]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
CHG: textual change
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
87a513aa 4// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
8ce3e4b4 5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// Implements a card only attack based on crypto text (encrypted nonces
10// received during a nested authentication) only. Unlike other card only
11// attacks this doesn't rely on implementation errors but only on the
12// inherent weaknesses of the crypto1 cypher. Described in
13// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15// Computer and Communications Security, 2015
16//-----------------------------------------------------------------------------
2dcf60f3 17#include "cmdhfmfhard.h"
4d812c13 18#include "cmdhw.h"
8ce3e4b4 19
f8ada309 20#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f 21#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
8e4a0b35 22#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
4d812c13 23#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
24#define MAX_BUCKETS 128
81ba7ee8 25
26#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 27
28static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
29 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0290 };
8ce3e4b4 62
63typedef struct noncelistentry {
64 uint32_t nonce_enc;
65 uint8_t par_enc;
66 void *next;
67} noncelistentry_t;
68
69typedef struct noncelist {
70 uint16_t num;
71 uint16_t Sum;
72 uint16_t Sum8_guess;
73 uint8_t BitFlip[2];
74 float Sum8_prob;
75 bool updated;
76 noncelistentry_t *first;
4d812c13 77 float score1;
78 uint_fast8_t score2;
8ce3e4b4 79} noncelist_t;
80
3130ba4b 81static size_t nonces_to_bruteforce = 0;
82static noncelistentry_t *brute_force_nonces[256];
810f5379 83static uint32_t cuid = 0;
8ce3e4b4 84static noncelist_t nonces[256];
fe8042f2 85static uint8_t best_first_bytes[256];
8ce3e4b4 86static uint16_t first_byte_Sum = 0;
87static uint16_t first_byte_num = 0;
88static uint16_t num_good_first_bytes = 0;
f8ada309 89static uint64_t maximum_states = 0;
90static uint64_t known_target_key;
0d5ee8e2 91static bool write_stats = false;
92static FILE *fstats = NULL;
8ce3e4b4 93
94
95typedef enum {
96 EVEN_STATE = 0,
97 ODD_STATE = 1
98} odd_even_t;
99
100#define STATELIST_INDEX_WIDTH 16
101#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
102
103typedef struct {
104 uint32_t *states[2];
105 uint32_t len[2];
106 uint32_t *index[2][STATELIST_INDEX_SIZE];
107} partial_indexed_statelist_t;
108
109typedef struct {
110 uint32_t *states[2];
111 uint32_t len[2];
112 void* next;
113} statelist_t;
114
115
f8ada309 116static partial_indexed_statelist_t partial_statelist[17];
117static partial_indexed_statelist_t statelist_bitflip;
f8ada309 118static statelist_t *candidates = NULL;
8ce3e4b4 119
383a1fb3
GG
120bool field_off = false;
121
4d812c13 122uint64_t foundkey = 0;
123size_t keys_found = 0;
124size_t bucket_count = 0;
125statelist_t* buckets[MAX_BUCKETS];
126static uint64_t total_states_tested = 0;
127size_t thread_count = 4;
128
129// these bitsliced states will hold identical states in all slices
130bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
131
132// arrays of bitsliced states with identical values in all slices
133bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
134bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
135
136#define EXACT_COUNT
137
057d2e91
GG
138static bool generate_candidates(uint16_t, uint16_t);
139static bool brute_force(void);
140
8ce3e4b4 141static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
142{
143 uint8_t first_byte = nonce_enc >> 24;
144 noncelistentry_t *p1 = nonces[first_byte].first;
145 noncelistentry_t *p2 = NULL;
146
147 if (p1 == NULL) { // first nonce with this 1st byte
148 first_byte_num++;
f8ada309 149 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 150 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
151 // nonce_enc,
152 // par_enc,
153 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 154 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 155 }
156
157 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
158 p2 = p1;
159 p1 = p1->next;
160 }
161
162 if (p1 == NULL) { // need to add at the end of the list
163 if (p2 == NULL) { // list is empty yet. Add first entry.
164 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
165 } else { // add new entry at end of existing list.
166 p2 = p2->next = malloc(sizeof(noncelistentry_t));
167 }
168 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
169 if (p2 == NULL) { // need to insert at start of list
170 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
171 } else {
172 p2 = p2->next = malloc(sizeof(noncelistentry_t));
173 }
174 } else { // we have seen this 2nd byte before. Nothing to add or insert.
175 return (0);
176 }
177
178 // add or insert new data
179 p2->next = p1;
180 p2->nonce_enc = nonce_enc;
181 p2->par_enc = par_enc;
182
3130ba4b 183 if(nonces_to_bruteforce < 256){
184 brute_force_nonces[nonces_to_bruteforce] = p2;
185 nonces_to_bruteforce++;
186 }
187
8ce3e4b4 188 nonces[first_byte].num++;
f8ada309 189 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 190 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
191
192 return (1); // new nonce added
193}
194
0d5ee8e2 195static void init_nonce_memory(void)
196{
197 for (uint16_t i = 0; i < 256; i++) {
198 nonces[i].num = 0;
199 nonces[i].Sum = 0;
200 nonces[i].Sum8_guess = 0;
201 nonces[i].Sum8_prob = 0.0;
202 nonces[i].updated = true;
203 nonces[i].first = NULL;
204 }
205 first_byte_num = 0;
206 first_byte_Sum = 0;
207 num_good_first_bytes = 0;
208}
209
0d5ee8e2 210static void free_nonce_list(noncelistentry_t *p)
211{
212 if (p == NULL) {
213 return;
214 } else {
215 free_nonce_list(p->next);
216 free(p);
217 }
218}
219
0d5ee8e2 220static void free_nonces_memory(void)
221{
222 for (uint16_t i = 0; i < 256; i++) {
223 free_nonce_list(nonces[i].first);
224 }
225}
226
8ce3e4b4 227static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
228{
229 uint16_t sum = 0;
230 for (uint16_t j = 0; j < 16; j++) {
231 uint32_t st = state;
232 uint16_t part_sum = 0;
233 if (odd_even == ODD_STATE) {
234 for (uint16_t i = 0; i < 5; i++) {
235 part_sum ^= filter(st);
236 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
237 }
f8ada309 238 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 239 } else {
240 for (uint16_t i = 0; i < 4; i++) {
241 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
242 part_sum ^= filter(st);
243 }
244 }
245 sum += part_sum;
246 }
247 return sum;
248}
249
fe8042f2 250// static uint16_t SumProperty(struct Crypto1State *s)
251// {
252 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
253 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
254 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
255// }
8ce3e4b4 256
8ce3e4b4 257static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
258{
259 // for efficient computation we are using the recursive definition
260 // (K-k+1) * (n-k+1)
261 // P(X=k) = P(X=k-1) * --------------------
262 // k * (N-K-n+k)
263 // and
264 // (N-K)*(N-K-1)*...*(N-K-n+1)
265 // P(X=0) = -----------------------------
266 // N*(N-1)*...*(N-n+1)
267
268 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
269 if (k == 0) {
270 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
271 double log_result = 0.0;
272 for (int16_t i = N-K; i >= N-K-n+1; i--) {
273 log_result += log(i);
274 }
275 for (int16_t i = N; i >= N-n+1; i--) {
276 log_result -= log(i);
277 }
8e4a0b35 278 return exp(log_result);
8ce3e4b4 279 } else {
280 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
281 double log_result = 0.0;
282 for (int16_t i = k+1; i <= n; i++) {
283 log_result += log(i);
284 }
285 for (int16_t i = K+1; i <= N; i++) {
286 log_result -= log(i);
287 }
8e4a0b35 288 return exp(log_result);
8ce3e4b4 289 } else { // recursion
290 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
291 }
292 }
293}
3130ba4b 294
8ce3e4b4 295static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
296{
297 const uint16_t N = 256;
8ce3e4b4 298
4b2e63be 299 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 300
4b2e63be 301 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
71ac327b 302 if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
303
4b2e63be 304 double p_S_is_K = p_K[K];
4d812c13 305 double p_T_is_k = 0.0;
4b2e63be 306 for (uint16_t i = 0; i <= 256; i++) {
307 if (p_K[i] != 0.0) {
71ac327b 308 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 309 }
4b2e63be 310 }
71ac327b 311 if (p_T_is_k == 0.0) return 0.0;
4b2e63be 312 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 313}
314
a531720a 315static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
316{
317 static const uint_fast8_t common_bits_LUT[256] = {
318 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
334 };
335
336 return common_bits_LUT[bytes_diff];
337}
338
8ce3e4b4 339static void Tests()
340{
fe8042f2 341 // printf("Tests: Partial Statelist sizes\n");
342 // for (uint16_t i = 0; i <= 16; i+=2) {
343 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
344 // }
345 // for (uint16_t i = 0; i <= 16; i+=2) {
346 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
347 // }
8ce3e4b4 348
349 // #define NUM_STATISTICS 100000
8ce3e4b4 350 // uint32_t statistics_odd[17];
f8ada309 351 // uint64_t statistics[257];
8ce3e4b4 352 // uint32_t statistics_even[17];
353 // struct Crypto1State cs;
354 // time_t time1 = clock();
355
356 // for (uint16_t i = 0; i < 257; i++) {
357 // statistics[i] = 0;
358 // }
359 // for (uint16_t i = 0; i < 17; i++) {
360 // statistics_odd[i] = 0;
361 // statistics_even[i] = 0;
362 // }
363
364 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
365 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
366 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
367 // uint16_t sum_property = SumProperty(&cs);
368 // statistics[sum_property] += 1;
369 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
370 // statistics_even[sum_property]++;
371 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
372 // statistics_odd[sum_property]++;
373 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
374 // }
375
376 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
377 // for (uint16_t i = 0; i < 257; i++) {
378 // if (statistics[i] != 0) {
379 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
380 // }
381 // }
382 // for (uint16_t i = 0; i <= 16; i++) {
383 // if (statistics_odd[i] != 0) {
384 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
385 // }
386 // }
387 // for (uint16_t i = 0; i <= 16; i++) {
388 // if (statistics_odd[i] != 0) {
389 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
390 // }
391 // }
392
393 // printf("Tests: Sum Probabilities based on Partial Sums\n");
394 // for (uint16_t i = 0; i < 257; i++) {
395 // statistics[i] = 0;
396 // }
397 // uint64_t num_states = 0;
398 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
399 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
400 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
401 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
402 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
403 // }
404 // }
405 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
406 // for (uint16_t i = 0; i < 257; i++) {
407 // if (statistics[i] != 0) {
408 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
409 // }
410 // }
411
412 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
413 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
414 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
415 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
416 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
417 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
418 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
419
fe8042f2 420 // struct Crypto1State *pcs;
421 // pcs = crypto1_create(0xffffffffffff);
422 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
423 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
424 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
425 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // best_first_bytes[0],
427 // SumProperty(pcs),
428 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
429 // //test_state_odd = pcs->odd & 0x00ffffff;
430 // //test_state_even = pcs->even & 0x00ffffff;
431 // crypto1_destroy(pcs);
432 // pcs = crypto1_create(0xa0a1a2a3a4a5);
433 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
434 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
435 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
436 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // best_first_bytes[0],
438 // SumProperty(pcs),
439 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
440 // //test_state_odd = pcs->odd & 0x00ffffff;
441 // //test_state_even = pcs->even & 0x00ffffff;
442 // crypto1_destroy(pcs);
443 // pcs = crypto1_create(0xa6b9aa97b955);
444 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
445 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
446 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
447 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
448 // best_first_bytes[0],
449 // SumProperty(pcs),
450 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 451 //test_state_odd = pcs->odd & 0x00ffffff;
452 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 453 // crypto1_destroy(pcs);
8ce3e4b4 454
455
fe8042f2 456 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 457
cd777a05 458 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
459 // for (uint16_t i = 0; i < 256; i++) {
460 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
461 // if (i % 8 == 7) {
462 // printf("\n");
463 // }
464 // }
8ce3e4b4 465
cd777a05 466 // printf("\nTests: Sorted First Bytes:\n");
467 // for (uint16_t i = 0; i < 256; i++) {
468 // uint8_t best_byte = best_first_bytes[i];
469 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
470 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
471 // i, best_byte,
472 // nonces[best_byte].num,
473 // nonces[best_byte].Sum,
474 // nonces[best_byte].Sum8_guess,
475 // nonces[best_byte].Sum8_prob * 100,
476 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
477 // //nonces[best_byte].score1,
478 // //nonces[best_byte].score2
479 // );
480 // }
f8ada309 481
482 // printf("\nTests: parity performance\n");
483 // time_t time1p = clock();
484 // uint32_t par_sum = 0;
485 // for (uint32_t i = 0; i < 100000000; i++) {
486 // par_sum += parity(i);
487 // }
488 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
489
490 // time1p = clock();
491 // par_sum = 0;
492 // for (uint32_t i = 0; i < 100000000; i++) {
493 // par_sum += evenparity32(i);
494 // }
495 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
496
8ce3e4b4 497
f8ada309 498}
499
4d812c13 500static uint16_t sort_best_first_bytes(void)
f8ada309 501{
fe8042f2 502 // sort based on probability for correct guess
8ce3e4b4 503 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 504 uint16_t j = 0;
8ce3e4b4 505 float prob1 = nonces[i].Sum8_prob;
f8ada309 506 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 507 while (prob1 < prob2 && j < i) {
8ce3e4b4 508 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
509 }
fe8042f2 510 if (j < i) {
511 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 512 best_first_bytes[k] = best_first_bytes[k-1];
513 }
fe8042f2 514 }
4d812c13 515 best_first_bytes[j] = i;
7fd676db 516 }
f8ada309 517
fe8042f2 518 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 519 uint16_t num_good_nonces = 0;
fe8042f2 520 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 521 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 522 ++num_good_nonces;
523 }
524 }
525
4d812c13 526 if (num_good_nonces == 0) return 0;
527
f8ada309 528 uint16_t best_first_byte = 0;
529
530 // select the best possible first byte based on number of common bits with all {b'}
531 // uint16_t max_common_bits = 0;
532 // for (uint16_t i = 0; i < num_good_nonces; i++) {
533 // uint16_t sum_common_bits = 0;
534 // for (uint16_t j = 0; j < num_good_nonces; j++) {
535 // if (i != j) {
536 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
537 // }
538 // }
539 // if (sum_common_bits > max_common_bits) {
540 // max_common_bits = sum_common_bits;
541 // best_first_byte = i;
542 // }
543 // }
544
545 // select best possible first byte {b} based on least likely sum/bitflip property
546 float min_p_K = 1.0;
547 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
548 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
549 float bitflip_prob = 1.0;
4d812c13 550
551 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
f8ada309 552 bitflip_prob = 0.09375;
4d812c13 553
a531720a 554 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
4d812c13 555
556 if (p_K[sum8] * bitflip_prob <= min_p_K)
f8ada309 557 min_p_K = p_K[sum8] * bitflip_prob;
4d812c13 558
f8ada309 559 }
560
a531720a 561
f8ada309 562 // use number of commmon bits as a tie breaker
4d812c13 563 uint_fast8_t max_common_bits = 0;
f8ada309 564 for (uint16_t i = 0; i < num_good_nonces; i++) {
4d812c13 565
f8ada309 566 float bitflip_prob = 1.0;
4d812c13 567 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
f8ada309 568 bitflip_prob = 0.09375;
4d812c13 569
f8ada309 570 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
4d812c13 571 uint_fast8_t sum_common_bits = 0;
f8ada309 572 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 573 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 574 }
a531720a 575 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 576 if (sum_common_bits > max_common_bits) {
577 max_common_bits = sum_common_bits;
578 best_first_byte = i;
579 }
580 }
581 }
582
a531720a 583 // swap best possible first byte to the pole position
8e4a0b35 584 if (best_first_byte != 0) {
4d812c13 585 uint16_t temp = best_first_bytes[0];
586 best_first_bytes[0] = best_first_bytes[best_first_byte];
587 best_first_bytes[best_first_byte] = temp;
8e4a0b35 588 }
f8ada309 589
4d812c13 590 return num_good_nonces;
8ce3e4b4 591}
592
8ce3e4b4 593static uint16_t estimate_second_byte_sum(void)
4d812c13 594{
8ce3e4b4 595 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
596 float Sum8_prob = 0.0;
597 uint16_t Sum8 = 0;
598 if (nonces[first_byte].updated) {
599 for (uint16_t sum = 0; sum <= 256; sum++) {
600 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
601 if (prob > Sum8_prob) {
602 Sum8_prob = prob;
603 Sum8 = sum;
604 }
605 }
606 nonces[first_byte].Sum8_guess = Sum8;
607 nonces[first_byte].Sum8_prob = Sum8_prob;
608 nonces[first_byte].updated = false;
609 }
610 }
4d812c13 611 return sort_best_first_bytes();
8ce3e4b4 612}
613
8ce3e4b4 614static int read_nonce_file(void)
615{
616 FILE *fnonces = NULL;
ddaecc08 617 uint8_t trgBlockNo = 0;
618 uint8_t trgKeyType = 0;
8ce3e4b4 619 uint8_t read_buf[9];
ddaecc08 620 uint32_t nt_enc1 = 0, nt_enc2 = 0;
621 uint8_t par_enc = 0;
8ce3e4b4 622 int total_num_nonces = 0;
623
624 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
625 PrintAndLog("Could not open file nonces.bin");
626 return 1;
627 }
628
629 PrintAndLog("Reading nonces from file nonces.bin...");
4d812c13 630 memset (read_buf, 0, sizeof (read_buf));
841d7af0 631 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
632 if ( bytes_read == 0) {
8ce3e4b4 633 PrintAndLog("File reading error.");
634 fclose(fnonces);
635 return 1;
636 }
637 cuid = bytes_to_num(read_buf, 4);
638 trgBlockNo = bytes_to_num(read_buf+4, 1);
639 trgKeyType = bytes_to_num(read_buf+5, 1);
4d812c13 640 size_t ret = 0;
641 do {
642 memset (read_buf, 0, sizeof (read_buf));
643 if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
8ce3e4b4 644 nt_enc1 = bytes_to_num(read_buf, 4);
645 nt_enc2 = bytes_to_num(read_buf+4, 4);
646 par_enc = bytes_to_num(read_buf+8, 1);
647 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
648 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
649 add_nonce(nt_enc1, par_enc >> 4);
650 add_nonce(nt_enc2, par_enc & 0x0f);
651 total_num_nonces += 2;
652 }
4d812c13 653 } while (ret == 9);
654
8ce3e4b4 655 fclose(fnonces);
656 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 657 return 0;
658}
659
a531720a 660static void Check_for_FilterFlipProperties(void)
661{
662 printf("Checking for Filter Flip Properties...\n");
0d5ee8e2 663 uint16_t num_bitflips = 0;
664
a531720a 665 for (uint16_t i = 0; i < 256; i++) {
666 nonces[i].BitFlip[ODD_STATE] = false;
667 nonces[i].BitFlip[EVEN_STATE] = false;
668 }
669
670 for (uint16_t i = 0; i < 256; i++) {
4d812c13 671 if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
672
a531720a 673 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
674 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
675 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
676
677 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
678 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 679 num_bitflips++;
a531720a 680 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
681 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 682 num_bitflips++;
a531720a 683 }
684 }
0d5ee8e2 685
4d812c13 686 if (write_stats)
0d5ee8e2 687 fprintf(fstats, "%d;", num_bitflips);
0d5ee8e2 688}
689
0d5ee8e2 690static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
691{
1f1929a4 692 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 693 // init cryptostate with key:
694 for(int8_t i = 47; i > 0; i -= 2) {
695 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
696 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
697 }
698
699 *par_enc = 0;
700 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
701 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
702 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
703 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
704 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
705 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
706 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
707 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
708 }
709
710}
711
0d5ee8e2 712static void simulate_acquire_nonces()
713{
714 clock_t time1 = clock();
715 bool filter_flip_checked = false;
716 uint32_t total_num_nonces = 0;
717 uint32_t next_fivehundred = 500;
718 uint32_t total_added_nonces = 0;
719
720 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
721 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
722
723 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
724 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
725
726 do {
727 uint32_t nt_enc = 0;
728 uint8_t par_enc = 0;
729
730 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
731 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
732 total_added_nonces += add_nonce(nt_enc, par_enc);
733 total_num_nonces++;
734
735 if (first_byte_num == 256 ) {
736 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
737 if (!filter_flip_checked) {
738 Check_for_FilterFlipProperties();
739 filter_flip_checked = true;
740 }
741 num_good_first_bytes = estimate_second_byte_sum();
742 if (total_num_nonces > next_fivehundred) {
743 next_fivehundred = (total_num_nonces/500+1) * 500;
4d812c13 744 printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 745 total_num_nonces,
0d5ee8e2 746 total_added_nonces,
747 CONFIDENCE_THRESHOLD * 100.0,
748 num_good_first_bytes);
749 }
750 }
751
752 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
753
b112787d 754 time1 = clock() - time1;
755 if ( time1 > 0 ) {
0d5ee8e2 756 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
757 total_num_nonces,
b112787d 758 ((float)time1)/CLOCKS_PER_SEC,
759 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
760 }
0d5ee8e2 761 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
762
a531720a 763}
764
f8ada309 765static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 766{
767 clock_t time1 = clock();
768 bool initialize = true;
8ce3e4b4 769 bool finished = false;
a531720a 770 bool filter_flip_checked = false;
8ce3e4b4 771 uint32_t flags = 0;
772 uint8_t write_buf[9];
773 uint32_t total_num_nonces = 0;
774 uint32_t next_fivehundred = 500;
775 uint32_t total_added_nonces = 0;
057d2e91 776 uint32_t idx = 1;
8ce3e4b4 777 FILE *fnonces = NULL;
383a1fb3 778 field_off = false;
4d812c13 779
780 UsbCommand resp;
781 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
782 memcpy(c.d.asBytes, key, 6);
783 c.arg[0] = blockNo + (keyType * 0x100);
784 c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
360caaba 785
8ce3e4b4 786 printf("Acquiring nonces...\n");
8ce3e4b4 787 do {
788 flags = 0;
4d812c13 789 //flags |= initialize ? 0x0001 : 0;
790 flags |= 0x0001;
8ce3e4b4 791 flags |= slow ? 0x0002 : 0;
792 flags |= field_off ? 0x0004 : 0;
360caaba 793 c.arg[2] = flags;
4d812c13 794
7fd676db 795 clearCommandBuffer();
8ce3e4b4 796 SendCommand(&c);
797
87a513aa 798 if (field_off) break;
8ce3e4b4 799
360caaba 800 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
801 if (fnonces) fclose(fnonces);
802 return 1;
803 }
4d812c13 804
360caaba 805 if (resp.arg[0]) {
806 if (fnonces) fclose(fnonces);
807 return resp.arg[0]; // error during nested_hard
808 }
809
810 if (initialize) {
811 // global var CUID
8ce3e4b4 812 cuid = resp.arg[1];
8ce3e4b4 813 if (nonce_file_write && fnonces == NULL) {
814 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
815 PrintAndLog("Could not create file nonces.bin");
816 return 3;
817 }
818 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
4d812c13 819 memset (write_buf, 0, sizeof (write_buf));
8ce3e4b4 820 num_to_bytes(cuid, 4, write_buf);
821 fwrite(write_buf, 1, 4, fnonces);
822 fwrite(&trgBlockNo, 1, 1, fnonces);
823 fwrite(&trgKeyType, 1, 1, fnonces);
7fd676db 824 fflush(fnonces);
8ce3e4b4 825 }
360caaba 826 initialize = false;
8ce3e4b4 827 }
360caaba 828
829 uint32_t nt_enc1, nt_enc2;
830 uint8_t par_enc;
831 uint16_t num_acquired_nonces = resp.arg[2];
832 uint8_t *bufp = resp.d.asBytes;
4d812c13 833 for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
360caaba 834 nt_enc1 = bytes_to_num(bufp, 4);
835 nt_enc2 = bytes_to_num(bufp+4, 4);
836 par_enc = bytes_to_num(bufp+8, 1);
837
360caaba 838 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
360caaba 839 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
840
841 if (nonce_file_write && fnonces) {
842 fwrite(bufp, 1, 9, fnonces);
843 fflush(fnonces);
8ce3e4b4 844 }
360caaba 845 bufp += 9;
8ce3e4b4 846 }
360caaba 847 total_num_nonces += num_acquired_nonces;
848
849 if (first_byte_num == 256) {
7fd676db 850
a531720a 851 if (!filter_flip_checked) {
852 Check_for_FilterFlipProperties();
853 filter_flip_checked = true;
854 }
383a1fb3 855
8ce3e4b4 856 num_good_first_bytes = estimate_second_byte_sum();
360caaba 857
8ce3e4b4 858 if (total_num_nonces > next_fivehundred) {
859 next_fivehundred = (total_num_nonces/500+1) * 500;
4d812c13 860 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 861 total_num_nonces,
8ce3e4b4 862 total_added_nonces,
8e4a0b35 863 NONCES_THRESHOLD * idx,
8ce3e4b4 864 CONFIDENCE_THRESHOLD * 100.0,
865 num_good_first_bytes);
383a1fb3 866 }
4d812c13 867
868 if ( num_good_first_bytes > 0 ) {
869 //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
870 if ( total_added_nonces >= (NONCES_THRESHOLD * idx)) {
871
872 CmdFPGAOff("");
873
874 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
875 if (cracking || known_target_key != -1) {
876 field_off = brute_force(); // switch off field with next SendCommand and then finish
877 if (field_off) break;
878 }
879 idx++;
bbcd41a6 880 }
1a4b6738 881 }
8ce3e4b4 882 }
8ce3e4b4 883 } while (!finished);
884
7fd676db 885 if (nonce_file_write && fnonces)
8ce3e4b4 886 fclose(fnonces);
8ce3e4b4 887
b112787d 888 time1 = clock() - time1;
889 if ( time1 > 0 ) {
81ba7ee8 890 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
891 total_num_nonces,
892 ((float)time1)/CLOCKS_PER_SEC,
893 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 894 );
895 }
8ce3e4b4 896 return 0;
897}
898
8ce3e4b4 899static int init_partial_statelists(void)
900{
f8ada309 901 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
902// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
903 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 904
905 printf("Allocating memory for partial statelists...\n");
906 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
907 for (uint16_t i = 0; i <= 16; i+=2) {
908 partial_statelist[i].len[odd_even] = 0;
909 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
910 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
911 if (partial_statelist[i].states[odd_even] == NULL) {
912 PrintAndLog("Cannot allocate enough memory. Aborting");
913 return 4;
914 }
915 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
916 partial_statelist[i].index[odd_even][j] = NULL;
917 }
918 }
919 }
920
921 printf("Generating partial statelists...\n");
922 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
923 uint32_t index = -1;
924 uint32_t num_of_states = 1<<20;
925 for (uint32_t state = 0; state < num_of_states; state++) {
926 uint16_t sum_property = PartialSumProperty(state, odd_even);
927 uint32_t *p = partial_statelist[sum_property].states[odd_even];
928 p += partial_statelist[sum_property].len[odd_even];
929 *p = state;
930 partial_statelist[sum_property].len[odd_even]++;
931 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
932 if ((state & index_mask) != index) {
933 index = state & index_mask;
934 }
935 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
936 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
937 }
938 }
939 // add End Of List markers
940 for (uint16_t i = 0; i <= 16; i += 2) {
941 uint32_t *p = partial_statelist[i].states[odd_even];
942 p += partial_statelist[i].len[odd_even];
81ba7ee8 943 *p = END_OF_LIST_MARKER;
8ce3e4b4 944 }
945 }
946
947 return 0;
948}
8ce3e4b4 949
950static void init_BitFlip_statelist(void)
951{
952 printf("Generating bitflip statelist...\n");
953 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
954 uint32_t index = -1;
955 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
956 for (uint32_t state = 0; state < (1 << 20); state++) {
957 if (filter(state) != filter(state^1)) {
958 if ((state & index_mask) != index) {
959 index = state & index_mask;
960 }
961 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
962 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
963 }
964 *p++ = state;
965 }
966 }
967 // set len and add End Of List marker
968 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 969 *p = END_OF_LIST_MARKER;
4d812c13 970 //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
8ce3e4b4 971}
8ce3e4b4 972
a531720a 973static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 974{
975 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
976
977 if (p == NULL) return NULL;
a531720a 978 while (*p < (state & mask)) p++;
81ba7ee8 979 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 980 if ((*p & mask) == (state & mask)) return p; // found a match.
981 return NULL; // no match
982}
983
a531720a 984static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 985{
a531720a 986 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
987 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
988 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
989 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
990 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
991 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
992 return !all_diff;
993}
994
a531720a 995static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
996{
997 uint_fast8_t j_bit_mask = 0x01 << bit;
998 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
999 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
1000 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
1001 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1002 return all_diff;
1003}
1004
a531720a 1005static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1006{
1007 if (odd_even) {
1008 // odd bits
1009 switch (num_common_bits) {
1010 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1011 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1012 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1013 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1014 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1015 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1016 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1017 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1018 }
a531720a 1019 } else {
1020 // even bits
1021 switch (num_common_bits) {
1022 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1023 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1024 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1025 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1026 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1027 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1028 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1029 }
8ce3e4b4 1030 }
1031
1032 return true; // valid state
1033}
1034
8ce3e4b4 1035static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1036{
1037 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1038 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1039 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1040 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1041 uint32_t mask = 0xfffffff0;
1042 if (odd_even == ODD_STATE) {
a531720a 1043 mask >>= j/2;
8ce3e4b4 1044 } else {
a531720a 1045 mask >>= (j+1)/2;
8ce3e4b4 1046 }
1047 mask &= 0x000fffff;
1048 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1049 bool found_match = false;
1050 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1051 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1052 if (r*(16-s) + (16-r)*s == sum_a8) {
1053 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1054 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1055 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1056 if (p != NULL) {
81ba7ee8 1057 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1058 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1059 found_match = true;
1060 // if ((odd_even == ODD_STATE && state == test_state_odd)
1061 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1062 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1063 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1064 // }
1065 break;
1066 } else {
1067 // if ((odd_even == ODD_STATE && state == test_state_odd)
1068 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1069 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1070 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1071 // }
1072 }
1073 p++;
1074 }
1075 } else {
1076 // if ((odd_even == ODD_STATE && state == test_state_odd)
1077 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1078 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1079 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1080 // }
1081 }
1082 }
1083 }
1084 }
1085
1086 if (!found_match) {
1087 // if ((odd_even == ODD_STATE && state == test_state_odd)
1088 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1089 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1090 // }
1091 return false;
1092 }
1093 }
1094
1095 return true;
1096}
1097
f8ada309 1098static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1099{
1100 for (uint16_t i = 0; i < 256; i++) {
1101 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1102 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1103 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1104 uint32_t mask = 0xfffffff0;
1105 if (odd_even == ODD_STATE) {
a531720a 1106 mask >>= j/2;
f8ada309 1107 } else {
a531720a 1108 mask >>= (j+1)/2;
f8ada309 1109 }
1110 mask &= 0x000fffff;
1111 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1112 bool found_match = false;
1113 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1114 if (p != NULL) {
81ba7ee8 1115 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1116 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1117 found_match = true;
1118 // if ((odd_even == ODD_STATE && state == test_state_odd)
1119 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1120 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1121 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1122 // }
1123 break;
1124 } else {
1125 // if ((odd_even == ODD_STATE && state == test_state_odd)
1126 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1127 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1128 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1129 // }
1130 }
1131 p++;
1132 }
1133 } else {
1134 // if ((odd_even == ODD_STATE && state == test_state_odd)
1135 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1136 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1137 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1138 // }
1139 }
1140 if (!found_match) {
1141 // if ((odd_even == ODD_STATE && state == test_state_odd)
1142 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1143 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1144 // }
1145 return false;
1146 }
1147 }
1148
1149 }
1150
1151 return true;
1152}
1153
a531720a 1154static struct sl_cache_entry {
1155 uint32_t *sl;
1156 uint32_t len;
1157 } sl_cache[17][17][2];
1158
a531720a 1159static void init_statelist_cache(void)
1160{
a531720a 1161 for (uint16_t i = 0; i < 17; i+=2) {
1162 for (uint16_t j = 0; j < 17; j+=2) {
1163 for (uint16_t k = 0; k < 2; k++) {
1164 sl_cache[i][j][k].sl = NULL;
1165 sl_cache[i][j][k].len = 0;
1166 }
1167 }
1168 }
1169}
1170
8ce3e4b4 1171static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1172{
1173 uint32_t worstcase_size = 1<<20;
1174
a531720a 1175 // check cache for existing results
1176 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1177 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1178 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1179 return 0;
1180 }
1181
8ce3e4b4 1182 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1183 if (candidates->states[odd_even] == NULL) {
1184 PrintAndLog("Out of memory error.\n");
1185 return 4;
1186 }
a531720a 1187 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1188 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1189 uint32_t search_mask = 0x000ffff0;
1190 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
71ac327b 1191 if (p1 != NULL && p2 != NULL) {
81ba7ee8 1192 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1193 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1194 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1195 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1196 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1197 *add_p++ = (*p1 << 4) | *p2;
1198 }
8ce3e4b4 1199 }
f8ada309 1200 }
8ce3e4b4 1201 p2++;
1202 }
1203 }
8ce3e4b4 1204 }
f8ada309 1205
a531720a 1206 // set end of list marker and len
81ba7ee8 1207 *add_p = END_OF_LIST_MARKER;
a531720a 1208 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1209
8ce3e4b4 1210 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1211
a531720a 1212 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1213 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1214
8ce3e4b4 1215 return 0;
1216}
1217
8ce3e4b4 1218static statelist_t *add_more_candidates(statelist_t *current_candidates)
1219{
1220 statelist_t *new_candidates = NULL;
1221 if (current_candidates == NULL) {
1222 if (candidates == NULL) {
1223 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1224 }
1225 new_candidates = candidates;
1226 } else {
1227 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1228 }
71ac327b 1229 if (!new_candidates) return NULL;
1230
8ce3e4b4 1231 new_candidates->next = NULL;
1232 new_candidates->len[ODD_STATE] = 0;
1233 new_candidates->len[EVEN_STATE] = 0;
1234 new_candidates->states[ODD_STATE] = NULL;
1235 new_candidates->states[EVEN_STATE] = NULL;
1236 return new_candidates;
1237}
1238
057d2e91 1239static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1240{
1241 struct Crypto1State *pcs;
1242 pcs = crypto1_create(key);
1243 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1244
1245 uint32_t state_odd = pcs->odd & 0x00ffffff;
1246 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1247 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
360caaba 1248 printf("Validating keysearch space\n");
f8ada309 1249 uint64_t count = 0;
8ce3e4b4 1250 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1251 bool found_odd = false;
1252 bool found_even = false;
8ce3e4b4 1253 uint32_t *p_odd = p->states[ODD_STATE];
1254 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1255 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1256 if ((*p_odd & 0x00ffffff) == state_odd) {
1257 found_odd = true;
1258 break;
1259 }
8ce3e4b4 1260 p_odd++;
1261 }
81ba7ee8 1262 while (*p_even != END_OF_LIST_MARKER) {
f8ada309 1263 if ((*p_even & 0x00ffffff) == state_even) {
1264 found_even = true;
1265 }
8ce3e4b4 1266 p_even++;
1267 }
f8ada309 1268 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1269 if (found_odd && found_even) {
4d812c13 1270 if (known_target_key != -1) {
360caaba 1271 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
81ba7ee8 1272 count,
1273 log(count)/log(2),
1274 maximum_states,
1275 log(maximum_states)/log(2)
1276 );
0d5ee8e2 1277 if (write_stats) {
1278 fprintf(fstats, "1\n");
1279 }
4d812c13 1280 }
f8ada309 1281 crypto1_destroy(pcs);
057d2e91 1282 return true;
f8ada309 1283 }
8ce3e4b4 1284 }
f8ada309 1285
4d812c13 1286 if (known_target_key != -1) {
f8ada309 1287 printf("Key NOT found!\n");
0d5ee8e2 1288 if (write_stats) {
1289 fprintf(fstats, "0\n");
1290 }
4d812c13 1291 }
8ce3e4b4 1292 crypto1_destroy(pcs);
057d2e91
GG
1293
1294 return false;
8ce3e4b4 1295}
1296
057d2e91 1297static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1298{
1299 printf("Generating crypto1 state candidates... \n");
1300
1301 statelist_t *current_candidates = NULL;
1302 // estimate maximum candidate states
f8ada309 1303 maximum_states = 0;
8ce3e4b4 1304 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1305 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1306 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1307 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1308 }
1309 }
1310 }
057d2e91 1311
0325c12f 1312 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1313
ba39db37 1314 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
8ce3e4b4 1315
a531720a 1316 init_statelist_cache();
1317
8ce3e4b4 1318 for (uint16_t p = 0; p <= 16; p += 2) {
1319 for (uint16_t q = 0; q <= 16; q += 2) {
1320 if (p*(16-q) + (16-p)*q == sum_a0) {
2dcf60f3 1321 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1322 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
8ce3e4b4 1323 for (uint16_t r = 0; r <= 16; r += 2) {
1324 for (uint16_t s = 0; s <= 16; s += 2) {
1325 if (r*(16-s) + (16-r)*s == sum_a8) {
1326 current_candidates = add_more_candidates(current_candidates);
71ac327b 1327 if (current_candidates != NULL) {
a531720a 1328 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1329 // and eliminate the need to calculate the other part
1330 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1331 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
ba39db37 1332 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1333 if(current_candidates->len[ODD_STATE]) {
ba39db37 1334 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1335 } else {
1336 current_candidates->len[EVEN_STATE] = 0;
1337 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1338 *p = END_OF_LIST_MARKER;
a531720a 1339 }
1340 } else {
1341 add_matching_states(current_candidates, q, s, EVEN_STATE);
1342 if(current_candidates->len[EVEN_STATE]) {
1343 add_matching_states(current_candidates, p, r, ODD_STATE);
1344 } else {
1345 current_candidates->len[ODD_STATE] = 0;
1346 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1347 *p = END_OF_LIST_MARKER;
a531720a 1348 }
1349 }
1c38049b 1350 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1351 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1352 }
1353 }
1354 }
1355 }
1356 }
1357 }
8e4a0b35 1358 }
8ce3e4b4 1359
8ce3e4b4 1360 maximum_states = 0;
8e4a0b35 1361 unsigned int n = 0;
4d812c13 1362 for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
8ce3e4b4 1363 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1364 }
0325c12f
GG
1365
1366 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1367
ba39db37 1368 float kcalc = log(maximum_states)/log(2);
057d2e91 1369 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1370 if (write_stats) {
4d812c13 1371 fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
0d5ee8e2 1372 }
236e8f7c 1373 if (kcalc < CRACKING_THRESHOLD) return true;
057d2e91
GG
1374
1375 return false;
0d5ee8e2 1376}
1377
0d5ee8e2 1378static void free_candidates_memory(statelist_t *sl)
1379{
1380 if (sl == NULL) {
1381 return;
1382 } else {
1383 free_candidates_memory(sl->next);
1384 free(sl);
1385 }
1386}
1387
0d5ee8e2 1388static void free_statelist_cache(void)
1389{
1390 for (uint16_t i = 0; i < 17; i+=2) {
1391 for (uint16_t j = 0; j < 17; j+=2) {
1392 for (uint16_t k = 0; k < 2; k++) {
1393 free(sl_cache[i][j][k].sl);
1394 }
1395 }
1396 }
8ce3e4b4 1397}
1398
3130ba4b 1399static const uint64_t crack_states_bitsliced(statelist_t *p){
1400 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1401 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1402 uint64_t key = -1;
1403 uint8_t bSize = sizeof(bitslice_t);
1404
1405#ifdef EXACT_COUNT
1406 size_t bucket_states_tested = 0;
1407 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1408#else
1409 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1410#endif
1411
1412 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1413 size_t bitsliced_blocks = 0;
1414 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1415
1416 // bitslice all the even states
1417 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1418
1419#ifdef __WIN32
1420 #ifdef __MINGW32__
1421 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1422 #else
1423 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1424 #endif
1425#else
b01e7d20 1426 #ifdef __APPLE__
9d590832 1427 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1428 #else
3130ba4b 1429 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1430 #endif
3130ba4b 1431#endif
1432
1433 if ( !lstate_p ) {
1434 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1435 return key;
1436 }
1437
1438 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1439
1440 // bitslice even half-states
1441 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1442#ifdef EXACT_COUNT
1443 bucket_size[bitsliced_blocks] = max_slices;
1444#endif
1445 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1446 uint32_t e = *(p_even+slice_idx);
1447 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1448 // set even bits
1449 if(e&1){
1450 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1451 }
1452 }
1453 }
1454 // compute the rollback bits
1455 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1456 // inlined crypto1_bs_lfsr_rollback
1457 const bitslice_value_t feedout = lstate_p[0].value;
1458 ++lstate_p;
1459 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1460 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1461 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1462 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1463 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1464 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1465 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1466 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1467 }
1468 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1469 }
1470
1471 // bitslice every odd state to every block of even half-states with half-finished rollback
1472 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1473 // early abort
1474 if(keys_found){
1475 goto out;
1476 }
1477
1478 // set the odd bits and compute rollback
1479 uint64_t o = (uint64_t) *p_odd;
1480 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1481 // pre-compute part of the odd feedback bits (minus rollback)
1482 bool odd_feedback_bit = parity(o&0x9ce5c);
1483
1484 crypto1_bs_rewind_a0();
1485 // set odd bits
1486 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
4d812c13 1487 state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
3130ba4b 1488 }
1489 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1490
1491 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1492 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1493 size_t state_idx;
1494 // set even bits
1495 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1496 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1497 }
1498 // set rollback bits
1499 uint64_t lo = o;
1500 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1501 // set the odd bits and take in the odd rollback bits from the even states
1502 if(lo & 1){
1503 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1504 } else {
1505 state_p[state_idx] = bitsliced_even_state[state_idx];
1506 }
1507
1508 // set the even bits and take in the even rollback bits from the odd states
1509 if((lo >> 32) & 1){
1510 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1511 } else {
1512 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1513 }
1514 }
1515
1516#ifdef EXACT_COUNT
4d812c13 1517 bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
3130ba4b 1518#endif
1519 // pre-compute first keystream and feedback bit vectors
1520 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1521 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1522 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1523 state_p[47-24].value ^ state_p[47-42].value);
1524
1525 // vector to contain test results (1 = passed, 0 = failed)
1526 bitslice_t results = bs_ones;
1527
1528 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1529 size_t parity_bit_idx = 0;
1530 bitslice_value_t fb_bits = fbb;
1531 bitslice_value_t ks_bits = ksb;
1532 state_p = &states[KEYSTREAM_SIZE-1];
1533 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1534
1535 // highest bit is transmitted/received first
1536 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1537 // decrypt nonce bits
1538 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1539 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1540
1541 // compute real parity bits on the fly
1542 parity_bit_vector ^= decrypted_nonce_bit_vector;
1543
1544 // update state
1545 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1546
1547 // compute next keystream bit
1548 ks_bits = crypto1_bs_f20(state_p);
1549
1550 // for each byte:
1551 if((ks_idx&7) == 0){
1552 // get encrypted parity bits
1553 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1554
1555 // decrypt parity bits
1556 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1557
1558 // compare actual parity bits with decrypted parity bits and take count in results vector
1559 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1560
1561 // make sure we still have a match in our set
1562 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1563
1564 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1565 // the short-circuiting also helps
1566 if(results.bytes64[0] == 0
1567#if MAX_BITSLICES > 64
1568 && results.bytes64[1] == 0
1569#endif
1570#if MAX_BITSLICES > 128
1571 && results.bytes64[2] == 0
1572 && results.bytes64[3] == 0
1573#endif
1574 ){
1575 goto stop_tests;
1576 }
1577 // this is about as fast but less portable (requires -std=gnu99)
1578 // asm goto ("ptest %1, %0\n\t"
1579 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1580 parity_bit_vector = bs_zeroes.value;
1581 }
1582 // compute next feedback bit vector
1583 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1584 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1585 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1586 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1587 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1588 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1589 }
1590 }
1591 // all nonce tests were successful: we've found the key in this block!
1592 state_t keys[MAX_BITSLICES];
1593 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1594 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1595 if(get_vector_bit(results_idx, results)){
1596 key = keys[results_idx].value;
1597 goto out;
1598 }
1599 }
1600stop_tests:
1601 // prepare to set new states
1602 crypto1_bs_rewind_a0();
1603 continue;
1604 }
1605 }
1606
1607out:
1608 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1609
1610#ifdef __WIN32
1611 #ifdef __MINGW32__
1612 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1613 #else
1614 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1615 #endif
1616#else
2e350b19 1617 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1618#endif
1619
1620 }
1621 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1622 return key;
1623}
8ce3e4b4 1624
3130ba4b 1625static void* crack_states_thread(void* x){
1626 const size_t thread_id = (size_t)x;
1627 size_t current_bucket = thread_id;
4d812c13 1628 statelist_t *bucket = NULL;
1629
3130ba4b 1630 while(current_bucket < bucket_count){
4d812c13 1631 if (keys_found) break;
1632
1633 if ((bucket = buckets[current_bucket])) {
3130ba4b 1634 const uint64_t key = crack_states_bitsliced(bucket);
4d812c13 1635
1636 if (keys_found) break;
1637 else if(key != -1 && TestIfKeyExists(key)) {
3130ba4b 1638 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1639 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1640 break;
3130ba4b 1641 } else {
1642 printf(".");
1643 fflush(stdout);
1644 }
1645 }
4d812c13 1646
3130ba4b 1647 current_bucket += thread_count;
1648 }
4d812c13 1649
3130ba4b 1650 return NULL;
1651}
cd777a05 1652
360caaba 1653static bool brute_force(void) {
057d2e91 1654 bool ret = false;
f8ada309 1655 if (known_target_key != -1) {
1656 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1657 ret = TestIfKeyExists(known_target_key);
f8ada309 1658 } else {
4d812c13 1659 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1660
057d2e91 1661 PrintAndLog("Brute force phase starting.");
b403c300 1662
7fd676db 1663 clock_t time1 = clock();
057d2e91 1664 keys_found = 0;
ddaecc08 1665 foundkey = 0;
3130ba4b 1666
057d2e91 1667 crypto1_bs_init();
4d812c13 1668 memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
1669 memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
1670 memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
057d2e91
GG
1671
1672 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
ba39db37 1673 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
057d2e91 1674 // convert to 32 bit little-endian
ed69e099 1675 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1676
1677 PrintAndLog("Bitslicing nonces...");
1678 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1679 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1680 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1681 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1682 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1683 // convert to 32 bit little-endian
1684 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1685 }
057d2e91 1686 total_states_tested = 0;
3130ba4b 1687
057d2e91
GG
1688 // count number of states to go
1689 bucket_count = 0;
4d812c13 1690 buckets[MAX_BUCKETS-1] = NULL;
87a513aa 1691 for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
057d2e91
GG
1692 buckets[bucket_count] = p;
1693 bucket_count++;
1694 }
4d812c13 1695 if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
3130ba4b 1696
1697#ifndef __WIN32
057d2e91 1698 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1699 if ( thread_count < 1)
1700 thread_count = 1;
3130ba4b 1701#endif /* _WIN32 */
fd3be901 1702
057d2e91 1703 pthread_t threads[thread_count];
3130ba4b 1704
057d2e91
GG
1705 // enumerate states using all hardware threads, each thread handles one bucket
1706 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1707
057d2e91
GG
1708 for(size_t i = 0; i < thread_count; i++){
1709 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1710 }
1711 for(size_t i = 0; i < thread_count; i++){
1712 pthread_join(threads[i], 0);
1713 }
1714
7fd676db 1715 time1 = clock() - time1;
360caaba 1716 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
7fd676db 1717
4d812c13 1718 if (keys_found) {
45c0c48c 1719 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91 1720 ret = true;
360caaba 1721 }
057d2e91
GG
1722 // reset this counter for the next call
1723 nonces_to_bruteforce = 0;
f8ada309 1724 }
057d2e91 1725 return ret;
f8ada309 1726}
1727
0d5ee8e2 1728int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1729{
0d5ee8e2 1730 // initialize Random number generator
1731 time_t t;
1732 srand((unsigned) time(&t));
1733
f8ada309 1734 if (trgkey != NULL) {
1735 known_target_key = bytes_to_num(trgkey, 6);
1736 } else {
1737 known_target_key = -1;
1738 }
8ce3e4b4 1739
8ce3e4b4 1740 init_partial_statelists();
1741 init_BitFlip_statelist();
0d5ee8e2 1742 write_stats = false;
8ce3e4b4 1743
0d5ee8e2 1744 if (tests) {
1745 // set the correct locale for the stats printing
1746 setlocale(LC_ALL, "");
1747 write_stats = true;
1748 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1749 PrintAndLog("Could not create/open file hardnested_stats.txt");
1750 return 3;
1751 }
1752 for (uint32_t i = 0; i < tests; i++) {
1753 init_nonce_memory();
1754 simulate_acquire_nonces();
1755 Tests();
1756 printf("Sum(a0) = %d\n", first_byte_Sum);
1757 fprintf(fstats, "%d;", first_byte_Sum);
1758 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1759 brute_force();
1760 free_nonces_memory();
1761 free_statelist_cache();
1762 free_candidates_memory(candidates);
1763 candidates = NULL;
1764 }
1765 fclose(fstats);
0325c12f 1766 fstats = NULL;
0d5ee8e2 1767 } else {
1768 init_nonce_memory();
236e8f7c 1769 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
b112787d 1770 if (read_nonce_file() != 0) {
1771 return 3;
1772 }
1773 Check_for_FilterFlipProperties();
1774 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
236e8f7c
GG
1775 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1776
236e8f7c 1777 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
8e4a0b35 1778 if (cracking || known_target_key != -1) {
236e8f7c 1779 brute_force();
8e4a0b35 1780 }
1781
236e8f7c 1782 } else { // acquire nonces.
b112787d 1783 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1784 if (is_OK != 0) {
1785 return is_OK;
1786 }
8ce3e4b4 1787 }
8ce3e4b4 1788
45c0c48c 1789 //Tests();
b112787d 1790 free_nonces_memory();
1791 free_statelist_cache();
1792 free_candidates_memory(candidates);
1793 candidates = NULL;
057d2e91 1794 }
8ce3e4b4 1795 return 0;
7fd676db 1796}
Impressum, Datenschutz