2e63be 280 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 281
4b2e63be 282 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
283 double p_S_is_K = p_K[K];
284 double p_T_is_k = 0;
285 for (uint16_t i = 0; i <= 256; i++) {
286 if (p_K[i] != 0.0) {
7fd676db 287 double tmp = p_hypergeometric(N, i, n, k);
288 if (tmp != 0.0)
289 p_T_is_k += p_K[i] * tmp;
8ce3e4b4 290 }
4b2e63be 291 }
292 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 293}
294
a531720a 295static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
296{
297 static const uint_fast8_t common_bits_LUT[256] = {
298 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
299 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
300 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
301 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
302 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
303 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
304 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
305 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
306 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
314 };
315
316 return common_bits_LUT[bytes_diff];
317}
318
8ce3e4b4 319static void Tests()
320{
fe8042f2 321 // printf("Tests: Partial Statelist sizes\n");
322 // for (uint16_t i = 0; i <= 16; i+=2) {
323 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
324 // }
325 // for (uint16_t i = 0; i <= 16; i+=2) {
326 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
327 // }
8ce3e4b4 328
329 // #define NUM_STATISTICS 100000
8ce3e4b4 330 // uint32_t statistics_odd[17];
f8ada309 331 // uint64_t statistics[257];
8ce3e4b4 332 // uint32_t statistics_even[17];
333 // struct Crypto1State cs;
334 // time_t time1 = clock();
335
336 // for (uint16_t i = 0; i < 257; i++) {
337 // statistics[i] = 0;
338 // }
339 // for (uint16_t i = 0; i < 17; i++) {
340 // statistics_odd[i] = 0;
341 // statistics_even[i] = 0;
342 // }
343
344 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
345 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
346 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
347 // uint16_t sum_property = SumProperty(&cs);
348 // statistics[sum_property] += 1;
349 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
350 // statistics_even[sum_property]++;
351 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
352 // statistics_odd[sum_property]++;
353 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
354 // }
355
356 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
357 // for (uint16_t i = 0; i < 257; i++) {
358 // if (statistics[i] != 0) {
359 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
360 // }
361 // }
362 // for (uint16_t i = 0; i <= 16; i++) {
363 // if (statistics_odd[i] != 0) {
364 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
365 // }
366 // }
367 // for (uint16_t i = 0; i <= 16; i++) {
368 // if (statistics_odd[i] != 0) {
369 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
370 // }
371 // }
372
373 // printf("Tests: Sum Probabilities based on Partial Sums\n");
374 // for (uint16_t i = 0; i < 257; i++) {
375 // statistics[i] = 0;
376 // }
377 // uint64_t num_states = 0;
378 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
379 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
380 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
381 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
382 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
383 // }
384 // }
385 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
386 // for (uint16_t i = 0; i < 257; i++) {
387 // if (statistics[i] != 0) {
388 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
389 // }
390 // }
391
392 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
393 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
394 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
395 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
396 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
397 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
398 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
399
fe8042f2 400 // struct Crypto1State *pcs;
401 // pcs = crypto1_create(0xffffffffffff);
402 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
403 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
404 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
405 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
406 // best_first_bytes[0],
407 // SumProperty(pcs),
408 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
409 // //test_state_odd = pcs->odd & 0x00ffffff;
410 // //test_state_even = pcs->even & 0x00ffffff;
411 // crypto1_destroy(pcs);
412 // pcs = crypto1_create(0xa0a1a2a3a4a5);
413 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
414 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
415 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
416 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
417 // best_first_bytes[0],
418 // SumProperty(pcs),
419 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
420 // //test_state_odd = pcs->odd & 0x00ffffff;
421 // //test_state_even = pcs->even & 0x00ffffff;
422 // crypto1_destroy(pcs);
423 // pcs = crypto1_create(0xa6b9aa97b955);
424 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
425 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
426 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
427 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
428 // best_first_bytes[0],
429 // SumProperty(pcs),
430 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 431 //test_state_odd = pcs->odd & 0x00ffffff;
432 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 433 // crypto1_destroy(pcs);
8ce3e4b4 434
435
fe8042f2 436 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 437
cd777a05 438 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
439 // for (uint16_t i = 0; i < 256; i++) {
440 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
441 // if (i % 8 == 7) {
442 // printf("\n");
443 // }
444 // }
8ce3e4b4 445
cd777a05 446 // printf("\nTests: Sorted First Bytes:\n");
447 // for (uint16_t i = 0; i < 256; i++) {
448 // uint8_t best_byte = best_first_bytes[i];
449 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
450 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
451 // i, best_byte,
452 // nonces[best_byte].num,
453 // nonces[best_byte].Sum,
454 // nonces[best_byte].Sum8_guess,
455 // nonces[best_byte].Sum8_prob * 100,
456 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
457 // //nonces[best_byte].score1,
458 // //nonces[best_byte].score2
459 // );
460 // }
f8ada309 461
462 // printf("\nTests: parity performance\n");
463 // time_t time1p = clock();
464 // uint32_t par_sum = 0;
465 // for (uint32_t i = 0; i < 100000000; i++) {
466 // par_sum += parity(i);
467 // }
468 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
469
470 // time1p = clock();
471 // par_sum = 0;
472 // for (uint32_t i = 0; i < 100000000; i++) {
473 // par_sum += evenparity32(i);
474 // }
475 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
476
8ce3e4b4 477
f8ada309 478}
479
f8ada309 480static void sort_best_first_bytes(void)
481{
fe8042f2 482 // sort based on probability for correct guess
8ce3e4b4 483 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 484 uint16_t j = 0;
8ce3e4b4 485 float prob1 = nonces[i].Sum8_prob;
f8ada309 486 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 487 while (prob1 < prob2 && j < i) {
8ce3e4b4 488 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
489 }
fe8042f2 490 if (j < i) {
491 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 492 best_first_bytes[k] = best_first_bytes[k-1];
493 }
fe8042f2 494 }
8ce3e4b4 495 best_first_bytes[j] = i;
7fd676db 496 }
f8ada309 497
fe8042f2 498 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 499 uint16_t num_good_nonces = 0;
fe8042f2 500 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 501 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 502 ++num_good_nonces;
503 }
504 }
505
506 uint16_t best_first_byte = 0;
507
508 // select the best possible first byte based on number of common bits with all {b'}
509 // uint16_t max_common_bits = 0;
510 // for (uint16_t i = 0; i < num_good_nonces; i++) {
511 // uint16_t sum_common_bits = 0;
512 // for (uint16_t j = 0; j < num_good_nonces; j++) {
513 // if (i != j) {
514 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
515 // }
516 // }
517 // if (sum_common_bits > max_common_bits) {
518 // max_common_bits = sum_common_bits;
519 // best_first_byte = i;
520 // }
521 // }
522
523 // select best possible first byte {b} based on least likely sum/bitflip property
524 float min_p_K = 1.0;
525 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
526 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
527 float bitflip_prob = 1.0;
528 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
529 bitflip_prob = 0.09375;
530 }
a531720a 531 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
f8ada309 532 if (p_K[sum8] * bitflip_prob <= min_p_K) {
533 min_p_K = p_K[sum8] * bitflip_prob;
f8ada309 534 }
535 }
536
a531720a 537
f8ada309 538 // use number of commmon bits as a tie breaker
539 uint16_t max_common_bits = 0;
540 for (uint16_t i = 0; i < num_good_nonces; i++) {
541 float bitflip_prob = 1.0;
542 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
543 bitflip_prob = 0.09375;
544 }
545 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
546 uint16_t sum_common_bits = 0;
547 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 548 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 549 }
a531720a 550 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 551 if (sum_common_bits > max_common_bits) {
552 max_common_bits = sum_common_bits;
553 best_first_byte = i;
554 }
555 }
556 }
557
a531720a 558 // swap best possible first byte to the pole position
8e4a0b35 559 if (best_first_byte != 0) {
f8ada309 560 uint16_t temp = best_first_bytes[0];
561 best_first_bytes[0] = best_first_bytes[best_first_byte];
562 best_first_bytes[best_first_byte] = temp;
8e4a0b35 563 }
f8ada309 564
8ce3e4b4 565}
566
8ce3e4b4 567static uint16_t estimate_second_byte_sum(void)
568{
8ce3e4b4 569
570 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
571 float Sum8_prob = 0.0;
572 uint16_t Sum8 = 0;
573 if (nonces[first_byte].updated) {
574 for (uint16_t sum = 0; sum <= 256; sum++) {
575 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
576 if (prob > Sum8_prob) {
577 Sum8_prob = prob;
578 Sum8 = sum;
579 }
580 }
581 nonces[first_byte].Sum8_guess = Sum8;
582 nonces[first_byte].Sum8_prob = Sum8_prob;
583 nonces[first_byte].updated = false;
584 }
585 }
586
587 sort_best_first_bytes();
588
589 uint16_t num_good_nonces = 0;
fe8042f2 590 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 591 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
8ce3e4b4 592 ++num_good_nonces;
593 }
594 }
595
596 return num_good_nonces;
597}
598
8ce3e4b4 599static int read_nonce_file(void)
600{
601 FILE *fnonces = NULL;
ddaecc08 602 uint8_t trgBlockNo = 0;
603 uint8_t trgKeyType = 0;
8ce3e4b4 604 uint8_t read_buf[9];
ddaecc08 605 uint32_t nt_enc1 = 0, nt_enc2 = 0;
606 uint8_t par_enc = 0;
8ce3e4b4 607 int total_num_nonces = 0;
608
609 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
610 PrintAndLog("Could not open file nonces.bin");
611 return 1;
612 }
613
614 PrintAndLog("Reading nonces from file nonces.bin...");
841d7af0 615 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
616 if ( bytes_read == 0) {
8ce3e4b4 617 PrintAndLog("File reading error.");
618 fclose(fnonces);
619 return 1;
620 }
621 cuid = bytes_to_num(read_buf, 4);
622 trgBlockNo = bytes_to_num(read_buf+4, 1);
623 trgKeyType = bytes_to_num(read_buf+5, 1);
624
625 while (fread(read_buf, 1, 9, fnonces) == 9) {
626 nt_enc1 = bytes_to_num(read_buf, 4);
627 nt_enc2 = bytes_to_num(read_buf+4, 4);
628 par_enc = bytes_to_num(read_buf+8, 1);
629 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
630 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
631 add_nonce(nt_enc1, par_enc >> 4);
632 add_nonce(nt_enc2, par_enc & 0x0f);
633 total_num_nonces += 2;
634 }
635 fclose(fnonces);
636 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 637 return 0;
638}
639
a531720a 640static void Check_for_FilterFlipProperties(void)
641{
642 printf("Checking for Filter Flip Properties...\n");
643
0d5ee8e2 644 uint16_t num_bitflips = 0;
645
a531720a 646 for (uint16_t i = 0; i < 256; i++) {
647 nonces[i].BitFlip[ODD_STATE] = false;
648 nonces[i].BitFlip[EVEN_STATE] = false;
649 }
650
651 for (uint16_t i = 0; i < 256; i++) {
652 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
653 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
654 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
655
656 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
657 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 658 num_bitflips++;
a531720a 659 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
660 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 661 num_bitflips++;
a531720a 662 }
663 }
0d5ee8e2 664
665 if (write_stats) {
666 fprintf(fstats, "%d;", num_bitflips);
667 }
668}
669
0d5ee8e2 670static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
671{
1f1929a4 672 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 673 // init cryptostate with key:
674 for(int8_t i = 47; i > 0; i -= 2) {
675 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
676 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
677 }
678
679 *par_enc = 0;
680 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
681 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
682 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
683 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
684 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
685 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
686 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
687 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
688 }
689
690}
691
0d5ee8e2 692static void simulate_acquire_nonces()
693{
694 clock_t time1 = clock();
695 bool filter_flip_checked = false;
696 uint32_t total_num_nonces = 0;
697 uint32_t next_fivehundred = 500;
698 uint32_t total_added_nonces = 0;
699
700 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
701 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
702
703 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
704 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
705
706 do {
707 uint32_t nt_enc = 0;
708 uint8_t par_enc = 0;
709
710 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
711 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
712 total_added_nonces += add_nonce(nt_enc, par_enc);
713 total_num_nonces++;
714
715 if (first_byte_num == 256 ) {
716 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
717 if (!filter_flip_checked) {
718 Check_for_FilterFlipProperties();
719 filter_flip_checked = true;
720 }
721 num_good_first_bytes = estimate_second_byte_sum();
722 if (total_num_nonces > next_fivehundred) {
723 next_fivehundred = (total_num_nonces/500+1) * 500;
724 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 725 total_num_nonces,
0d5ee8e2 726 total_added_nonces,
727 CONFIDENCE_THRESHOLD * 100.0,
728 num_good_first_bytes);
729 }
730 }
731
732 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
733
b112787d 734 time1 = clock() - time1;
735 if ( time1 > 0 ) {
0d5ee8e2 736 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
737 total_num_nonces,
b112787d 738 ((float)time1)/CLOCKS_PER_SEC,
739 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
740 }
0d5ee8e2 741 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
742
a531720a 743}
744
f8ada309 745static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 746{
747 clock_t time1 = clock();
748 bool initialize = true;
8ce3e4b4 749 bool finished = false;
a531720a 750 bool filter_flip_checked = false;
8ce3e4b4 751 uint32_t flags = 0;
752 uint8_t write_buf[9];
753 uint32_t total_num_nonces = 0;
754 uint32_t next_fivehundred = 500;
755 uint32_t total_added_nonces = 0;
057d2e91 756 uint32_t idx = 1;
8ce3e4b4 757 FILE *fnonces = NULL;
758 UsbCommand resp;
383a1fb3 759 field_off = false;
360caaba 760 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 0}};
761 memcpy(c.d.asBytes, key, 6);
762
8ce3e4b4 763 printf("Acquiring nonces...\n");
8ce3e4b4 764 do {
765 flags = 0;
766 flags |= initialize ? 0x0001 : 0;
767 flags |= slow ? 0x0002 : 0;
768 flags |= field_off ? 0x0004 : 0;
360caaba 769 c.arg[2] = flags;
7fd676db 770 clearCommandBuffer();
8ce3e4b4 771 SendCommand(&c);
772
87a513aa 773 if (field_off) break;
8ce3e4b4 774
360caaba 775 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
776 if (fnonces) fclose(fnonces);
777 return 1;
778 }
779 if (resp.arg[0]) {
780 if (fnonces) fclose(fnonces);
781 return resp.arg[0]; // error during nested_hard
782 }
783
784 if (initialize) {
785 // global var CUID
8ce3e4b4 786 cuid = resp.arg[1];
8ce3e4b4 787 if (nonce_file_write && fnonces == NULL) {
788 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
789 PrintAndLog("Could not create file nonces.bin");
790 return 3;
791 }
792 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
793 num_to_bytes(cuid, 4, write_buf);
794 fwrite(write_buf, 1, 4, fnonces);
795 fwrite(&trgBlockNo, 1, 1, fnonces);
796 fwrite(&trgKeyType, 1, 1, fnonces);
7fd676db 797 fflush(fnonces);
8ce3e4b4 798 }
360caaba 799 initialize = false;
8ce3e4b4 800 }
360caaba 801
802 uint32_t nt_enc1, nt_enc2;
803 uint8_t par_enc;
804 uint16_t num_acquired_nonces = resp.arg[2];
805 uint8_t *bufp = resp.d.asBytes;
806 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
807 nt_enc1 = bytes_to_num(bufp, 4);
808 nt_enc2 = bytes_to_num(bufp+4, 4);
809 par_enc = bytes_to_num(bufp+8, 1);
810
811 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
812 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
813 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
814 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
815
816 if (nonce_file_write && fnonces) {
817 fwrite(bufp, 1, 9, fnonces);
818 fflush(fnonces);
8ce3e4b4 819 }
360caaba 820 bufp += 9;
8ce3e4b4 821 }
360caaba 822 total_num_nonces += num_acquired_nonces;
823
824 if (first_byte_num == 256) {
7fd676db 825
a531720a 826 if (!filter_flip_checked) {
827 Check_for_FilterFlipProperties();
828 filter_flip_checked = true;
829 }
383a1fb3 830
8ce3e4b4 831 num_good_first_bytes = estimate_second_byte_sum();
360caaba 832
8ce3e4b4 833 if (total_num_nonces > next_fivehundred) {
834 next_fivehundred = (total_num_nonces/500+1) * 500;
360caaba 835 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). #bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 836 total_num_nonces,
8ce3e4b4 837 total_added_nonces,
8e4a0b35 838 NONCES_THRESHOLD * idx,
8ce3e4b4 839 CONFIDENCE_THRESHOLD * 100.0,
840 num_good_first_bytes);
383a1fb3 841 }
057d2e91 842
360caaba 843 if (total_added_nonces >= (NONCES_THRESHOLD * idx) && num_good_first_bytes > 0 ) {
844 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
845 if (cracking || known_target_key != -1) {
846 field_off = brute_force(); // switch off field with next SendCommand and then finish
bbcd41a6 847 }
360caaba 848 idx++;
1a4b6738 849 }
8ce3e4b4 850 }
851
8ce3e4b4 852 } while (!finished);
853
7fd676db 854 if (nonce_file_write && fnonces)
8ce3e4b4 855 fclose(fnonces);
8ce3e4b4 856
b112787d 857 time1 = clock() - time1;
858 if ( time1 > 0 ) {
81ba7ee8 859 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
860 total_num_nonces,
861 ((float)time1)/CLOCKS_PER_SEC,
862 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 863 );
864 }
8ce3e4b4 865 return 0;
866}
867
8ce3e4b4 868static int init_partial_statelists(void)
869{
f8ada309 870 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
871// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
872 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 873
874 printf("Allocating memory for partial statelists...\n");
875 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
876 for (uint16_t i = 0; i <= 16; i+=2) {
877 partial_statelist[i].len[odd_even] = 0;
878 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
879 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
880 if (partial_statelist[i].states[odd_even] == NULL) {
881 PrintAndLog("Cannot allocate enough memory. Aborting");
882 return 4;
883 }
884 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
885 partial_statelist[i].index[odd_even][j] = NULL;
886 }
887 }
888 }
889
890 printf("Generating partial statelists...\n");
891 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
892 uint32_t index = -1;
893 uint32_t num_of_states = 1<<20;
894 for (uint32_t state = 0; state < num_of_states; state++) {
895 uint16_t sum_property = PartialSumProperty(state, odd_even);
896 uint32_t *p = partial_statelist[sum_property].states[odd_even];
897 p += partial_statelist[sum_property].len[odd_even];
898 *p = state;
899 partial_statelist[sum_property].len[odd_even]++;
900 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
901 if ((state & index_mask) != index) {
902 index = state & index_mask;
903 }
904 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
905 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
906 }
907 }
908 // add End Of List markers
909 for (uint16_t i = 0; i <= 16; i += 2) {
910 uint32_t *p = partial_statelist[i].states[odd_even];
911 p += partial_statelist[i].len[odd_even];
81ba7ee8 912 *p = END_OF_LIST_MARKER;
8ce3e4b4 913 }
914 }
915
916 return 0;
917}
8ce3e4b4 918
919static void init_BitFlip_statelist(void)
920{
921 printf("Generating bitflip statelist...\n");
922 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
923 uint32_t index = -1;
924 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
925 for (uint32_t state = 0; state < (1 << 20); state++) {
926 if (filter(state) != filter(state^1)) {
927 if ((state & index_mask) != index) {
928 index = state & index_mask;
929 }
930 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
931 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
932 }
933 *p++ = state;
934 }
935 }
936 // set len and add End Of List marker
937 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 938 *p = END_OF_LIST_MARKER;
8ce3e4b4 939 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
940}
8ce3e4b4 941
a531720a 942static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 943{
944 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
945
946 if (p == NULL) return NULL;
a531720a 947 while (*p < (state & mask)) p++;
81ba7ee8 948 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 949 if ((*p & mask) == (state & mask)) return p; // found a match.
950 return NULL; // no match
951}
952
a531720a 953static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 954{
a531720a 955 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
956 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
957 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
958 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
959 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
960 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
961 return !all_diff;
962}
963
a531720a 964static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
965{
966 uint_fast8_t j_bit_mask = 0x01 << bit;
967 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
968 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
969 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
970 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
971 return all_diff;
972}
973
a531720a 974static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
975{
976 if (odd_even) {
977 // odd bits
978 switch (num_common_bits) {
979 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
980 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
981 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
982 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
983 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
984 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
985 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
986 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 987 }
a531720a 988 } else {
989 // even bits
990 switch (num_common_bits) {
991 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
992 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
993 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
994 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
995 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
996 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
997 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 998 }
8ce3e4b4 999 }
1000
1001 return true; // valid state
1002}
1003
8ce3e4b4 1004static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1005{
1006 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1007 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1008 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1009 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1010 uint32_t mask = 0xfffffff0;
1011 if (odd_even == ODD_STATE) {
a531720a 1012 mask >>= j/2;
8ce3e4b4 1013 } else {
a531720a 1014 mask >>= (j+1)/2;
8ce3e4b4 1015 }
1016 mask &= 0x000fffff;
1017 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1018 bool found_match = false;
1019 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1020 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1021 if (r*(16-s) + (16-r)*s == sum_a8) {
1022 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1023 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1024 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1025 if (p != NULL) {
81ba7ee8 1026 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1027 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1028 found_match = true;
1029 // if ((odd_even == ODD_STATE && state == test_state_odd)
1030 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1031 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1032 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1033 // }
1034 break;
1035 } else {
1036 // if ((odd_even == ODD_STATE && state == test_state_odd)
1037 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1038 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1039 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1040 // }
1041 }
1042 p++;
1043 }
1044 } else {
1045 // if ((odd_even == ODD_STATE && state == test_state_odd)
1046 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1047 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1048 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1049 // }
1050 }
1051 }
1052 }
1053 }
1054
1055 if (!found_match) {
1056 // if ((odd_even == ODD_STATE && state == test_state_odd)
1057 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1058 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1059 // }
1060 return false;
1061 }
1062 }
1063
1064 return true;
1065}
1066
f8ada309 1067static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1068{
1069 for (uint16_t i = 0; i < 256; i++) {
1070 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1071 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1072 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1073 uint32_t mask = 0xfffffff0;
1074 if (odd_even == ODD_STATE) {
a531720a 1075 mask >>= j/2;
f8ada309 1076 } else {
a531720a 1077 mask >>= (j+1)/2;
f8ada309 1078 }
1079 mask &= 0x000fffff;
1080 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1081 bool found_match = false;
1082 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1083 if (p != NULL) {
81ba7ee8 1084 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1085 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1086 found_match = true;
1087 // if ((odd_even == ODD_STATE && state == test_state_odd)
1088 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1089 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1090 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1091 // }
1092 break;
1093 } else {
1094 // if ((odd_even == ODD_STATE && state == test_state_odd)
1095 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1096 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1097 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1098 // }
1099 }
1100 p++;
1101 }
1102 } else {
1103 // if ((odd_even == ODD_STATE && state == test_state_odd)
1104 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1105 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1106 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1107 // }
1108 }
1109 if (!found_match) {
1110 // if ((odd_even == ODD_STATE && state == test_state_odd)
1111 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1112 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1113 // }
1114 return false;
1115 }
1116 }
1117
1118 }
1119
1120 return true;
1121}
1122
a531720a 1123static struct sl_cache_entry {
1124 uint32_t *sl;
1125 uint32_t len;
1126 } sl_cache[17][17][2];
1127
a531720a 1128static void init_statelist_cache(void)
1129{
a531720a 1130 for (uint16_t i = 0; i < 17; i+=2) {
1131 for (uint16_t j = 0; j < 17; j+=2) {
1132 for (uint16_t k = 0; k < 2; k++) {
1133 sl_cache[i][j][k].sl = NULL;
1134 sl_cache[i][j][k].len = 0;
1135 }
1136 }
1137 }
1138}
1139
8ce3e4b4 1140static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1141{
1142 uint32_t worstcase_size = 1<<20;
1143
a531720a 1144 // check cache for existing results
1145 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1146 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1147 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1148 return 0;
1149 }
1150
8ce3e4b4 1151 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1152 if (candidates->states[odd_even] == NULL) {
1153 PrintAndLog("Out of memory error.\n");
1154 return 4;
1155 }
a531720a 1156 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1157 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1158 uint32_t search_mask = 0x000ffff0;
1159 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1160 if (p2 != NULL) {
81ba7ee8 1161 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1162 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1163 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1164 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1165 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1166 *add_p++ = (*p1 << 4) | *p2;
1167 }
8ce3e4b4 1168 }
f8ada309 1169 }
8ce3e4b4 1170 p2++;
1171 }
1172 }
8ce3e4b4 1173 }
f8ada309 1174
a531720a 1175 // set end of list marker and len
81ba7ee8 1176 *add_p = END_OF_LIST_MARKER;
a531720a 1177 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1178
8ce3e4b4 1179 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1180
a531720a 1181 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1182 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1183
8ce3e4b4 1184 return 0;
1185}
1186
8ce3e4b4 1187static statelist_t *add_more_candidates(statelist_t *current_candidates)
1188{
1189 statelist_t *new_candidates = NULL;
1190 if (current_candidates == NULL) {
1191 if (candidates == NULL) {
1192 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1193 }
1194 new_candidates = candidates;
1195 } else {
1196 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1197 }
1198 new_candidates->next = NULL;
1199 new_candidates->len[ODD_STATE] = 0;
1200 new_candidates->len[EVEN_STATE] = 0;
1201 new_candidates->states[ODD_STATE] = NULL;
1202 new_candidates->states[EVEN_STATE] = NULL;
1203 return new_candidates;
1204}
1205
057d2e91 1206static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1207{
1208 struct Crypto1State *pcs;
1209 pcs = crypto1_create(key);
1210 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1211
1212 uint32_t state_odd = pcs->odd & 0x00ffffff;
1213 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1214 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
360caaba 1215 printf("Validating keysearch space\n");
f8ada309 1216 uint64_t count = 0;
8ce3e4b4 1217 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1218 bool found_odd = false;
1219 bool found_even = false;
8ce3e4b4 1220 uint32_t *p_odd = p->states[ODD_STATE];
1221 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1222 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1223 if ((*p_odd & 0x00ffffff) == state_odd) {
1224 found_odd = true;
1225 break;
1226 }
8ce3e4b4 1227 p_odd++;
1228 }
81ba7ee8 1229 while (*p_even != END_OF_LIST_MARKER) {
f8ada309 1230 if ((*p_even & 0x00ffffff) == state_even) {
1231 found_even = true;
1232 }
8ce3e4b4 1233 p_even++;
1234 }
f8ada309 1235 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1236 if (found_odd && found_even) {
360caaba 1237 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
81ba7ee8 1238 count,
1239 log(count)/log(2),
1240 maximum_states,
1241 log(maximum_states)/log(2)
1242 );
0d5ee8e2 1243 if (write_stats) {
1244 fprintf(fstats, "1\n");
1245 }
f8ada309 1246 crypto1_destroy(pcs);
057d2e91 1247 return true;
f8ada309 1248 }
8ce3e4b4 1249 }
f8ada309 1250
1251 printf("Key NOT found!\n");
0d5ee8e2 1252 if (write_stats) {
1253 fprintf(fstats, "0\n");
1254 }
8ce3e4b4 1255 crypto1_destroy(pcs);
057d2e91
GG
1256
1257 return false;
8ce3e4b4 1258}
1259
057d2e91 1260static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1261{
1262 printf("Generating crypto1 state candidates... \n");
1263
1264 statelist_t *current_candidates = NULL;
1265 // estimate maximum candidate states
f8ada309 1266 maximum_states = 0;
8ce3e4b4 1267 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1268 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1269 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1270 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1271 }
1272 }
1273 }
057d2e91 1274
0325c12f 1275 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1276
ba39db37 1277 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
8ce3e4b4 1278
a531720a 1279 init_statelist_cache();
1280
8ce3e4b4 1281 for (uint16_t p = 0; p <= 16; p += 2) {
1282 for (uint16_t q = 0; q <= 16; q += 2) {
1283 if (p*(16-q) + (16-p)*q == sum_a0) {
2dcf60f3 1284 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1285 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
8ce3e4b4 1286 for (uint16_t r = 0; r <= 16; r += 2) {
1287 for (uint16_t s = 0; s <= 16; s += 2) {
1288 if (r*(16-s) + (16-r)*s == sum_a8) {
1289 current_candidates = add_more_candidates(current_candidates);
8e4a0b35 1290 if (current_candidates) {
a531720a 1291 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1292 // and eliminate the need to calculate the other part
1293 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1294 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
ba39db37 1295 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1296 if(current_candidates->len[ODD_STATE]) {
ba39db37 1297 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1298 } else {
1299 current_candidates->len[EVEN_STATE] = 0;
1300 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1301 *p = END_OF_LIST_MARKER;
a531720a 1302 }
1303 } else {
1304 add_matching_states(current_candidates, q, s, EVEN_STATE);
1305 if(current_candidates->len[EVEN_STATE]) {
1306 add_matching_states(current_candidates, p, r, ODD_STATE);
1307 } else {
1308 current_candidates->len[ODD_STATE] = 0;
1309 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1310 *p = END_OF_LIST_MARKER;
a531720a 1311 }
1312 }
1c38049b 1313 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1314 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1315 }
1316 }
1317 }
1318 }
1319 }
1320 }
8e4a0b35 1321 }
8ce3e4b4 1322
8ce3e4b4 1323 maximum_states = 0;
8e4a0b35 1324 unsigned int n = 0;
1325 for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) {
8ce3e4b4 1326 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1327 }
0325c12f
GG
1328
1329 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1330
ba39db37 1331 float kcalc = log(maximum_states)/log(2);
057d2e91 1332 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1333 if (write_stats) {
1334 if (maximum_states != 0) {
057d2e91 1335 fprintf(fstats, "%1.1f;", kcalc);
0d5ee8e2 1336 } else {
1337 fprintf(fstats, "%1.1f;", 0.0);
1338 }
1339 }
236e8f7c 1340 if (kcalc < CRACKING_THRESHOLD) return true;
057d2e91
GG
1341
1342 return false;
0d5ee8e2 1343}
1344
0d5ee8e2 1345static void free_candidates_memory(statelist_t *sl)
1346{
1347 if (sl == NULL) {
1348 return;
1349 } else {
1350 free_candidates_memory(sl->next);
1351 free(sl);
1352 }
1353}
1354
0d5ee8e2 1355static void free_statelist_cache(void)
1356{
1357 for (uint16_t i = 0; i < 17; i+=2) {
1358 for (uint16_t j = 0; j < 17; j+=2) {
1359 for (uint16_t k = 0; k < 2; k++) {
1360 free(sl_cache[i][j][k].sl);
1361 }
1362 }
1363 }
8ce3e4b4 1364}
1365
87a513aa 1366#define MAX_BUCKETS 128
45c0c48c 1367uint64_t foundkey = 0;
3130ba4b 1368size_t keys_found = 0;
1369size_t bucket_count = 0;
87a513aa 1370statelist_t* buckets[MAX_BUCKETS];
3130ba4b 1371size_t total_states_tested = 0;
1372size_t thread_count = 4;
1373
1374// these bitsliced states will hold identical states in all slices
1375bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1376
1377// arrays of bitsliced states with identical values in all slices
1378bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1379bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1380
1381#define EXACT_COUNT
1382
1383static const uint64_t crack_states_bitsliced(statelist_t *p){
1384 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1385 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1386 uint64_t key = -1;
1387 uint8_t bSize = sizeof(bitslice_t);
1388
1389#ifdef EXACT_COUNT
1390 size_t bucket_states_tested = 0;
1391 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1392#else
1393 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1394#endif
1395
1396 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1397 size_t bitsliced_blocks = 0;
1398 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1399
1400 // bitslice all the even states
1401 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1402
1403#ifdef __WIN32
1404 #ifdef __MINGW32__
1405 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1406 #else
1407 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1408 #endif
1409#else
b01e7d20 1410 #ifdef __APPLE__
9d590832 1411 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1412 #else
3130ba4b 1413 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1414 #endif
3130ba4b 1415#endif
1416
1417 if ( !lstate_p ) {
1418 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1419 return key;
1420 }
1421
1422 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1423
1424 // bitslice even half-states
1425 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1426#ifdef EXACT_COUNT
1427 bucket_size[bitsliced_blocks] = max_slices;
1428#endif
1429 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1430 uint32_t e = *(p_even+slice_idx);
1431 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1432 // set even bits
1433 if(e&1){
1434 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1435 }
1436 }
1437 }
1438 // compute the rollback bits
1439 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1440 // inlined crypto1_bs_lfsr_rollback
1441 const bitslice_value_t feedout = lstate_p[0].value;
1442 ++lstate_p;
1443 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1444 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1445 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1446 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1447 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1448 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1449 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1450 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1451 }
1452 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1453 }
1454
1455 // bitslice every odd state to every block of even half-states with half-finished rollback
1456 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1457 // early abort
1458 if(keys_found){
1459 goto out;
1460 }
1461
1462 // set the odd bits and compute rollback
1463 uint64_t o = (uint64_t) *p_odd;
1464 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1465 // pre-compute part of the odd feedback bits (minus rollback)
1466 bool odd_feedback_bit = parity(o&0x9ce5c);
1467
1468 crypto1_bs_rewind_a0();
1469 // set odd bits
1470 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1471 if(o & 1){
1472 state_p[state_idx] = bs_ones;
1473 } else {
1474 state_p[state_idx] = bs_zeroes;
1475 }
1476 }
1477 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1478
1479 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1480 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1481 size_t state_idx;
1482 // set even bits
1483 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1484 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1485 }
1486 // set rollback bits
1487 uint64_t lo = o;
1488 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1489 // set the odd bits and take in the odd rollback bits from the even states
1490 if(lo & 1){
1491 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1492 } else {
1493 state_p[state_idx] = bitsliced_even_state[state_idx];
1494 }
1495
1496 // set the even bits and take in the even rollback bits from the odd states
1497 if((lo >> 32) & 1){
1498 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1499 } else {
1500 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1501 }
1502 }
1503
1504#ifdef EXACT_COUNT
1505 bucket_states_tested += bucket_size[block_idx];
1506#endif
1507 // pre-compute first keystream and feedback bit vectors
1508 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1509 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1510 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1511 state_p[47-24].value ^ state_p[47-42].value);
1512
1513 // vector to contain test results (1 = passed, 0 = failed)
1514 bitslice_t results = bs_ones;
1515
1516 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1517 size_t parity_bit_idx = 0;
1518 bitslice_value_t fb_bits = fbb;
1519 bitslice_value_t ks_bits = ksb;
1520 state_p = &states[KEYSTREAM_SIZE-1];
1521 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1522
1523 // highest bit is transmitted/received first
1524 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1525 // decrypt nonce bits
1526 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1527 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1528
1529 // compute real parity bits on the fly
1530 parity_bit_vector ^= decrypted_nonce_bit_vector;
1531
1532 // update state
1533 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1534
1535 // compute next keystream bit
1536 ks_bits = crypto1_bs_f20(state_p);
1537
1538 // for each byte:
1539 if((ks_idx&7) == 0){
1540 // get encrypted parity bits
1541 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1542
1543 // decrypt parity bits
1544 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1545
1546 // compare actual parity bits with decrypted parity bits and take count in results vector
1547 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1548
1549 // make sure we still have a match in our set
1550 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1551
1552 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1553 // the short-circuiting also helps
1554 if(results.bytes64[0] == 0
1555#if MAX_BITSLICES > 64
1556 && results.bytes64[1] == 0
1557#endif
1558#if MAX_BITSLICES > 128
1559 && results.bytes64[2] == 0
1560 && results.bytes64[3] == 0
1561#endif
1562 ){
1563 goto stop_tests;
1564 }
1565 // this is about as fast but less portable (requires -std=gnu99)
1566 // asm goto ("ptest %1, %0\n\t"
1567 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1568 parity_bit_vector = bs_zeroes.value;
1569 }
1570 // compute next feedback bit vector
1571 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1572 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1573 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1574 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1575 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1576 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1577 }
1578 }
1579 // all nonce tests were successful: we've found the key in this block!
1580 state_t keys[MAX_BITSLICES];
1581 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1582 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1583 if(get_vector_bit(results_idx, results)){
1584 key = keys[results_idx].value;
1585 goto out;
1586 }
1587 }
1588stop_tests:
1589 // prepare to set new states
1590 crypto1_bs_rewind_a0();
1591 continue;
1592 }
1593 }
1594
1595out:
1596 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1597
1598#ifdef __WIN32
1599 #ifdef __MINGW32__
1600 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1601 #else
1602 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1603 #endif
1604#else
2e350b19 1605 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1606#endif
1607
1608 }
1609 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1610 return key;
1611}
8ce3e4b4 1612
3130ba4b 1613static void* crack_states_thread(void* x){
1614 const size_t thread_id = (size_t)x;
1615 size_t current_bucket = thread_id;
1616 while(current_bucket < bucket_count){
1617 statelist_t * bucket = buckets[current_bucket];
1618 if(bucket){
1619 const uint64_t key = crack_states_bitsliced(bucket);
1620 if(key != -1){
3130ba4b 1621 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1622 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1623 break;
1624 } else if(keys_found){
1625 break;
1626 } else {
1627 printf(".");
1628 fflush(stdout);
1629 }
1630 }
1631 current_bucket += thread_count;
1632 }
1633 return NULL;
1634}
cd777a05 1635
360caaba 1636static bool brute_force(void) {
1637 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1638
057d2e91 1639 bool ret = false;
f8ada309 1640 if (known_target_key != -1) {
1641 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1642 ret = TestIfKeyExists(known_target_key);
f8ada309 1643 } else {
057d2e91 1644 PrintAndLog("Brute force phase starting.");
b403c300 1645
7fd676db 1646 clock_t time1 = clock();
057d2e91 1647 keys_found = 0;
ddaecc08 1648 foundkey = 0;
3130ba4b 1649
057d2e91
GG
1650 crypto1_bs_init();
1651
1652 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
ba39db37 1653 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
057d2e91 1654 // convert to 32 bit little-endian
ed69e099 1655 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1656
1657 PrintAndLog("Bitslicing nonces...");
1658 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1659 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1660 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1661 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1662 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1663 // convert to 32 bit little-endian
1664 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1665 }
057d2e91 1666 total_states_tested = 0;
3130ba4b 1667
057d2e91
GG
1668 // count number of states to go
1669 bucket_count = 0;
87a513aa 1670 for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
057d2e91
GG
1671 buckets[bucket_count] = p;
1672 bucket_count++;
1673 }
8e4a0b35 1674 buckets[bucket_count] = NULL;
3130ba4b 1675
1676#ifndef __WIN32
057d2e91 1677 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1678 if ( thread_count < 1)
1679 thread_count = 1;
3130ba4b 1680#endif /* _WIN32 */
fd3be901 1681
057d2e91 1682 pthread_t threads[thread_count];
3130ba4b 1683
057d2e91
GG
1684 // enumerate states using all hardware threads, each thread handles one bucket
1685 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1686
057d2e91
GG
1687 for(size_t i = 0; i < thread_count; i++){
1688 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1689 }
1690 for(size_t i = 0; i < thread_count; i++){
1691 pthread_join(threads[i], 0);
1692 }
1693
7fd676db 1694 time1 = clock() - time1;
360caaba 1695 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
7fd676db 1696
383a1fb3 1697 if (keys_found && TestIfKeyExists(foundkey)) {
45c0c48c 1698 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91 1699 ret = true;
360caaba 1700 }
057d2e91
GG
1701 // reset this counter for the next call
1702 nonces_to_bruteforce = 0;
f8ada309 1703 }
057d2e91 1704 return ret;
f8ada309 1705}
1706
0d5ee8e2 1707int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1708{
0d5ee8e2 1709 // initialize Random number generator
1710 time_t t;
1711 srand((unsigned) time(&t));
1712
f8ada309 1713 if (trgkey != NULL) {
1714 known_target_key = bytes_to_num(trgkey, 6);
1715 } else {
1716 known_target_key = -1;
1717 }
8ce3e4b4 1718
8ce3e4b4 1719 init_partial_statelists();
1720 init_BitFlip_statelist();
0d5ee8e2 1721 write_stats = false;
8ce3e4b4 1722
0d5ee8e2 1723 if (tests) {
1724 // set the correct locale for the stats printing
1725 setlocale(LC_ALL, "");
1726 write_stats = true;
1727 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1728 PrintAndLog("Could not create/open file hardnested_stats.txt");
1729 return 3;
1730 }
1731 for (uint32_t i = 0; i < tests; i++) {
1732 init_nonce_memory();
1733 simulate_acquire_nonces();
1734 Tests();
1735 printf("Sum(a0) = %d\n", first_byte_Sum);
1736 fprintf(fstats, "%d;", first_byte_Sum);
1737 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1738 brute_force();
1739 free_nonces_memory();
1740 free_statelist_cache();
1741 free_candidates_memory(candidates);
1742 candidates = NULL;
1743 }
1744 fclose(fstats);
0325c12f 1745 fstats = NULL;
0d5ee8e2 1746 } else {
1747 init_nonce_memory();
236e8f7c 1748 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
b112787d 1749 if (read_nonce_file() != 0) {
1750 return 3;
1751 }
1752 Check_for_FilterFlipProperties();
1753 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
236e8f7c
GG
1754 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1755
1756 clock_t time1 = clock();
1757 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1758 time1 = clock() - time1;
1759 if (time1 > 0)
1760 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1761
8e4a0b35 1762 if (cracking || known_target_key != -1) {
236e8f7c 1763 brute_force();
8e4a0b35 1764 }
1765
236e8f7c 1766 } else { // acquire nonces.
b112787d 1767 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1768 if (is_OK != 0) {
1769 return is_OK;
1770 }
8ce3e4b4 1771 }
8ce3e4b4 1772
45c0c48c 1773 //Tests();
b112787d 1774 free_nonces_memory();
1775 free_statelist_cache();
1776 free_candidates_memory(candidates);
1777 candidates = NULL;
057d2e91 1778 }
8ce3e4b4 1779 return 0;
7fd676db 1780}
Impressum, Datenschutz