]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
Applied Holiman's fixes for iclass.c and CSNs
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
f38a1528 13#include "../include/proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
f38a1528 17#include "../common/cmd.h"
18#include "../common/iso14443crc.h"
534983d7 19#include "iso14443a.h"
20f9a2a1
M
20#include "crapto1.h"
21#include "mifareutil.h"
15c4dc5a 22
534983d7 23static uint32_t iso14a_timeout;
d19929cb 24uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
1e262141 25int rsamples = 0;
7bc95e2e 26int traceLen = 0;
1e262141 27int tracing = TRUE;
28uint8_t trigger = 0;
b0127e65 29// the block number for the ISO14443-4 PCB
30static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 31
7bc95e2e 32//
33// ISO14443 timing:
34//
35// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36#define REQUEST_GUARD_TIME (7000/16 + 1)
37// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39// bool LastCommandWasRequest = FALSE;
40
41//
42// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43//
d714d3ef 44// When the PM acts as reader and is receiving tag data, it takes
45// 3 ticks delay in the AD converter
46// 16 ticks until the modulation detector completes and sets curbit
47// 8 ticks until bit_to_arm is assigned from curbit
48// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 49// 4*16 ticks until we measure the time
50// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 51#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 52
53// When the PM acts as a reader and is sending, it takes
54// 4*16 ticks until we can write data to the sending hold register
55// 8*16 ticks until the SHR is transferred to the Sending Shift Register
56// 8 ticks until the first transfer starts
57// 8 ticks later the FPGA samples the data
58// 1 tick to assign mod_sig_coil
59#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60
61// When the PM acts as tag and is receiving it takes
d714d3ef 62// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 63// 3 ticks for the A/D conversion,
64// 8 ticks on average until the start of the SSC transfer,
65// 8 ticks until the SSC samples the first data
66// 7*16 ticks to complete the transfer from FPGA to ARM
67// 8 ticks until the next ssp_clk rising edge
d714d3ef 68// 4*16 ticks until we measure the time
7bc95e2e 69// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 70#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 71
72// The FPGA will report its internal sending delay in
73uint16_t FpgaSendQueueDelay;
74// the 5 first bits are the number of bits buffered in mod_sig_buf
75// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77
78// When the PM acts as tag and is sending, it takes
d714d3ef 79// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 80// 8*16 ticks until the SHR is transferred to the Sending Shift Register
81// 8 ticks until the first transfer starts
82// 8 ticks later the FPGA samples the data
83// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84// + 1 tick to assign mod_sig_coil
d714d3ef 85#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 86
87// When the PM acts as sniffer and is receiving tag data, it takes
88// 3 ticks A/D conversion
d714d3ef 89// 14 ticks to complete the modulation detection
90// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 91// + the delays in transferring data - which is the same for
92// sniffing reader and tag data and therefore not relevant
d714d3ef 93#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 94
d714d3ef 95// When the PM acts as sniffer and is receiving reader data, it takes
96// 2 ticks delay in analogue RF receiver (for the falling edge of the
97// start bit, which marks the start of the communication)
7bc95e2e 98// 3 ticks A/D conversion
d714d3ef 99// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 100// + the delays in transferring data - which is the same for
101// sniffing reader and tag data and therefore not relevant
d714d3ef 102#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 103
104//variables used for timing purposes:
105//these are in ssp_clk cycles:
a501c82b 106static uint32_t NextTransferTime;
107static uint32_t LastTimeProxToAirStart;
108static uint32_t LastProxToAirDuration;
7bc95e2e 109
110
111
8f51ddb0 112// CARD TO READER - manchester
72934aa3 113// Sequence D: 11110000 modulation with subcarrier during first half
114// Sequence E: 00001111 modulation with subcarrier during second half
115// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 116// READER TO CARD - miller
72934aa3 117// Sequence X: 00001100 drop after half a period
118// Sequence Y: 00000000 no drop
119// Sequence Z: 11000000 drop at start
120#define SEC_D 0xf0
121#define SEC_E 0x0f
122#define SEC_F 0x00
123#define SEC_X 0x0c
124#define SEC_Y 0x00
125#define SEC_Z 0xc0
15c4dc5a 126
1e262141 127const uint8_t OddByteParity[256] = {
15c4dc5a 128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144};
1e262141 145
902cb3c0 146void iso14a_set_trigger(bool enable) {
534983d7 147 trigger = enable;
148}
149
902cb3c0 150void iso14a_clear_trace() {
7bc95e2e 151 memset(trace, 0x44, TRACE_SIZE);
8556b852
M
152 traceLen = 0;
153}
d19929cb 154
902cb3c0 155void iso14a_set_tracing(bool enable) {
8556b852
M
156 tracing = enable;
157}
d19929cb 158
b0127e65 159void iso14a_set_timeout(uint32_t timeout) {
160 iso14a_timeout = timeout;
161}
8556b852 162
15c4dc5a 163//-----------------------------------------------------------------------------
164// Generate the parity value for a byte sequence
e30c654b 165//
15c4dc5a 166//-----------------------------------------------------------------------------
20f9a2a1
M
167byte_t oddparity (const byte_t bt)
168{
5f6d6c90 169 return OddByteParity[bt];
20f9a2a1
M
170}
171
a501c82b 172void GetParity(const uint8_t * pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 173{
a501c82b 174 uint16_t paritybit_cnt = 0;
175 uint16_t paritybyte_cnt = 0;
176 uint8_t parityBits = 0;
177
178 for (uint16_t i = 0; i < iLen; i++) {
179 // Generate the parity bits
180 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
181 if (paritybit_cnt == 7) {
182 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
183 parityBits = 0; // and advance to next Parity Byte
184 paritybyte_cnt++;
185 paritybit_cnt = 0;
186 } else {
187 paritybit_cnt++;
188 }
5f6d6c90 189 }
a501c82b 190
191 // save remaining parity bits
192 par[paritybyte_cnt] = parityBits;
193
15c4dc5a 194}
195
534983d7 196void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 197{
5f6d6c90 198 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 199}
200
1e262141 201// The function LogTrace() is also used by the iClass implementation in iClass.c
a501c82b 202bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
15c4dc5a 203{
fdcd43eb 204 if (!tracing) return FALSE;
a501c82b 205
206 uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
207 uint16_t duration = timestamp_end - timestamp_start;
208
7bc95e2e 209 // Return when trace is full
a501c82b 210 if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
7bc95e2e 211 tracing = FALSE; // don't trace any more
212 return FALSE;
213 }
214
a501c82b 215 // Traceformat:
216 // 32 bits timestamp (little endian)
217 // 16 bits duration (little endian)
218 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
219 // y Bytes data
220 // x Bytes parity (one byte per 8 bytes data)
221
222 // timestamp (start)
223 trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
224 trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
225 trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
226 trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
227
228 // duration
229 trace[traceLen++] = ((duration >> 0) & 0xff);
230 trace[traceLen++] = ((duration >> 8) & 0xff);
231
232 // data length
233 trace[traceLen++] = ((iLen >> 0) & 0xff);
234 trace[traceLen++] = ((iLen >> 8) & 0xff);
235
236 // readerToTag flag
17cba269 237 if (!readerToTag) {
7bc95e2e 238 trace[traceLen - 1] |= 0x80;
a501c82b 239 }
240
241 // data bytes
7bc95e2e 242 if (btBytes != NULL && iLen != 0) {
243 memcpy(trace + traceLen, btBytes, iLen);
244 }
a501c82b 245 traceLen += iLen;
246
247 // parity bytes
248 if (parity != NULL && iLen != 0) {
249 memcpy(trace + traceLen, parity, num_paritybytes);
250 }
251 traceLen += num_paritybytes;
252
7bc95e2e 253 return TRUE;
15c4dc5a 254}
255
7bc95e2e 256//=============================================================================
257// ISO 14443 Type A - Miller decoder
258//=============================================================================
259// Basics:
260// This decoder is used when the PM3 acts as a tag.
261// The reader will generate "pauses" by temporarily switching of the field.
262// At the PM3 antenna we will therefore measure a modulated antenna voltage.
263// The FPGA does a comparison with a threshold and would deliver e.g.:
264// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
265// The Miller decoder needs to identify the following sequences:
266// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
267// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
268// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
269// Note 1: the bitstream may start at any time. We therefore need to sync.
270// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 271//-----------------------------------------------------------------------------
b62a5a84 272static tUart Uart;
15c4dc5a 273
d7aa3739 274// Lookup-Table to decide if 4 raw bits are a modulation.
275// We accept two or three consecutive "0" in any position with the rest "1"
276const bool Mod_Miller_LUT[] = {
277 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
278 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
279};
280#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
281#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
282
7bc95e2e 283void UartReset()
15c4dc5a 284{
7bc95e2e 285 Uart.state = STATE_UNSYNCD;
286 Uart.bitCount = 0;
287 Uart.len = 0; // number of decoded data bytes
a501c82b 288 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 289 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
a501c82b 290 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 291 Uart.twoBits = 0x0000; // buffer for 2 Bits
292 Uart.highCnt = 0;
293 Uart.startTime = 0;
294 Uart.endTime = 0;
295}
15c4dc5a 296
a501c82b 297void UartInit(uint8_t *data, uint8_t *parity)
298{
299 Uart.output = data;
300 Uart.parity = parity;
301 UartReset();
302}
d714d3ef 303
7bc95e2e 304// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
305static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
306{
15c4dc5a 307
7bc95e2e 308 Uart.twoBits = (Uart.twoBits << 8) | bit;
309
a501c82b 310 if (Uart.state == STATE_UNSYNCD) { // not yet synced
311
7bc95e2e 312 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
a501c82b 313 if (Uart.twoBits == 0xffff)
7bc95e2e 314 Uart.highCnt++;
a501c82b 315 else
7bc95e2e 316 Uart.highCnt = 0;
a501c82b 317 } else {
7bc95e2e 318 Uart.syncBit = 0xFFFF; // not set
319 // look for 00xx1111 (the start bit)
320 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
321 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
322 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
323 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
324 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
325 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
326 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
327 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
328 if (Uart.syncBit != 0xFFFF) {
329 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
330 Uart.startTime -= Uart.syncBit;
d7aa3739 331 Uart.endTime = Uart.startTime;
7bc95e2e 332 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 333 }
7bc95e2e 334 }
15c4dc5a 335
7bc95e2e 336 } else {
15c4dc5a 337
d7aa3739 338 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
339 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
340 UartReset();
341 Uart.highCnt = 6;
342 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 343 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
344 UartReset();
345 Uart.highCnt = 6;
346 } else {
347 Uart.bitCount++;
348 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
349 Uart.state = STATE_MILLER_Z;
350 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
351 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
352 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
353 Uart.parityBits <<= 1; // make room for the parity bit
354 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
355 Uart.bitCount = 0;
356 Uart.shiftReg = 0;
a501c82b 357 if((Uart.len & 0x0007) == 0) { // every 8 data bytes
358 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
359 Uart.parityBits = 0;
360 }
15c4dc5a 361 }
7bc95e2e 362 }
d7aa3739 363 }
364 } else {
365 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 366 Uart.bitCount++;
367 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
368 Uart.state = STATE_MILLER_X;
369 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
370 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
371 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
372 Uart.parityBits <<= 1; // make room for the new parity bit
373 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
374 Uart.bitCount = 0;
375 Uart.shiftReg = 0;
a501c82b 376 if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
377 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
378 Uart.parityBits = 0;
379 }
7bc95e2e 380 }
d7aa3739 381 } else { // no modulation in both halves - Sequence Y
7bc95e2e 382 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 383 Uart.state = STATE_UNSYNCD;
a501c82b 384 Uart.bitCount--; // last "0" was part of EOC sequence
385 Uart.shiftReg <<= 1; // drop it
386 if(Uart.bitCount > 0) { // if we decoded some bits
387 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
388 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
389 Uart.parityBits <<= 1; // add a (void) parity bit
390 Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align parity bits
391 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
15c4dc5a 392 return TRUE;
a501c82b 393 } else if (Uart.len & 0x0007) { // there are some parity bits to store
394 Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align remaining parity bits
395 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
396 return TRUE; // we are finished with decoding the raw data sequence
397 }
15c4dc5a 398 }
7bc95e2e 399 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
400 UartReset();
401 Uart.highCnt = 6;
402 } else { // a logic "0"
403 Uart.bitCount++;
404 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
405 Uart.state = STATE_MILLER_Y;
406 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
407 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
408 Uart.parityBits <<= 1; // make room for the parity bit
409 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
410 Uart.bitCount = 0;
411 Uart.shiftReg = 0;
a501c82b 412 if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
413 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
414 Uart.parityBits = 0;
415 }
15c4dc5a 416 }
417 }
d7aa3739 418 }
15c4dc5a 419 }
7bc95e2e 420
a501c82b 421 }
15c4dc5a 422
7bc95e2e 423 return FALSE; // not finished yet, need more data
15c4dc5a 424}
425
7bc95e2e 426
427
15c4dc5a 428//=============================================================================
e691fc45 429// ISO 14443 Type A - Manchester decoder
15c4dc5a 430//=============================================================================
e691fc45 431// Basics:
7bc95e2e 432// This decoder is used when the PM3 acts as a reader.
e691fc45 433// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
434// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
435// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
436// The Manchester decoder needs to identify the following sequences:
437// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
438// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
439// 8 ticks unmodulated: Sequence F = end of communication
440// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 441// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 442// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 443static tDemod Demod;
15c4dc5a 444
d7aa3739 445// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 446// We accept three or four "1" in any position
7bc95e2e 447const bool Mod_Manchester_LUT[] = {
d7aa3739 448 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 449 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 450};
451
452#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
453#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 454
2f2d9fc5 455
7bc95e2e 456void DemodReset()
e691fc45 457{
7bc95e2e 458 Demod.state = DEMOD_UNSYNCD;
459 Demod.len = 0; // number of decoded data bytes
a501c82b 460 Demod.parityLen = 0;
7bc95e2e 461 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
462 Demod.parityBits = 0; //
463 Demod.collisionPos = 0; // Position of collision bit
464 Demod.twoBits = 0xffff; // buffer for 2 Bits
465 Demod.highCnt = 0;
466 Demod.startTime = 0;
467 Demod.endTime = 0;
e691fc45 468}
15c4dc5a 469
a501c82b 470void DemodInit(uint8_t *data, uint8_t *parity)
471{
472 Demod.output = data;
473 Demod.parity = parity;
474 DemodReset();
475}
476
7bc95e2e 477// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
478static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 479{
7bc95e2e 480
481 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 482
7bc95e2e 483 if (Demod.state == DEMOD_UNSYNCD) {
484
485 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
486 if (Demod.twoBits == 0x0000) {
487 Demod.highCnt++;
488 } else {
489 Demod.highCnt = 0;
490 }
491 } else {
492 Demod.syncBit = 0xFFFF; // not set
493 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
494 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
495 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
496 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
497 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
498 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
499 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
500 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 501 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 502 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
503 Demod.startTime -= Demod.syncBit;
504 Demod.bitCount = offset; // number of decoded data bits
e691fc45 505 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 506 }
7bc95e2e 507 }
15c4dc5a 508
7bc95e2e 509 } else {
15c4dc5a 510
7bc95e2e 511 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
512 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 513 if (!Demod.collisionPos) {
514 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
515 }
516 } // modulation in first half only - Sequence D = 1
7bc95e2e 517 Demod.bitCount++;
518 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
519 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 521 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
a501c82b 525 if((Demod.len & 0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
527 Demod.parityBits = 0;
528 }
15c4dc5a 529 }
7bc95e2e 530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
531 } else { // no modulation in first half
532 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 533 Demod.bitCount++;
7bc95e2e 534 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 535 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 536 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 537 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 538 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
539 Demod.bitCount = 0;
540 Demod.shiftReg = 0;
a501c82b 541 if ((Demod.len & 0x0007) == 0) { // every 8 data bytes
542 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
543 Demod.parityBits = 0;
544 }
15c4dc5a 545 }
7bc95e2e 546 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 547 } else { // no modulation in both halves - End of communication
a501c82b 548 if(Demod.bitCount > 0) { // there are some remaining data bits
549 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
550 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
551 Demod.parityBits <<= 1; // add a (void) parity bit
552 Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
553 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
554 return TRUE;
555 } else if (Demod.len & 0x0007) { // there are some parity bits to store
556 Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
557 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
558 return TRUE; // we are finished with decoding the raw data sequence
d7aa3739 559 } else { // nothing received. Start over
560 DemodReset();
e691fc45 561 }
15c4dc5a 562 }
7bc95e2e 563 }
e691fc45 564
565 }
15c4dc5a 566
e691fc45 567 return FALSE; // not finished yet, need more data
15c4dc5a 568}
569
570//=============================================================================
571// Finally, a `sniffer' for ISO 14443 Type A
572// Both sides of communication!
573//=============================================================================
574
575//-----------------------------------------------------------------------------
576// Record the sequence of commands sent by the reader to the tag, with
577// triggering so that we start recording at the point that the tag is moved
578// near the reader.
579//-----------------------------------------------------------------------------
5cd9ec01
M
580void RAMFUNC SnoopIso14443a(uint8_t param) {
581 // param:
582 // bit 0 - trigger from first card answer
583 // bit 1 - trigger from first reader 7-bit request
584
585 LEDsoff();
586 // init trace buffer
5f6d6c90 587 iso14a_clear_trace();
991f13f2 588 iso14a_set_tracing(TRUE);
5cd9ec01
M
589
590 // We won't start recording the frames that we acquire until we trigger;
591 // a good trigger condition to get started is probably when we see a
592 // response from the tag.
593 // triggered == FALSE -- to wait first for card
7bc95e2e 594 bool triggered = !(param & 0x03);
595
5cd9ec01 596 // The command (reader -> tag) that we're receiving.
15c4dc5a 597 // The length of a received command will in most cases be no more than 18 bytes.
598 // So 32 should be enough!
a501c82b 599 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
600 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
601
5cd9ec01 602 // The response (tag -> reader) that we're receiving.
a501c82b 603 uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
604 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
605
5cd9ec01
M
606 // As we receive stuff, we copy it from receivedCmd or receivedResponse
607 // into trace, along with its length and other annotations.
608 //uint8_t *trace = (uint8_t *)BigBuf;
609
610 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 611 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
612 uint8_t *data = dmaBuf;
613 uint8_t previous_data = 0;
5cd9ec01
M
614 int maxDataLen = 0;
615 int dataLen = 0;
7bc95e2e 616 bool TagIsActive = FALSE;
617 bool ReaderIsActive = FALSE;
618
619 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 620
5cd9ec01 621 // Set up the demodulator for tag -> reader responses.
a501c82b 622 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 623
5cd9ec01 624 // Set up the demodulator for the reader -> tag commands
a501c82b 625 UartInit(receivedCmd, receivedCmdPar);
15c4dc5a 626
7bc95e2e 627 // Setup and start DMA.
5cd9ec01 628 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 629
5cd9ec01 630 // And now we loop, receiving samples.
7bc95e2e 631 for(uint32_t rsamples = 0; TRUE; ) {
632
5cd9ec01
M
633 if(BUTTON_PRESS()) {
634 DbpString("cancelled by button");
7bc95e2e 635 break;
5cd9ec01 636 }
15c4dc5a 637
5cd9ec01
M
638 LED_A_ON();
639 WDT_HIT();
15c4dc5a 640
5cd9ec01
M
641 int register readBufDataP = data - dmaBuf;
642 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
643 if (readBufDataP <= dmaBufDataP){
644 dataLen = dmaBufDataP - readBufDataP;
645 } else {
7bc95e2e 646 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
647 }
648 // test for length of buffer
649 if(dataLen > maxDataLen) {
650 maxDataLen = dataLen;
651 if(dataLen > 400) {
7bc95e2e 652 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
653 break;
5cd9ec01
M
654 }
655 }
656 if(dataLen < 1) continue;
657
658 // primary buffer was stopped( <-- we lost data!
659 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
660 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
661 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 662 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
663 }
664 // secondary buffer sets as primary, secondary buffer was stopped
665 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
666 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
667 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
668 }
669
670 LED_A_OFF();
7bc95e2e 671
672 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 673
7bc95e2e 674 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
675 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
676 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
677 LED_C_ON();
5cd9ec01 678
7bc95e2e 679 // check - if there is a short 7bit request from reader
680 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 681
7bc95e2e 682 if(triggered) {
a501c82b 683 if (!LogTrace(receivedCmd,
684 Uart.len,
685 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
686 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
687 Uart.parity,
688 TRUE)) break;
7bc95e2e 689 }
690 /* And ready to receive another command. */
691 UartReset();
692 /* And also reset the demod code, which might have been */
693 /* false-triggered by the commands from the reader. */
694 DemodReset();
695 LED_B_OFF();
696 }
697 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 698 }
3be2a5ae 699
7bc95e2e 700 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
701 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
702 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
703 LED_B_ON();
5cd9ec01 704
a501c82b 705 if (!LogTrace(receivedResponse,
706 Demod.len,
707 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
708 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
709 Demod.parity,
710 FALSE)) break;
5cd9ec01 711
7bc95e2e 712 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 713
7bc95e2e 714 // And ready to receive another response.
715 DemodReset();
716 LED_C_OFF();
717 }
718 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
719 }
5cd9ec01
M
720 }
721
7bc95e2e 722 previous_data = *data;
723 rsamples++;
5cd9ec01 724 data++;
d714d3ef 725 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
726 data = dmaBuf;
727 }
728 } // main cycle
729
730 DbpString("COMMAND FINISHED");
15c4dc5a 731
7bc95e2e 732 FpgaDisableSscDma();
733 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
734 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
5cd9ec01 735 LEDsoff();
15c4dc5a 736}
737
15c4dc5a 738//-----------------------------------------------------------------------------
739// Prepare tag messages
740//-----------------------------------------------------------------------------
a501c82b 741static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 742{
8f51ddb0 743 ToSendReset();
15c4dc5a 744
745 // Correction bit, might be removed when not needed
746 ToSendStuffBit(0);
747 ToSendStuffBit(0);
748 ToSendStuffBit(0);
749 ToSendStuffBit(0);
750 ToSendStuffBit(1); // 1
751 ToSendStuffBit(0);
752 ToSendStuffBit(0);
753 ToSendStuffBit(0);
8f51ddb0 754
15c4dc5a 755 // Send startbit
72934aa3 756 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 757 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 758
a501c82b 759 for( uint16_t i = 0; i < len; i++) {
8f51ddb0 760 uint8_t b = cmd[i];
15c4dc5a 761
762 // Data bits
a501c82b 763 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 764 if(b & 1) {
72934aa3 765 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 766 } else {
72934aa3 767 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
768 }
769 b >>= 1;
770 }
15c4dc5a 771
0014cb46 772 // Get the parity bit
a501c82b 773 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 774 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 775 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 776 } else {
72934aa3 777 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 778 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 779 }
8f51ddb0 780 }
15c4dc5a 781
8f51ddb0
M
782 // Send stopbit
783 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 784
8f51ddb0
M
785 // Convert from last byte pos to length
786 ToSendMax++;
8f51ddb0
M
787}
788
a501c82b 789static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
790{
791 uint8_t par[MAX_PARITY_SIZE];
792
793 GetParity(cmd, len, par);
794 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 795}
796
15c4dc5a 797
8f51ddb0
M
798static void Code4bitAnswerAsTag(uint8_t cmd)
799{
800 int i;
801
5f6d6c90 802 ToSendReset();
8f51ddb0
M
803
804 // Correction bit, might be removed when not needed
805 ToSendStuffBit(0);
806 ToSendStuffBit(0);
807 ToSendStuffBit(0);
808 ToSendStuffBit(0);
809 ToSendStuffBit(1); // 1
810 ToSendStuffBit(0);
811 ToSendStuffBit(0);
812 ToSendStuffBit(0);
813
814 // Send startbit
815 ToSend[++ToSendMax] = SEC_D;
816
817 uint8_t b = cmd;
818 for(i = 0; i < 4; i++) {
819 if(b & 1) {
820 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 821 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
822 } else {
823 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 824 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
825 }
826 b >>= 1;
827 }
828
829 // Send stopbit
830 ToSend[++ToSendMax] = SEC_F;
831
5f6d6c90 832 // Convert from last byte pos to length
833 ToSendMax++;
15c4dc5a 834}
835
836//-----------------------------------------------------------------------------
837// Wait for commands from reader
838// Stop when button is pressed
839// Or return TRUE when command is captured
840//-----------------------------------------------------------------------------
a501c82b 841static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 842{
843 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
844 // only, since we are receiving, not transmitting).
845 // Signal field is off with the appropriate LED
846 LED_D_OFF();
847 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
848
849 // Now run a `software UART' on the stream of incoming samples.
a501c82b 850 UartInit(received, parity);
7bc95e2e 851
852 // clear RXRDY:
853 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 854
855 for(;;) {
856 WDT_HIT();
857
858 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 859
15c4dc5a 860 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 861 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
862 if(MillerDecoding(b, 0)) {
863 *len = Uart.len;
15c4dc5a 864 return TRUE;
865 }
7bc95e2e 866 }
15c4dc5a 867 }
868}
28afbd2b 869
a501c82b 870static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 871int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 872int EmSend4bit(uint8_t resp);
a501c82b 873int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
874int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
875int EmSendCmd(uint8_t *resp, uint16_t respLen);
876int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
877bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
878 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 879
ce02f6f9 880static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
881
882typedef struct {
883 uint8_t* response;
884 size_t response_n;
885 uint8_t* modulation;
886 size_t modulation_n;
7bc95e2e 887 uint32_t ProxToAirDuration;
ce02f6f9 888} tag_response_info_t;
889
890void reset_free_buffer() {
891 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
892}
893
894bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 895 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 896 // This will need the following byte array for a modulation sequence
897 // 144 data bits (18 * 8)
898 // 18 parity bits
899 // 2 Start and stop
900 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
901 // 1 just for the case
902 // ----------- +
903 // 166 bytes, since every bit that needs to be send costs us a byte
904 //
905
906 // Prepare the tag modulation bits from the message
907 CodeIso14443aAsTag(response_info->response,response_info->response_n);
908
909 // Make sure we do not exceed the free buffer space
910 if (ToSendMax > max_buffer_size) {
911 Dbprintf("Out of memory, when modulating bits for tag answer:");
912 Dbhexdump(response_info->response_n,response_info->response,false);
913 return false;
914 }
915
916 // Copy the byte array, used for this modulation to the buffer position
917 memcpy(response_info->modulation,ToSend,ToSendMax);
918
7bc95e2e 919 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 920 response_info->modulation_n = ToSendMax;
7bc95e2e 921 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 922
923 return true;
924}
925
926bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
927 // Retrieve and store the current buffer index
928 response_info->modulation = free_buffer_pointer;
929
930 // Determine the maximum size we can use from our buffer
a501c82b 931 size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
ce02f6f9 932
933 // Forward the prepare tag modulation function to the inner function
934 if (prepare_tag_modulation(response_info,max_buffer_size)) {
935 // Update the free buffer offset
936 free_buffer_pointer += ToSendMax;
937 return true;
938 } else {
939 return false;
940 }
941}
942
15c4dc5a 943//-----------------------------------------------------------------------------
944// Main loop of simulated tag: receive commands from reader, decide what
945// response to send, and send it.
946//-----------------------------------------------------------------------------
28afbd2b 947void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 948{
5f6d6c90 949 // Enable and clear the trace
5f6d6c90 950 iso14a_clear_trace();
7bc95e2e 951 iso14a_set_tracing(TRUE);
81cd0474 952
81cd0474 953 uint8_t sak;
954
955 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
956 uint8_t response1[2];
957
958 switch (tagType) {
959 case 1: { // MIFARE Classic
960 // Says: I am Mifare 1k - original line
961 response1[0] = 0x04;
962 response1[1] = 0x00;
963 sak = 0x08;
964 } break;
965 case 2: { // MIFARE Ultralight
966 // Says: I am a stupid memory tag, no crypto
967 response1[0] = 0x04;
968 response1[1] = 0x00;
969 sak = 0x00;
970 } break;
971 case 3: { // MIFARE DESFire
972 // Says: I am a DESFire tag, ph33r me
973 response1[0] = 0x04;
974 response1[1] = 0x03;
975 sak = 0x20;
976 } break;
977 case 4: { // ISO/IEC 14443-4
978 // Says: I am a javacard (JCOP)
979 response1[0] = 0x04;
980 response1[1] = 0x00;
981 sak = 0x28;
982 } break;
95e63594 983 case 5: { // MIFARE TNP3XXX
984 // Says: I am a toy
985 response1[0] = 0x01;
986 response1[1] = 0x0f;
987 sak = 0x01;
988 } break;
81cd0474 989 default: {
990 Dbprintf("Error: unkown tagtype (%d)",tagType);
991 return;
992 } break;
993 }
994
995 // The second response contains the (mandatory) first 24 bits of the UID
996 uint8_t response2[5];
997
998 // Check if the uid uses the (optional) part
999 uint8_t response2a[5];
1000 if (uid_2nd) {
1001 response2[0] = 0x88;
1002 num_to_bytes(uid_1st,3,response2+1);
1003 num_to_bytes(uid_2nd,4,response2a);
1004 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1005
1006 // Configure the ATQA and SAK accordingly
1007 response1[0] |= 0x40;
1008 sak |= 0x04;
1009 } else {
1010 num_to_bytes(uid_1st,4,response2);
1011 // Configure the ATQA and SAK accordingly
1012 response1[0] &= 0xBF;
1013 sak &= 0xFB;
1014 }
1015
1016 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1017 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1018
1019 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1020 uint8_t response3[3];
1021 response3[0] = sak;
1022 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1023
1024 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1025 uint8_t response3a[3];
1026 response3a[0] = sak & 0xFB;
1027 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1028
254b70a4 1029 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
a501c82b 1030 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1031 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1032 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1033 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1034 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1035 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1036
7bc95e2e 1037 #define TAG_RESPONSE_COUNT 7
1038 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1039 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1040 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1041 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1042 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1043 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1044 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1045 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1046 };
1047
1048 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1049 // Such a response is less time critical, so we can prepare them on the fly
1050 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1051 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1052 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1053 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1054 tag_response_info_t dynamic_response_info = {
1055 .response = dynamic_response_buffer,
1056 .response_n = 0,
1057 .modulation = dynamic_modulation_buffer,
1058 .modulation_n = 0
1059 };
ce02f6f9 1060
7bc95e2e 1061 // Reset the offset pointer of the free buffer
1062 reset_free_buffer();
ce02f6f9 1063
7bc95e2e 1064 // Prepare the responses of the anticollision phase
ce02f6f9 1065 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1066 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1067 prepare_allocated_tag_modulation(&responses[i]);
1068 }
15c4dc5a 1069
7bc95e2e 1070 int len = 0;
15c4dc5a 1071
1072 // To control where we are in the protocol
1073 int order = 0;
1074 int lastorder;
1075
1076 // Just to allow some checks
1077 int happened = 0;
1078 int happened2 = 0;
81cd0474 1079 int cmdsRecvd = 0;
15c4dc5a 1080
254b70a4 1081 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 1082 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 1083
a501c82b 1084 // buffers used on software Uart:
1085 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
1086 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
1087
254b70a4 1088 cmdsRecvd = 0;
7bc95e2e 1089 tag_response_info_t* p_response;
15c4dc5a 1090
254b70a4 1091 LED_A_ON();
1092 for(;;) {
7bc95e2e 1093 // Clean receive command buffer
1094
a501c82b 1095 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1096 DbpString("Button press");
a501c82b 1097 break;
254b70a4 1098 }
7bc95e2e 1099
1100 p_response = NULL;
1101
254b70a4 1102 // Okay, look at the command now.
1103 lastorder = order;
1104 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1105 p_response = &responses[0]; order = 1;
254b70a4 1106 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1107 p_response = &responses[0]; order = 6;
254b70a4 1108 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1109 p_response = &responses[1]; order = 2;
a501c82b 1110 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1111 p_response = &responses[2]; order = 20;
254b70a4 1112 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1113 p_response = &responses[3]; order = 3;
254b70a4 1114 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1115 p_response = &responses[4]; order = 30;
254b70a4 1116 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
a501c82b 1117 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
7bc95e2e 1118 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1119 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1120 p_response = NULL;
254b70a4 1121 } else if(receivedCmd[0] == 0x50) { // Received a HALT
a501c82b 1122
7bc95e2e 1123 if (tracing) {
a501c82b 1124 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1125 }
1126 p_response = NULL;
254b70a4 1127 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1128 p_response = &responses[5]; order = 7;
254b70a4 1129 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1130 if (tagType == 1 || tagType == 2) { // RATS not supported
1131 EmSend4bit(CARD_NACK_NA);
1132 p_response = NULL;
1133 } else {
1134 p_response = &responses[6]; order = 70;
1135 }
a501c82b 1136 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1137 if (tracing) {
a501c82b 1138 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1139 }
1140 uint32_t nr = bytes_to_num(receivedCmd,4);
1141 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1142 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1143 } else {
1144 // Check for ISO 14443A-4 compliant commands, look at left nibble
1145 switch (receivedCmd[0]) {
1146
1147 case 0x0B:
1148 case 0x0A: { // IBlock (command)
1149 dynamic_response_info.response[0] = receivedCmd[0];
1150 dynamic_response_info.response[1] = 0x00;
1151 dynamic_response_info.response[2] = 0x90;
1152 dynamic_response_info.response[3] = 0x00;
1153 dynamic_response_info.response_n = 4;
1154 } break;
1155
1156 case 0x1A:
1157 case 0x1B: { // Chaining command
1158 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1159 dynamic_response_info.response_n = 2;
1160 } break;
1161
1162 case 0xaa:
1163 case 0xbb: {
1164 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1165 dynamic_response_info.response_n = 2;
1166 } break;
1167
1168 case 0xBA: { //
1169 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1170 dynamic_response_info.response_n = 2;
1171 } break;
1172
1173 case 0xCA:
1174 case 0xC2: { // Readers sends deselect command
1175 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1176 dynamic_response_info.response_n = 2;
1177 } break;
1178
1179 default: {
1180 // Never seen this command before
1181 if (tracing) {
a501c82b 1182 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1183 }
1184 Dbprintf("Received unknown command (len=%d):",len);
1185 Dbhexdump(len,receivedCmd,false);
1186 // Do not respond
1187 dynamic_response_info.response_n = 0;
1188 } break;
1189 }
ce02f6f9 1190
7bc95e2e 1191 if (dynamic_response_info.response_n > 0) {
1192 // Copy the CID from the reader query
1193 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1194
7bc95e2e 1195 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1196 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1197 dynamic_response_info.response_n += 2;
ce02f6f9 1198
7bc95e2e 1199 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1200 Dbprintf("Error preparing tag response");
1201 if (tracing) {
a501c82b 1202 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1203 }
1204 break;
1205 }
1206 p_response = &dynamic_response_info;
1207 }
81cd0474 1208 }
15c4dc5a 1209
1210 // Count number of wakeups received after a halt
1211 if(order == 6 && lastorder == 5) { happened++; }
1212
1213 // Count number of other messages after a halt
1214 if(order != 6 && lastorder == 5) { happened2++; }
1215
15c4dc5a 1216 if(cmdsRecvd > 999) {
1217 DbpString("1000 commands later...");
254b70a4 1218 break;
15c4dc5a 1219 }
ce02f6f9 1220 cmdsRecvd++;
1221
1222 if (p_response != NULL) {
7bc95e2e 1223 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1224 // do the tracing for the previous reader request and this tag answer:
a501c82b 1225 uint8_t par[MAX_PARITY_SIZE];
1226 GetParity(p_response->response, p_response->response_n, par);
1227
7bc95e2e 1228 EmLogTrace(Uart.output,
1229 Uart.len,
1230 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1231 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
a501c82b 1232 Uart.parity,
7bc95e2e 1233 p_response->response,
1234 p_response->response_n,
1235 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1236 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
a501c82b 1237 par);
7bc95e2e 1238 }
1239
1240 if (!tracing) {
1241 Dbprintf("Trace Full. Simulation stopped.");
1242 break;
1243 }
1244 }
15c4dc5a 1245
1246 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1247 LED_A_OFF();
1248}
1249
9492e0b0 1250
1251// prepare a delayed transfer. This simply shifts ToSend[] by a number
1252// of bits specified in the delay parameter.
1253void PrepareDelayedTransfer(uint16_t delay)
1254{
1255 uint8_t bitmask = 0;
1256 uint8_t bits_to_shift = 0;
1257 uint8_t bits_shifted = 0;
1258
1259 delay &= 0x07;
1260 if (delay) {
1261 for (uint16_t i = 0; i < delay; i++) {
1262 bitmask |= (0x01 << i);
1263 }
7bc95e2e 1264 ToSend[ToSendMax++] = 0x00;
9492e0b0 1265 for (uint16_t i = 0; i < ToSendMax; i++) {
1266 bits_to_shift = ToSend[i] & bitmask;
1267 ToSend[i] = ToSend[i] >> delay;
1268 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1269 bits_shifted = bits_to_shift;
1270 }
1271 }
1272}
1273
7bc95e2e 1274
1275//-------------------------------------------------------------------------------------
15c4dc5a 1276// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1277// Parameter timing:
7bc95e2e 1278// if NULL: transfer at next possible time, taking into account
1279// request guard time and frame delay time
1280// if == 0: transfer immediately and return time of transfer
9492e0b0 1281// if != 0: delay transfer until time specified
7bc95e2e 1282//-------------------------------------------------------------------------------------
a501c82b 1283static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1284{
7bc95e2e 1285
9492e0b0 1286 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1287
7bc95e2e 1288 uint32_t ThisTransferTime = 0;
e30c654b 1289
9492e0b0 1290 if (timing) {
1291 if(*timing == 0) { // Measure time
7bc95e2e 1292 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1293 } else {
1294 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1295 }
7bc95e2e 1296 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1297 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1298 LastTimeProxToAirStart = *timing;
1299 } else {
1300 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1301 while(GetCountSspClk() < ThisTransferTime);
1302 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1303 }
1304
7bc95e2e 1305 // clear TXRDY
1306 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1307
7bc95e2e 1308 uint16_t c = 0;
9492e0b0 1309 for(;;) {
1310 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1311 AT91C_BASE_SSC->SSC_THR = cmd[c];
1312 c++;
1313 if(c >= len) {
1314 break;
1315 }
1316 }
1317 }
7bc95e2e 1318
f6c18637 1319 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1320}
1321
7bc95e2e 1322
15c4dc5a 1323//-----------------------------------------------------------------------------
195af472 1324// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1325//-----------------------------------------------------------------------------
a501c82b 1326void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1327{
7bc95e2e 1328 int i, j;
1329 int last;
1330 uint8_t b;
e30c654b 1331
7bc95e2e 1332 ToSendReset();
e30c654b 1333
7bc95e2e 1334 // Start of Communication (Seq. Z)
1335 ToSend[++ToSendMax] = SEC_Z;
1336 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1337 last = 0;
1338
1339 size_t bytecount = nbytes(bits);
1340 // Generate send structure for the data bits
1341 for (i = 0; i < bytecount; i++) {
1342 // Get the current byte to send
1343 b = cmd[i];
1344 size_t bitsleft = MIN((bits-(i*8)),8);
1345
1346 for (j = 0; j < bitsleft; j++) {
1347 if (b & 1) {
1348 // Sequence X
1349 ToSend[++ToSendMax] = SEC_X;
1350 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1351 last = 1;
1352 } else {
1353 if (last == 0) {
1354 // Sequence Z
1355 ToSend[++ToSendMax] = SEC_Z;
1356 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1357 } else {
1358 // Sequence Y
1359 ToSend[++ToSendMax] = SEC_Y;
1360 last = 0;
1361 }
1362 }
1363 b >>= 1;
1364 }
1365
a501c82b 1366 // Only transmit parity bit if we transmitted a complete byte
7bc95e2e 1367 if (j == 8) {
1368 // Get the parity bit
a501c82b 1369 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1370 // Sequence X
1371 ToSend[++ToSendMax] = SEC_X;
1372 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1373 last = 1;
1374 } else {
1375 if (last == 0) {
1376 // Sequence Z
1377 ToSend[++ToSendMax] = SEC_Z;
1378 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1379 } else {
1380 // Sequence Y
1381 ToSend[++ToSendMax] = SEC_Y;
1382 last = 0;
1383 }
1384 }
1385 }
1386 }
e30c654b 1387
7bc95e2e 1388 // End of Communication: Logic 0 followed by Sequence Y
1389 if (last == 0) {
1390 // Sequence Z
1391 ToSend[++ToSendMax] = SEC_Z;
1392 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1393 } else {
1394 // Sequence Y
1395 ToSend[++ToSendMax] = SEC_Y;
1396 last = 0;
1397 }
1398 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1399
7bc95e2e 1400 // Convert to length of command:
1401 ToSendMax++;
15c4dc5a 1402}
1403
195af472 1404//-----------------------------------------------------------------------------
1405// Prepare reader command to send to FPGA
1406//-----------------------------------------------------------------------------
a501c82b 1407void CodeIso14443aAsReaderPar(const uint8_t * cmd, uint16_t len, const uint8_t *parity)
195af472 1408{
a501c82b 1409 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1410}
1411
9ca155ba
M
1412//-----------------------------------------------------------------------------
1413// Wait for commands from reader
1414// Stop when button is pressed (return 1) or field was gone (return 2)
1415// Or return 0 when command is captured
1416//-----------------------------------------------------------------------------
a501c82b 1417static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1418{
1419 *len = 0;
1420
1421 uint32_t timer = 0, vtime = 0;
1422 int analogCnt = 0;
1423 int analogAVG = 0;
1424
1425 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1426 // only, since we are receiving, not transmitting).
1427 // Signal field is off with the appropriate LED
1428 LED_D_OFF();
1429 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1430
1431 // Set ADC to read field strength
1432 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1433 AT91C_BASE_ADC->ADC_MR =
1434 ADC_MODE_PRESCALE(32) |
1435 ADC_MODE_STARTUP_TIME(16) |
1436 ADC_MODE_SAMPLE_HOLD_TIME(8);
1437 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1438 // start ADC
1439 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1440
1441 // Now run a 'software UART' on the stream of incoming samples.
a501c82b 1442 UartInit(received, parity);
7bc95e2e 1443
1444 // Clear RXRDY:
1445 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba
M
1446
1447 for(;;) {
1448 WDT_HIT();
1449
1450 if (BUTTON_PRESS()) return 1;
1451
1452 // test if the field exists
1453 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1454 analogCnt++;
1455 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1456 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1457 if (analogCnt >= 32) {
1458 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1459 vtime = GetTickCount();
1460 if (!timer) timer = vtime;
1461 // 50ms no field --> card to idle state
1462 if (vtime - timer > 50) return 2;
1463 } else
1464 if (timer) timer = 0;
1465 analogCnt = 0;
1466 analogAVG = 0;
1467 }
1468 }
7bc95e2e 1469
9ca155ba 1470 // receive and test the miller decoding
7bc95e2e 1471 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1472 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1473 if(MillerDecoding(b, 0)) {
1474 *len = Uart.len;
9ca155ba
M
1475 return 0;
1476 }
7bc95e2e 1477 }
1478
9ca155ba
M
1479 }
1480}
1481
9ca155ba 1482
a501c82b 1483static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1484{
1485 uint8_t b;
1486 uint16_t i = 0;
1487 uint32_t ThisTransferTime;
1488
9ca155ba
M
1489 // Modulate Manchester
1490 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1491
1492 // include correction bit if necessary
1493 if (Uart.parityBits & 0x01) {
1494 correctionNeeded = TRUE;
1495 }
1496 if(correctionNeeded) {
9ca155ba
M
1497 // 1236, so correction bit needed
1498 i = 0;
7bc95e2e 1499 } else {
1500 i = 1;
9ca155ba 1501 }
7bc95e2e 1502
d714d3ef 1503 // clear receiving shift register and holding register
7bc95e2e 1504 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1505 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1506 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1507 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1508
7bc95e2e 1509 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1510 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1511 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1512 if (AT91C_BASE_SSC->SSC_RHR) break;
1513 }
1514
1515 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1516
1517 // Clear TXRDY:
1518 AT91C_BASE_SSC->SSC_THR = SEC_F;
1519
9ca155ba 1520 // send cycle
7bc95e2e 1521 for(; i <= respLen; ) {
9ca155ba 1522 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1523 AT91C_BASE_SSC->SSC_THR = resp[i++];
1524 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1525 }
7bc95e2e 1526
9ca155ba
M
1527 if(BUTTON_PRESS()) {
1528 break;
1529 }
1530 }
1531
7bc95e2e 1532 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1533 for (i = 0; i < 2 ; ) {
1534 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1535 AT91C_BASE_SSC->SSC_THR = SEC_F;
1536 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1537 i++;
1538 }
1539 }
1540
1541 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1542
9ca155ba
M
1543 return 0;
1544}
1545
7bc95e2e 1546int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1547 Code4bitAnswerAsTag(resp);
0a39986e 1548 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1549 // do the tracing for the previous reader request and this tag answer:
a501c82b 1550 uint8_t par[1];
1551 GetParity(&resp, 1, par);
7bc95e2e 1552 EmLogTrace(Uart.output,
1553 Uart.len,
1554 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1555 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
a501c82b 1556 Uart.parity,
7bc95e2e 1557 &resp,
1558 1,
1559 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1560 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
a501c82b 1561 par);
0a39986e 1562 return res;
9ca155ba
M
1563}
1564
8f51ddb0 1565int EmSend4bit(uint8_t resp){
7bc95e2e 1566 return EmSend4bitEx(resp, false);
8f51ddb0
M
1567}
1568
a501c82b 1569int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1570 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1571 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1572 // do the tracing for the previous reader request and this tag answer:
1573 EmLogTrace(Uart.output,
1574 Uart.len,
1575 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1576 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
a501c82b 1577 Uart.parity,
7bc95e2e 1578 resp,
1579 respLen,
1580 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1581 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
a501c82b 1582 par);
8f51ddb0
M
1583 return res;
1584}
1585
a501c82b 1586int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1587 uint8_t par[MAX_PARITY_SIZE];
1588 GetParity(resp, respLen, par);
1589 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0 1590}
a501c82b 1591
1592int EmSendCmd(uint8_t *resp, uint16_t respLen){
1593 uint8_t par[MAX_PARITY_SIZE];
1594 GetParity(resp, respLen, par);
1595 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1596}
1597
a501c82b 1598int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1599 return EmSendCmdExPar(resp, respLen, false, par);
1600}
1601
a501c82b 1602bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1603 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1604{
a501c82b 1605 if (!tracing) return true;
1606
1607 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1608 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1609 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1610 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1611 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1612 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1613 reader_EndTime = tag_StartTime - exact_fdt;
1614 reader_StartTime = reader_EndTime - reader_modlen;
1615 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1616 return FALSE;
1617 } else
1618 return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
9ca155ba
M
1619}
1620
15c4dc5a 1621//-----------------------------------------------------------------------------
1622// Wait a certain time for tag response
1623// If a response is captured return TRUE
e691fc45 1624// If it takes too long return FALSE
15c4dc5a 1625//-----------------------------------------------------------------------------
a501c82b 1626static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1627{
7bc95e2e 1628 uint16_t c;
e691fc45 1629
15c4dc5a 1630 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1631 // only, since we are receiving, not transmitting).
1632 // Signal field is on with the appropriate LED
1633 LED_D_ON();
1634 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1635
534983d7 1636 // Now get the answer from the card
a501c82b 1637 DemodInit(receivedResponse, receivedResponsePar);
1638
7bc95e2e 1639 // clear RXRDY:
1640 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1641
15c4dc5a 1642 c = 0;
1643 for(;;) {
534983d7 1644 WDT_HIT();
15c4dc5a 1645
534983d7 1646 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1647 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1648 if(ManchesterDecoding(b, offset, 0)) {
1649 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1650 return TRUE;
a501c82b 1651 } else if (c++ > iso14a_timeout) {
7bc95e2e 1652 return FALSE;
15c4dc5a 1653 }
534983d7 1654 }
1655 }
15c4dc5a 1656}
1657
a501c82b 1658void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1659{
a501c82b 1660 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1661
7bc95e2e 1662 // Send command to tag
1663 TransmitFor14443a(ToSend, ToSendMax, timing);
1664 if(trigger)
1665 LED_A_ON();
dfc3c505 1666
7bc95e2e 1667 // Log reader command in trace buffer
1668 if (tracing) {
a501c82b 1669 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1670 }
15c4dc5a 1671}
1672
a501c82b 1673void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1674{
a501c82b 1675 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1676}
15c4dc5a 1677
a501c82b 1678void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1679{
a501c82b 1680 // Generate parity and redirect
1681 uint8_t par[MAX_PARITY_SIZE];
1682 GetParity(frame, len/8, par);
1683 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1684}
1685
a501c82b 1686void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1687{
a501c82b 1688 // Generate parity and redirect
1689 uint8_t par[MAX_PARITY_SIZE];
1690 GetParity(frame, len, par);
1691 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1692}
1693
a501c82b 1694int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1695{
a501c82b 1696 if (!GetIso14443aAnswerFromTag(receivedAnswer,parity,offset)) return FALSE;
7bc95e2e 1697 if (tracing) {
a501c82b 1698 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1699 }
e691fc45 1700 return Demod.len;
1701}
1702
a501c82b 1703int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1704{
a501c82b 1705 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
15c4dc5a 1706
7bc95e2e 1707 if (tracing) {
a501c82b 1708 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1709 }
e691fc45 1710 return Demod.len;
f89c7050
M
1711}
1712
e691fc45 1713/* performs iso14443a anticollision procedure
534983d7 1714 * fills the uid pointer unless NULL
1715 * fills resp_data unless NULL */
79a73ab2 1716int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
a501c82b 1717 uint8_t halt[] = { 0x50 }; // HALT
1718 uint8_t wupa[] = { 0x52 }; // WAKE-UP
1719 //uint8_t reqa[] = { 0x26 }; // REQUEST A
1720 uint8_t sel_all[] = { 0x93,0x20 };
1721 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1722 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1723 uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
1724 uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
1725
1726 byte_t uid_resp[4];
1727 size_t uid_resp_len;
15c4dc5a 1728
ed258538 1729 uint8_t sak = 0x04; // cascade uid
1730 int cascade_level = 0;
1731 int len;
a501c82b 1732
1733 ReaderTransmit(halt,sizeof(halt), NULL);
1734
ed258538 1735 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
a501c82b 1736 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1737
ed258538 1738 // Receive the ATQA
a501c82b 1739 if(!ReaderReceive(resp, resp_par)) return 0;
e691fc45 1740 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1c611bbd 1741
ed258538 1742 if(p_hi14a_card) {
1743 memcpy(p_hi14a_card->atqa, resp, 2);
79a73ab2 1744 p_hi14a_card->uidlen = 0;
1745 memset(p_hi14a_card->uid,0,10);
1746 }
5f6d6c90 1747
79a73ab2 1748 // clear uid
1749 if (uid_ptr) {
1c611bbd 1750 memset(uid_ptr,0,10);
79a73ab2 1751 }
1752
ed258538 1753 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1754 // which case we need to make a cascade 2 request and select - this is a long UID
1755 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1756 for(; sak & 0x04; cascade_level++) {
1757 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1758 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1759
1760 // SELECT_ALL
9492e0b0 1761 ReaderTransmit(sel_all,sizeof(sel_all), NULL);
a501c82b 1762 if (!ReaderReceive(resp, resp_par)) return 0;
5f6d6c90 1763
e691fc45 1764 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1765 memset(uid_resp, 0, 4);
1766 uint16_t uid_resp_bits = 0;
1767 uint16_t collision_answer_offset = 0;
1768 // anti-collision-loop:
1769 while (Demod.collisionPos) {
1770 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1771 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1772 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1773 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1774 }
1775 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1776 uid_resp_bits++;
1777 // construct anticollosion command:
1778 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1779 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1780 sel_uid[2+i] = uid_resp[i];
1781 }
1782 collision_answer_offset = uid_resp_bits%8;
1783 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
a501c82b 1784 if (!ReaderReceiveOffset(resp, collision_answer_offset,resp_par)) return 0;
e691fc45 1785 }
1786 // finally, add the last bits and BCC of the UID
1787 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1788 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1789 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1790 }
1791
1792 } else { // no collision, use the response to SELECT_ALL as current uid
1793 memcpy(uid_resp,resp,4);
1794 }
1795 uid_resp_len = 4;
95e63594 1796
5f6d6c90 1797
e691fc45 1798 // calculate crypto UID. Always use last 4 Bytes.
5f6d6c90 1799 if(cuid_ptr) {
1800 *cuid_ptr = bytes_to_num(uid_resp, 4);
79a73ab2 1801 }
e30c654b 1802
ed258538 1803 // Construct SELECT UID command
e691fc45 1804 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1805 memcpy(sel_uid+2,uid_resp,4); // the UID
1806 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1807 AppendCrc14443a(sel_uid,7); // calculate and add CRC
9492e0b0 1808 ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
534983d7 1809
ed258538 1810 // Receive the SAK
a501c82b 1811 if (!ReaderReceive(resp, resp_par)) return 0;
ed258538 1812 sak = resp[0];
79a73ab2 1813
95e63594 1814 //Dbprintf("SAK: %02x",resp[0]);
1815
79a73ab2 1816 // Test if more parts of the uid are comming
e691fc45 1817 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
a501c82b 1818 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1819 // http://www.nxp.com/documents/application_note/AN10927.pdf
1820 // This was earlier:
1821 //memcpy(uid_resp, uid_resp + 1, 3);
1822 // But memcpy should not be used for overlapping arrays,
1823 // and memmove appears to not be available in the arm build.
1824 // Therefore:
1825 uid_resp[0] = uid_resp[1];
1826 uid_resp[1] = uid_resp[2];
1827 uid_resp[2] = uid_resp[3];
1828
1829 uid_resp_len = 3;
79a73ab2 1830 }
5f6d6c90 1831
79a73ab2 1832 if(uid_ptr) {
1833 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1834 }
5f6d6c90 1835
79a73ab2 1836 if(p_hi14a_card) {
1837 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1838 p_hi14a_card->uidlen += uid_resp_len;
1839 }
ed258538 1840 }
79a73ab2 1841
ed258538 1842 if(p_hi14a_card) {
1843 p_hi14a_card->sak = sak;
1844 p_hi14a_card->ats_len = 0;
1845 }
534983d7 1846
ed258538 1847 if( (sak & 0x20) == 0) {
1848 return 2; // non iso14443a compliant tag
79a73ab2 1849 }
534983d7 1850
ed258538 1851 // Request for answer to select
5191b3d1 1852 AppendCrc14443a(rats, 2);
9492e0b0 1853 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1854
a501c82b 1855 if (!(len = ReaderReceive(resp,resp_par))) return 0;
5191b3d1 1856
1857 if(p_hi14a_card) {
ed258538 1858 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1859 p_hi14a_card->ats_len = len;
1860 }
5f6d6c90 1861
ed258538 1862 // reset the PCB block number
1863 iso14_pcb_blocknum = 0;
1864 return 1;
7e758047 1865}
15c4dc5a 1866
7bc95e2e 1867void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1868 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1869 // Set up the synchronous serial port
1870 FpgaSetupSsc();
7bc95e2e 1871 // connect Demodulated Signal to ADC:
7e758047 1872 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1873
7e758047 1874 // Signal field is on with the appropriate LED
95e63594 1875 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
7bc95e2e 1876 LED_D_ON();
1877 } else {
1878 LED_D_OFF();
1879 }
1880 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1881
7bc95e2e 1882 // Start the timer
1883 StartCountSspClk();
1884
1885 DemodReset();
1886 UartReset();
1887 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
f38a1528 1888 iso14a_set_timeout(1050); // 10ms default 10*105 =
7e758047 1889}
15c4dc5a 1890
a501c82b 1891int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1892 uint8_t parity[MAX_PARITY_SIZE];
534983d7 1893 uint8_t real_cmd[cmd_len+4];
1894 real_cmd[0] = 0x0a; //I-Block
b0127e65 1895 // put block number into the PCB
1896 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1897 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1898 memcpy(real_cmd+2, cmd, cmd_len);
1899 AppendCrc14443a(real_cmd,cmd_len+2);
1900
9492e0b0 1901 ReaderTransmit(real_cmd, cmd_len+4, NULL);
a501c82b 1902 size_t len = ReaderReceive(data, parity);
b0127e65 1903 uint8_t * data_bytes = (uint8_t *) data;
1904 if (!len)
1905 return 0; //DATA LINK ERROR
1906 // if we received an I- or R(ACK)-Block with a block number equal to the
1907 // current block number, toggle the current block number
1908 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1909 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1910 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1911 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1912 {
1913 iso14_pcb_blocknum ^= 1;
1914 }
1915
534983d7 1916 return len;
1917}
1918
7e758047 1919//-----------------------------------------------------------------------------
1920// Read an ISO 14443a tag. Send out commands and store answers.
1921//
1922//-----------------------------------------------------------------------------
7bc95e2e 1923void ReaderIso14443a(UsbCommand *c)
7e758047 1924{
534983d7 1925 iso14a_command_t param = c->arg[0];
7bc95e2e 1926 uint8_t *cmd = c->d.asBytes;
a501c82b 1927 size_t len = c->arg[1];
1928 size_t lenbits = c->arg[2];
9492e0b0 1929 uint32_t arg0 = 0;
1930 byte_t buf[USB_CMD_DATA_SIZE];
a501c82b 1931 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 1932
5f6d6c90 1933 if(param & ISO14A_CONNECT) {
1934 iso14a_clear_trace();
1935 }
e691fc45 1936
7bc95e2e 1937 iso14a_set_tracing(TRUE);
e30c654b 1938
79a73ab2 1939 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1940 iso14a_set_trigger(TRUE);
9492e0b0 1941 }
15c4dc5a 1942
534983d7 1943 if(param & ISO14A_CONNECT) {
7bc95e2e 1944 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1945 if(!(param & ISO14A_NO_SELECT)) {
1946 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1947 arg0 = iso14443a_select_card(NULL,card,NULL);
1948 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1949 }
534983d7 1950 }
e30c654b 1951
534983d7 1952 if(param & ISO14A_SET_TIMEOUT) {
313ee67e 1953 iso14a_set_timeout(c->arg[2]);
534983d7 1954 }
e30c654b 1955
534983d7 1956 if(param & ISO14A_APDU) {
902cb3c0 1957 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1958 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1959 }
e30c654b 1960
534983d7 1961 if(param & ISO14A_RAW) {
1962 if(param & ISO14A_APPEND_CRC) {
1963 AppendCrc14443a(cmd,len);
1964 len += 2;
a501c82b 1965 if (lenbits) lenbits += 16;
15c4dc5a 1966 }
a501c82b 1967 if(lenbits>0) {
1968 GetParity(cmd, lenbits/8, par);
1969 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
5f6d6c90 1970 } else {
1971 ReaderTransmit(cmd,len, NULL);
1972 }
a501c82b 1973 arg0 = ReaderReceive(buf, par);
9492e0b0 1974 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1975 }
15c4dc5a 1976
79a73ab2 1977 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1978 iso14a_set_trigger(FALSE);
9492e0b0 1979 }
15c4dc5a 1980
79a73ab2 1981 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1982 return;
9492e0b0 1983 }
15c4dc5a 1984
15c4dc5a 1985 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1986 LEDsoff();
15c4dc5a 1987}
b0127e65 1988
1c611bbd 1989
1c611bbd 1990// Determine the distance between two nonces.
1991// Assume that the difference is small, but we don't know which is first.
1992// Therefore try in alternating directions.
1993int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1994
1995 uint16_t i;
1996 uint32_t nttmp1, nttmp2;
e772353f 1997
1c611bbd 1998 if (nt1 == nt2) return 0;
1999
2000 nttmp1 = nt1;
2001 nttmp2 = nt2;
2002
2003 for (i = 1; i < 32768; i++) {
2004 nttmp1 = prng_successor(nttmp1, 1);
2005 if (nttmp1 == nt2) return i;
2006 nttmp2 = prng_successor(nttmp2, 1);
2007 if (nttmp2 == nt1) return -i;
2008 }
2009
2010 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 2011}
2012
e772353f 2013
1c611bbd 2014//-----------------------------------------------------------------------------
2015// Recover several bits of the cypher stream. This implements (first stages of)
2016// the algorithm described in "The Dark Side of Security by Obscurity and
2017// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2018// (article by Nicolas T. Courtois, 2009)
2019//-----------------------------------------------------------------------------
2020void ReaderMifare(bool first_try)
2021{
2022 // Mifare AUTH
2023 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2024 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2025 static uint8_t mf_nr_ar3;
e772353f 2026
a501c82b 2027 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2028 uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
7bc95e2e 2029
d2f487af 2030 iso14a_clear_trace();
7bc95e2e 2031 iso14a_set_tracing(TRUE);
e772353f 2032
1c611bbd 2033 byte_t nt_diff = 0;
a501c82b 2034 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2035 static byte_t par_low = 0;
2036 bool led_on = TRUE;
a501c82b 2037 uint8_t uid[10] ={0};
1c611bbd 2038 uint32_t cuid;
e772353f 2039
a61b4976 2040 uint32_t nt = 0;
2041 uint32_t previous_nt = 0;
1c611bbd 2042 static uint32_t nt_attacked = 0;
95e63594 2043 byte_t par_list[8] = {0x00};
2044 byte_t ks_list[8] = {0x00};
e772353f 2045
1c611bbd 2046 static uint32_t sync_time;
2047 static uint32_t sync_cycles;
2048 int catch_up_cycles = 0;
2049 int last_catch_up = 0;
2050 uint16_t consecutive_resyncs = 0;
2051 int isOK = 0;
e772353f 2052
1c611bbd 2053 if (first_try) {
1c611bbd 2054 mf_nr_ar3 = 0;
7bc95e2e 2055 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2056 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 2057 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2058 nt_attacked = 0;
2059 nt = 0;
a501c82b 2060 par[0] = 0;
1c611bbd 2061 }
2062 else {
2063 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2064 mf_nr_ar3++;
2065 mf_nr_ar[3] = mf_nr_ar3;
a501c82b 2066 par[0] = par_low;
1c611bbd 2067 }
e30c654b 2068
15c4dc5a 2069 LED_A_ON();
2070 LED_B_OFF();
2071 LED_C_OFF();
1c611bbd 2072
7bc95e2e 2073
1c611bbd 2074 for(uint16_t i = 0; TRUE; i++) {
2075
2076 WDT_HIT();
e30c654b 2077
1c611bbd 2078 // Test if the action was cancelled
2079 if(BUTTON_PRESS()) {
2080 break;
2081 }
2082
2083 LED_C_ON();
e30c654b 2084
1c611bbd 2085 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2086 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2087 continue;
2088 }
2089
9492e0b0 2090 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 2091 catch_up_cycles = 0;
2092
2093 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 2094 while(GetCountSspClk() > sync_time) {
9492e0b0 2095 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 2096 }
e30c654b 2097
9492e0b0 2098 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2099 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2100
1c611bbd 2101 // Receive the (4 Byte) "random" nonce
a501c82b 2102 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2103 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2104 continue;
2105 }
2106
1c611bbd 2107 previous_nt = nt;
2108 nt = bytes_to_num(receivedAnswer, 4);
2109
2110 // Transmit reader nonce with fake par
9492e0b0 2111 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2112
2113 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2114 int nt_distance = dist_nt(previous_nt, nt);
2115 if (nt_distance == 0) {
2116 nt_attacked = nt;
2117 }
2118 else {
2119 if (nt_distance == -99999) { // invalid nonce received, try again
2120 continue;
2121 }
2122 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2123 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2124 continue;
2125 }
2126 }
2127
2128 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2129 catch_up_cycles = -dist_nt(nt_attacked, nt);
2130 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2131 catch_up_cycles = 0;
2132 continue;
2133 }
2134 if (catch_up_cycles == last_catch_up) {
2135 consecutive_resyncs++;
2136 }
2137 else {
2138 last_catch_up = catch_up_cycles;
2139 consecutive_resyncs = 0;
2140 }
2141 if (consecutive_resyncs < 3) {
9492e0b0 2142 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2143 }
2144 else {
2145 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2146 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2147 }
2148 continue;
2149 }
2150
2151 consecutive_resyncs = 0;
2152
2153 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
a501c82b 2154 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2155 {
9492e0b0 2156 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2157
2158 if (nt_diff == 0)
2159 {
a501c82b 2160 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2161 }
2162
2163 led_on = !led_on;
2164 if(led_on) LED_B_ON(); else LED_B_OFF();
2165
a501c82b 2166 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2167 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2168
2169 // Test if the information is complete
2170 if (nt_diff == 0x07) {
2171 isOK = 1;
2172 break;
2173 }
2174
2175 nt_diff = (nt_diff + 1) & 0x07;
2176 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
a501c82b 2177 par[0] = par_low;
1c611bbd 2178 } else {
2179 if (nt_diff == 0 && first_try)
2180 {
a501c82b 2181 par[0]++;
1c611bbd 2182 } else {
a501c82b 2183 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2184 }
2185 }
2186 }
2187
1c611bbd 2188
2189 mf_nr_ar[3] &= 0x1F;
2190
2191 byte_t buf[28];
2192 memcpy(buf + 0, uid, 4);
2193 num_to_bytes(nt, 4, buf + 4);
2194 memcpy(buf + 8, par_list, 8);
2195 memcpy(buf + 16, ks_list, 8);
2196 memcpy(buf + 24, mf_nr_ar, 4);
2197
2198 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2199
2200 // Thats it...
2201 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2202 LEDsoff();
7bc95e2e 2203
2204 iso14a_set_tracing(FALSE);
20f9a2a1 2205}
1c611bbd 2206
d2f487af 2207/**
2208 *MIFARE 1K simulate.
2209 *
2210 *@param flags :
2211 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2212 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2213 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2214 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2215 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2216 */
2217void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2218{
50193c1e 2219 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2220 int _7BUID = 0;
9ca155ba 2221 int vHf = 0; // in mV
8f51ddb0 2222 int res;
0a39986e
M
2223 uint32_t selTimer = 0;
2224 uint32_t authTimer = 0;
a501c82b 2225 uint16_t len = 0;
8f51ddb0 2226 uint8_t cardWRBL = 0;
9ca155ba
M
2227 uint8_t cardAUTHSC = 0;
2228 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2229 uint32_t cardRr = 0;
9ca155ba 2230 uint32_t cuid = 0;
d2f487af 2231 //uint32_t rn_enc = 0;
51969283 2232 uint32_t ans = 0;
0014cb46
M
2233 uint32_t cardINTREG = 0;
2234 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2235 struct Crypto1State mpcs = {0, 0};
2236 struct Crypto1State *pcs;
2237 pcs = &mpcs;
d2f487af 2238 uint32_t numReads = 0;//Counts numer of times reader read a block
a501c82b 2239 uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
2240 uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
2241 uint8_t* response = get_bigbufptr_recvrespbuf();
2242 uint8_t* response_par = response + MAX_FRAME_SIZE;
9ca155ba 2243
d2f487af 2244 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2245 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2246 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2247 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2248 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2249
d2f487af 2250 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2251 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2252
d2f487af 2253 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2254 // This can be used in a reader-only attack.
2255 // (it can also be retrieved via 'hf 14a list', but hey...
2256 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2257 uint8_t ar_nr_collected = 0;
0014cb46 2258
0a39986e 2259 // clear trace
7bc95e2e 2260 iso14a_clear_trace();
2261 iso14a_set_tracing(TRUE);
51969283 2262
7bc95e2e 2263 // Authenticate response - nonce
51969283 2264 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2265
d2f487af 2266 //-- Determine the UID
2267 // Can be set from emulator memory, incoming data
2268 // and can be 7 or 4 bytes long
7bc95e2e 2269 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2270 {
2271 // 4B uid comes from data-portion of packet
2272 memcpy(rUIDBCC1,datain,4);
8556b852 2273 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2274
7bc95e2e 2275 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2276 // 7B uid comes from data-portion of packet
2277 memcpy(&rUIDBCC1[1],datain,3);
2278 memcpy(rUIDBCC2, datain+3, 4);
2279 _7BUID = true;
7bc95e2e 2280 } else {
d2f487af 2281 // get UID from emul memory
2282 emlGetMemBt(receivedCmd, 7, 1);
2283 _7BUID = !(receivedCmd[0] == 0x00);
2284 if (!_7BUID) { // ---------- 4BUID
2285 emlGetMemBt(rUIDBCC1, 0, 4);
2286 } else { // ---------- 7BUID
2287 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2288 emlGetMemBt(rUIDBCC2, 3, 4);
2289 }
2290 }
7bc95e2e 2291
d2f487af 2292 /*
2293 * Regardless of what method was used to set the UID, set fifth byte and modify
2294 * the ATQA for 4 or 7-byte UID
2295 */
d2f487af 2296 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2297 if (_7BUID) {
d2f487af 2298 rATQA[0] = 0x44;
8556b852 2299 rUIDBCC1[0] = 0x88;
8556b852
M
2300 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2301 }
2302
9ca155ba 2303 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2304 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2305
9ca155ba 2306
d2f487af 2307 if (MF_DBGLEVEL >= 1) {
2308 if (!_7BUID) {
a501c82b 2309 Dbprintf("4B UID: %02x%02x%02x%02x",
2310 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2311 } else {
a501c82b 2312 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2313 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2314 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2315 }
2316 }
7bc95e2e 2317
2318 bool finished = FALSE;
d2f487af 2319 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2320 WDT_HIT();
9ca155ba
M
2321
2322 // find reader field
2323 // Vref = 3300mV, and an 10:1 voltage divider on the input
2324 // can measure voltages up to 33000 mV
2325 if (cardSTATE == MFEMUL_NOFIELD) {
2326 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2327 if (vHf > MF_MINFIELDV) {
0014cb46 2328 cardSTATE_TO_IDLE();
9ca155ba
M
2329 LED_A_ON();
2330 }
2331 }
d2f487af 2332 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2333
d2f487af 2334 //Now, get data
2335
a501c82b 2336 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2337 if (res == 2) { //Field is off!
2338 cardSTATE = MFEMUL_NOFIELD;
2339 LEDsoff();
2340 continue;
7bc95e2e 2341 } else if (res == 1) {
2342 break; //return value 1 means button press
2343 }
2344
d2f487af 2345 // REQ or WUP request in ANY state and WUP in HALTED state
2346 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2347 selTimer = GetTickCount();
2348 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2349 cardSTATE = MFEMUL_SELECT1;
2350
2351 // init crypto block
2352 LED_B_OFF();
2353 LED_C_OFF();
2354 crypto1_destroy(pcs);
2355 cardAUTHKEY = 0xff;
2356 continue;
0a39986e 2357 }
7bc95e2e 2358
50193c1e 2359 switch (cardSTATE) {
d2f487af 2360 case MFEMUL_NOFIELD:
2361 case MFEMUL_HALTED:
50193c1e 2362 case MFEMUL_IDLE:{
a501c82b 2363 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2364 break;
2365 }
2366 case MFEMUL_SELECT1:{
9ca155ba
M
2367 // select all
2368 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2369 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2370 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2371 break;
9ca155ba
M
2372 }
2373
d2f487af 2374 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2375 {
2376 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2377 }
9ca155ba 2378 // select card
0a39986e
M
2379 if (len == 9 &&
2380 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2381 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2382 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2383 if (!_7BUID) {
2384 cardSTATE = MFEMUL_WORK;
0014cb46
M
2385 LED_B_ON();
2386 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2387 break;
8556b852
M
2388 } else {
2389 cardSTATE = MFEMUL_SELECT2;
8556b852 2390 }
9ca155ba 2391 }
50193c1e
M
2392 break;
2393 }
d2f487af 2394 case MFEMUL_AUTH1:{
2395 if( len != 8)
2396 {
2397 cardSTATE_TO_IDLE();
a501c82b 2398 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2399 break;
2400 }
2401 uint32_t ar = bytes_to_num(receivedCmd, 4);
a501c82b 2402 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2403
2404 //Collect AR/NR
2405 if(ar_nr_collected < 2){
273b57a7 2406 if(ar_nr_responses[2] != ar)
2407 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2408 ar_nr_responses[ar_nr_collected*4] = cuid;
2409 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2410 ar_nr_responses[ar_nr_collected*4+2] = ar;
2411 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2412 ar_nr_collected++;
d2f487af 2413 }
2414 }
2415
2416 // --- crypto
2417 crypto1_word(pcs, ar , 1);
2418 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2419
2420 // test if auth OK
2421 if (cardRr != prng_successor(nonce, 64)){
a501c82b 2422 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2423 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2424 cardRr, prng_successor(nonce, 64));
7bc95e2e 2425 // Shouldn't we respond anything here?
d2f487af 2426 // Right now, we don't nack or anything, which causes the
2427 // reader to do a WUPA after a while. /Martin
b03c0f2d 2428 // -- which is the correct response. /piwi
d2f487af 2429 cardSTATE_TO_IDLE();
a501c82b 2430 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2431 break;
2432 }
2433
2434 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2435
2436 num_to_bytes(ans, 4, rAUTH_AT);
2437 // --- crypto
2438 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2439 LED_C_ON();
2440 cardSTATE = MFEMUL_WORK;
b03c0f2d 2441 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2442 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2443 GetTickCount() - authTimer);
d2f487af 2444 break;
2445 }
50193c1e 2446 case MFEMUL_SELECT2:{
7bc95e2e 2447 if (!len) {
a501c82b 2448 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2449 break;
2450 }
8556b852 2451 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2452 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2453 break;
2454 }
9ca155ba 2455
8556b852
M
2456 // select 2 card
2457 if (len == 9 &&
2458 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2459 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2460 cuid = bytes_to_num(rUIDBCC2, 4);
2461 cardSTATE = MFEMUL_WORK;
2462 LED_B_ON();
0014cb46 2463 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2464 break;
2465 }
0014cb46
M
2466
2467 // i guess there is a command). go into the work state.
7bc95e2e 2468 if (len != 4) {
a501c82b 2469 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2470 break;
2471 }
0014cb46 2472 cardSTATE = MFEMUL_WORK;
d2f487af 2473 //goto lbWORK;
2474 //intentional fall-through to the next case-stmt
50193c1e 2475 }
51969283 2476
7bc95e2e 2477 case MFEMUL_WORK:{
2478 if (len == 0) {
a501c82b 2479 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2480 break;
2481 }
2482
d2f487af 2483 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2484
7bc95e2e 2485 if(encrypted_data) {
51969283
M
2486 // decrypt seqence
2487 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2488 }
7bc95e2e 2489
d2f487af 2490 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2491 authTimer = GetTickCount();
2492 cardAUTHSC = receivedCmd[1] / 4; // received block num
2493 cardAUTHKEY = receivedCmd[0] - 0x60;
2494 crypto1_destroy(pcs);//Added by martin
2495 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2496
d2f487af 2497 if (!encrypted_data) { // first authentication
b03c0f2d 2498 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2499
d2f487af 2500 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2501 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2502 } else { // nested authentication
b03c0f2d 2503 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2504 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2505 num_to_bytes(ans, 4, rAUTH_AT);
2506 }
2507 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2508 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2509 cardSTATE = MFEMUL_AUTH1;
2510 break;
51969283 2511 }
7bc95e2e 2512
8f51ddb0
M
2513 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2514 // BUT... ACK --> NACK
2515 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2516 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2517 break;
2518 }
2519
2520 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2521 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2522 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2523 break;
0a39986e
M
2524 }
2525
7bc95e2e 2526 if(len != 4) {
a501c82b 2527 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2528 break;
2529 }
d2f487af 2530
2531 if(receivedCmd[0] == 0x30 // read block
2532 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2533 || receivedCmd[0] == 0xC0 // inc
2534 || receivedCmd[0] == 0xC1 // dec
2535 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2536 || receivedCmd[0] == 0xB0) { // transfer
2537 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2538 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2539 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2540 break;
2541 }
2542
7bc95e2e 2543 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2544 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
d2f487af 2545 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2546 break;
2547 }
d2f487af 2548 }
2549 // read block
2550 if (receivedCmd[0] == 0x30) {
b03c0f2d 2551 if (MF_DBGLEVEL >= 4) {
d2f487af 2552 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2553 }
8f51ddb0
M
2554 emlGetMem(response, receivedCmd[1], 1);
2555 AppendCrc14443a(response, 16);
a501c82b 2556 mf_crypto1_encrypt(pcs, response, 18, response_par);
2557 EmSendCmdPar(response, 18, response_par);
d2f487af 2558 numReads++;
7bc95e2e 2559 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2560 Dbprintf("%d reads done, exiting", numReads);
2561 finished = true;
2562 }
0a39986e
M
2563 break;
2564 }
0a39986e 2565 // write block
d2f487af 2566 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2567 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2568 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2569 cardSTATE = MFEMUL_WRITEBL2;
2570 cardWRBL = receivedCmd[1];
0a39986e 2571 break;
7bc95e2e 2572 }
0014cb46 2573 // increment, decrement, restore
d2f487af 2574 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2575 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2576 if (emlCheckValBl(receivedCmd[1])) {
2577 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2578 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2579 break;
2580 }
2581 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2582 if (receivedCmd[0] == 0xC1)
2583 cardSTATE = MFEMUL_INTREG_INC;
2584 if (receivedCmd[0] == 0xC0)
2585 cardSTATE = MFEMUL_INTREG_DEC;
2586 if (receivedCmd[0] == 0xC2)
2587 cardSTATE = MFEMUL_INTREG_REST;
2588 cardWRBL = receivedCmd[1];
0014cb46
M
2589 break;
2590 }
0014cb46 2591 // transfer
d2f487af 2592 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2593 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2594 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2595 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2596 else
2597 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2598 break;
2599 }
9ca155ba 2600 // halt
d2f487af 2601 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2602 LED_B_OFF();
0a39986e 2603 LED_C_OFF();
0014cb46
M
2604 cardSTATE = MFEMUL_HALTED;
2605 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
a501c82b 2606 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2607 break;
9ca155ba 2608 }
d2f487af 2609 // RATS
2610 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2611 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2612 break;
2613 }
d2f487af 2614 // command not allowed
2615 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2616 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2617 break;
8f51ddb0
M
2618 }
2619 case MFEMUL_WRITEBL2:{
2620 if (len == 18){
2621 mf_crypto1_decrypt(pcs, receivedCmd, len);
2622 emlSetMem(receivedCmd, cardWRBL, 1);
2623 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2624 cardSTATE = MFEMUL_WORK;
51969283 2625 } else {
0014cb46 2626 cardSTATE_TO_IDLE();
a501c82b 2627 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2628 }
8f51ddb0 2629 break;
50193c1e 2630 }
0014cb46
M
2631
2632 case MFEMUL_INTREG_INC:{
2633 mf_crypto1_decrypt(pcs, receivedCmd, len);
2634 memcpy(&ans, receivedCmd, 4);
2635 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2636 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2637 cardSTATE_TO_IDLE();
2638 break;
7bc95e2e 2639 }
a501c82b 2640 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2641 cardINTREG = cardINTREG + ans;
2642 cardSTATE = MFEMUL_WORK;
2643 break;
2644 }
2645 case MFEMUL_INTREG_DEC:{
2646 mf_crypto1_decrypt(pcs, receivedCmd, len);
2647 memcpy(&ans, receivedCmd, 4);
2648 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2649 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2650 cardSTATE_TO_IDLE();
2651 break;
2652 }
a501c82b 2653 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2654 cardINTREG = cardINTREG - ans;
2655 cardSTATE = MFEMUL_WORK;
2656 break;
2657 }
2658 case MFEMUL_INTREG_REST:{
2659 mf_crypto1_decrypt(pcs, receivedCmd, len);
2660 memcpy(&ans, receivedCmd, 4);
2661 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2662 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2663 cardSTATE_TO_IDLE();
2664 break;
2665 }
a501c82b 2666 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2667 cardSTATE = MFEMUL_WORK;
2668 break;
2669 }
50193c1e 2670 }
50193c1e
M
2671 }
2672
9ca155ba
M
2673 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2674 LEDsoff();
2675
d2f487af 2676 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2677 {
2678 //May just aswell send the collected ar_nr in the response aswell
2679 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2680 }
d714d3ef 2681
d2f487af 2682 if(flags & FLAG_NR_AR_ATTACK)
2683 {
7bc95e2e 2684 if(ar_nr_collected > 1) {
d2f487af 2685 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2686 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
d2f487af 2687 ar_nr_responses[0], // UID
2688 ar_nr_responses[1], //NT
2689 ar_nr_responses[2], //AR1
2690 ar_nr_responses[3], //NR1
2691 ar_nr_responses[6], //AR2
2692 ar_nr_responses[7] //NR2
2693 );
7bc95e2e 2694 } else {
d2f487af 2695 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2696 if(ar_nr_collected >0) {
d714d3ef 2697 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2698 ar_nr_responses[0], // UID
2699 ar_nr_responses[1], //NT
2700 ar_nr_responses[2], //AR1
2701 ar_nr_responses[3] //NR1
2702 );
2703 }
2704 }
2705 }
0014cb46 2706 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
15c4dc5a 2707}
b62a5a84 2708
d2f487af 2709
2710
b62a5a84
M
2711//-----------------------------------------------------------------------------
2712// MIFARE sniffer.
2713//
2714//-----------------------------------------------------------------------------
5cd9ec01
M
2715void RAMFUNC SniffMifare(uint8_t param) {
2716 // param:
2717 // bit 0 - trigger from first card answer
2718 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2719
2720 // C(red) A(yellow) B(green)
b62a5a84
M
2721 LEDsoff();
2722 // init trace buffer
991f13f2 2723 iso14a_clear_trace();
2724 iso14a_set_tracing(TRUE);
b62a5a84 2725
b62a5a84
M
2726 // The command (reader -> tag) that we're receiving.
2727 // The length of a received command will in most cases be no more than 18 bytes.
2728 // So 32 should be enough!
2729 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
a501c82b 2730 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
b62a5a84 2731 // The response (tag -> reader) that we're receiving.
a501c82b 2732 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2733 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
2734
b62a5a84
M
2735 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2736 // into trace, along with its length and other annotations.
2737 //uint8_t *trace = (uint8_t *)BigBuf;
2738
2739 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 2740 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2741 uint8_t *data = dmaBuf;
2742 uint8_t previous_data = 0;
5cd9ec01
M
2743 int maxDataLen = 0;
2744 int dataLen = 0;
7bc95e2e 2745 bool ReaderIsActive = FALSE;
2746 bool TagIsActive = FALSE;
2747
2748 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2749
2750 // Set up the demodulator for tag -> reader responses.
a501c82b 2751 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2752
2753 // Set up the demodulator for the reader -> tag commands
a501c82b 2754 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
2755
2756 // Setup for the DMA.
7bc95e2e 2757 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2758
b62a5a84 2759 LED_D_OFF();
39864b0b
M
2760
2761 // init sniffer
2762 MfSniffInit();
b62a5a84 2763
b62a5a84 2764 // And now we loop, receiving samples.
7bc95e2e 2765 for(uint32_t sniffCounter = 0; TRUE; ) {
2766
5cd9ec01
M
2767 if(BUTTON_PRESS()) {
2768 DbpString("cancelled by button");
7bc95e2e 2769 break;
5cd9ec01
M
2770 }
2771
b62a5a84
M
2772 LED_A_ON();
2773 WDT_HIT();
39864b0b 2774
7bc95e2e 2775 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2776 // check if a transaction is completed (timeout after 2000ms).
2777 // if yes, stop the DMA transfer and send what we have so far to the client
2778 if (MfSniffSend(2000)) {
2779 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2780 sniffCounter = 0;
2781 data = dmaBuf;
2782 maxDataLen = 0;
2783 ReaderIsActive = FALSE;
2784 TagIsActive = FALSE;
2785 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2786 }
39864b0b 2787 }
7bc95e2e 2788
2789 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2790 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2791 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2792 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2793 } else {
2794 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2795 }
2796 // test for length of buffer
7bc95e2e 2797 if(dataLen > maxDataLen) { // we are more behind than ever...
2798 maxDataLen = dataLen;
5cd9ec01
M
2799 if(dataLen > 400) {
2800 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2801 break;
b62a5a84
M
2802 }
2803 }
5cd9ec01 2804 if(dataLen < 1) continue;
b62a5a84 2805
7bc95e2e 2806 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2807 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2808 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2809 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2810 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2811 }
2812 // secondary buffer sets as primary, secondary buffer was stopped
2813 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2814 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2815 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2816 }
5cd9ec01
M
2817
2818 LED_A_OFF();
b62a5a84 2819
7bc95e2e 2820 if (sniffCounter & 0x01) {
b62a5a84 2821
7bc95e2e 2822 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2823 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2824 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2825 LED_C_INV();
a501c82b 2826 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 2827
7bc95e2e 2828 /* And ready to receive another command. */
2829 UartReset();
2830
2831 /* And also reset the demod code */
2832 DemodReset();
2833 }
2834 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2835 }
2836
2837 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2838 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2839 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2840 LED_C_INV();
b62a5a84 2841
a501c82b 2842 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 2843
7bc95e2e 2844 // And ready to receive another response.
2845 DemodReset();
2846 }
2847 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2848 }
b62a5a84
M
2849 }
2850
7bc95e2e 2851 previous_data = *data;
2852 sniffCounter++;
5cd9ec01 2853 data++;
d714d3ef 2854 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2855 data = dmaBuf;
b62a5a84 2856 }
7bc95e2e 2857
b62a5a84
M
2858 } // main cycle
2859
2860 DbpString("COMMAND FINISHED");
2861
55acbb2a 2862 FpgaDisableSscDma();
39864b0b
M
2863 MfSniffEnd();
2864
7bc95e2e 2865 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2866 LEDsoff();
3803d529 2867}
Impressum, Datenschutz