]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
Update README.md
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
a126332a 1 //-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
15c4dc5a 18#include "iso14443crc.h"
534983d7 19#include "iso14443a.h"
6fc68747 20#include "iso14443b.h"
20f9a2a1
M
21#include "crapto1.h"
22#include "mifareutil.h"
3000dc4e 23#include "BigBuf.h"
f8ada309 24#include "parity.h"
25
534983d7 26static uint32_t iso14a_timeout;
1e262141 27int rsamples = 0;
1e262141 28uint8_t trigger = 0;
b0127e65 29// the block number for the ISO14443-4 PCB
30static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 31
0194ce8f 32static uint8_t* free_buffer_pointer;
33
7bc95e2e 34//
35// ISO14443 timing:
36//
37// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
38#define REQUEST_GUARD_TIME (7000/16 + 1)
39// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
40#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
41// bool LastCommandWasRequest = FALSE;
42
43//
44// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
45//
d714d3ef 46// When the PM acts as reader and is receiving tag data, it takes
47// 3 ticks delay in the AD converter
48// 16 ticks until the modulation detector completes and sets curbit
49// 8 ticks until bit_to_arm is assigned from curbit
50// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 51// 4*16 ticks until we measure the time
52// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 53#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 54
55// When the PM acts as a reader and is sending, it takes
56// 4*16 ticks until we can write data to the sending hold register
57// 8*16 ticks until the SHR is transferred to the Sending Shift Register
58// 8 ticks until the first transfer starts
59// 8 ticks later the FPGA samples the data
60// 1 tick to assign mod_sig_coil
61#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
62
63// When the PM acts as tag and is receiving it takes
d714d3ef 64// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 65// 3 ticks for the A/D conversion,
66// 8 ticks on average until the start of the SSC transfer,
67// 8 ticks until the SSC samples the first data
68// 7*16 ticks to complete the transfer from FPGA to ARM
69// 8 ticks until the next ssp_clk rising edge
d714d3ef 70// 4*16 ticks until we measure the time
7bc95e2e 71// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 72#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 73
74// The FPGA will report its internal sending delay in
75uint16_t FpgaSendQueueDelay;
76// the 5 first bits are the number of bits buffered in mod_sig_buf
77// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
78#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
79
80// When the PM acts as tag and is sending, it takes
d714d3ef 81// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 82// 8*16 ticks until the SHR is transferred to the Sending Shift Register
83// 8 ticks until the first transfer starts
84// 8 ticks later the FPGA samples the data
85// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
86// + 1 tick to assign mod_sig_coil
d714d3ef 87#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 88
89// When the PM acts as sniffer and is receiving tag data, it takes
90// 3 ticks A/D conversion
d714d3ef 91// 14 ticks to complete the modulation detection
92// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 93// + the delays in transferring data - which is the same for
94// sniffing reader and tag data and therefore not relevant
d714d3ef 95#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 96
d714d3ef 97// When the PM acts as sniffer and is receiving reader data, it takes
98// 2 ticks delay in analogue RF receiver (for the falling edge of the
99// start bit, which marks the start of the communication)
7bc95e2e 100// 3 ticks A/D conversion
d714d3ef 101// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 102// + the delays in transferring data - which is the same for
103// sniffing reader and tag data and therefore not relevant
d714d3ef 104#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 105
106//variables used for timing purposes:
107//these are in ssp_clk cycles:
6a1f2d82 108static uint32_t NextTransferTime;
109static uint32_t LastTimeProxToAirStart;
110static uint32_t LastProxToAirDuration;
7bc95e2e 111
8f51ddb0 112// CARD TO READER - manchester
72934aa3 113// Sequence D: 11110000 modulation with subcarrier during first half
114// Sequence E: 00001111 modulation with subcarrier during second half
115// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 116// READER TO CARD - miller
72934aa3 117// Sequence X: 00001100 drop after half a period
118// Sequence Y: 00000000 no drop
119// Sequence Z: 11000000 drop at start
120#define SEC_D 0xf0
121#define SEC_E 0x0f
122#define SEC_F 0x00
123#define SEC_X 0x0c
124#define SEC_Y 0x00
125#define SEC_Z 0xc0
15c4dc5a 126
902cb3c0 127void iso14a_set_trigger(bool enable) {
534983d7 128 trigger = enable;
129}
130
b0127e65 131void iso14a_set_timeout(uint32_t timeout) {
132 iso14a_timeout = timeout;
19a700a8 133 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
b0127e65 134}
8556b852 135
19a700a8 136void iso14a_set_ATS_timeout(uint8_t *ats) {
19a700a8 137 uint8_t tb1;
138 uint8_t fwi;
139 uint32_t fwt;
140
141 if (ats[0] > 1) { // there is a format byte T0
142 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
4c0cf2d2 143
144 if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
19a700a8 145 tb1 = ats[3];
4c0cf2d2 146 else
19a700a8 147 tb1 = ats[2];
4c0cf2d2 148
19a700a8 149 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
ca5bad3d 150 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
151 //fwt = 4096 * (1 << fwi);
19a700a8 152
ca5bad3d 153 iso14a_set_timeout(fwt/(8*16));
154 //iso14a_set_timeout(fwt/128);
19a700a8 155 }
156 }
157}
158
15c4dc5a 159//-----------------------------------------------------------------------------
160// Generate the parity value for a byte sequence
e30c654b 161//
15c4dc5a 162//-----------------------------------------------------------------------------
91c7a7cc 163void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) {
6a1f2d82 164 uint16_t paritybit_cnt = 0;
165 uint16_t paritybyte_cnt = 0;
166 uint8_t parityBits = 0;
167
168 for (uint16_t i = 0; i < iLen; i++) {
169 // Generate the parity bits
f8ada309 170 parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
6a1f2d82 171 if (paritybit_cnt == 7) {
172 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
173 parityBits = 0; // and advance to next Parity Byte
174 paritybyte_cnt++;
175 paritybit_cnt = 0;
176 } else {
177 paritybit_cnt++;
178 }
5f6d6c90 179 }
6a1f2d82 180
181 // save remaining parity bits
91c7a7cc 182 par[paritybyte_cnt] = parityBits;
15c4dc5a 183}
184
91c7a7cc 185void AppendCrc14443a(uint8_t* data, int len) {
5f6d6c90 186 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 187}
188
7bc95e2e 189//=============================================================================
190// ISO 14443 Type A - Miller decoder
191//=============================================================================
192// Basics:
193// This decoder is used when the PM3 acts as a tag.
194// The reader will generate "pauses" by temporarily switching of the field.
195// At the PM3 antenna we will therefore measure a modulated antenna voltage.
196// The FPGA does a comparison with a threshold and would deliver e.g.:
197// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
198// The Miller decoder needs to identify the following sequences:
199// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
200// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
201// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
202// Note 1: the bitstream may start at any time. We therefore need to sync.
203// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 204//-----------------------------------------------------------------------------
b62a5a84 205static tUart Uart;
15c4dc5a 206
d7aa3739 207// Lookup-Table to decide if 4 raw bits are a modulation.
0ec548dc 208// We accept the following:
209// 0001 - a 3 tick wide pause
210// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
211// 0111 - a 2 tick wide pause shifted left
212// 1001 - a 2 tick wide pause shifted right
d7aa3739 213const bool Mod_Miller_LUT[] = {
0ec548dc 214 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
215 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
d7aa3739 216};
0ec548dc 217#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
218#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
d7aa3739 219
91c7a7cc 220void UartReset() {
7bc95e2e 221 Uart.state = STATE_UNSYNCD;
222 Uart.bitCount = 0;
223 Uart.len = 0; // number of decoded data bytes
6a1f2d82 224 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 225 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 226 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 227 Uart.startTime = 0;
228 Uart.endTime = 0;
46c65fed 229
230 Uart.byteCntMax = 0;
231 Uart.posCnt = 0;
232 Uart.syncBit = 9999;
7bc95e2e 233}
15c4dc5a 234
91c7a7cc 235void UartInit(uint8_t *data, uint8_t *parity) {
6a1f2d82 236 Uart.output = data;
237 Uart.parity = parity;
0ec548dc 238 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
6a1f2d82 239 UartReset();
240}
d714d3ef 241
7bc95e2e 242// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
91c7a7cc 243static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
0ec548dc 244 Uart.fourBits = (Uart.fourBits << 8) | bit;
7bc95e2e 245
0c8d25eb 246 if (Uart.state == STATE_UNSYNCD) { // not yet synced
91c7a7cc 247 Uart.syncBit = 9999; // not set
46c65fed 248
249 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
250 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
251 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
252
0ec548dc 253 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
46c65fed 254 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
255 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
0ec548dc 256 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
46c65fed 257 //
258#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
259#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
260
0ec548dc 261 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
262 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
263 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
264 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
265 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
266 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
267 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
268 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
269
270 if (Uart.syncBit != 9999) { // found a sync bit
91c7a7cc 271 Uart.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8);
272 Uart.startTime -= Uart.syncBit;
273 Uart.endTime = Uart.startTime;
274 Uart.state = STATE_START_OF_COMMUNICATION;
275 }
7bc95e2e 276 } else {
15c4dc5a 277
0ec548dc 278 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
279 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
d7aa3739 280 UartReset();
d7aa3739 281 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 282 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
283 UartReset();
7bc95e2e 284 } else {
285 Uart.bitCount++;
286 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
287 Uart.state = STATE_MILLER_Z;
288 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
289 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
290 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
291 Uart.parityBits <<= 1; // make room for the parity bit
292 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
293 Uart.bitCount = 0;
294 Uart.shiftReg = 0;
6a1f2d82 295 if((Uart.len&0x0007) == 0) { // every 8 data bytes
296 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
297 Uart.parityBits = 0;
298 }
15c4dc5a 299 }
7bc95e2e 300 }
d7aa3739 301 }
302 } else {
0ec548dc 303 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 304 Uart.bitCount++;
305 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
306 Uart.state = STATE_MILLER_X;
307 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
308 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
309 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
310 Uart.parityBits <<= 1; // make room for the new parity bit
311 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
312 Uart.bitCount = 0;
313 Uart.shiftReg = 0;
6a1f2d82 314 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
315 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
316 Uart.parityBits = 0;
317 }
7bc95e2e 318 }
d7aa3739 319 } else { // no modulation in both halves - Sequence Y
7bc95e2e 320 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 321 Uart.state = STATE_UNSYNCD;
6a1f2d82 322 Uart.bitCount--; // last "0" was part of EOC sequence
323 Uart.shiftReg <<= 1; // drop it
324 if(Uart.bitCount > 0) { // if we decoded some bits
325 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
326 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
327 Uart.parityBits <<= 1; // add a (void) parity bit
328 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
329 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
330 return TRUE;
331 } else if (Uart.len & 0x0007) { // there are some parity bits to store
332 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
333 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 334 }
335 if (Uart.len) {
6a1f2d82 336 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 337 } else {
0c8d25eb 338 UartReset(); // Nothing received - start over
7bc95e2e 339 }
15c4dc5a 340 }
7bc95e2e 341 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
342 UartReset();
7bc95e2e 343 } else { // a logic "0"
344 Uart.bitCount++;
345 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
346 Uart.state = STATE_MILLER_Y;
347 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
348 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
349 Uart.parityBits <<= 1; // make room for the parity bit
350 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
351 Uart.bitCount = 0;
352 Uart.shiftReg = 0;
6a1f2d82 353 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
354 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
355 Uart.parityBits = 0;
356 }
15c4dc5a 357 }
358 }
d7aa3739 359 }
15c4dc5a 360 }
7bc95e2e 361 }
7bc95e2e 362 return FALSE; // not finished yet, need more data
15c4dc5a 363}
364
365//=============================================================================
e691fc45 366// ISO 14443 Type A - Manchester decoder
15c4dc5a 367//=============================================================================
e691fc45 368// Basics:
7bc95e2e 369// This decoder is used when the PM3 acts as a reader.
e691fc45 370// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
371// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
372// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
373// The Manchester decoder needs to identify the following sequences:
374// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
375// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
376// 8 ticks unmodulated: Sequence F = end of communication
377// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 378// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 379// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 380static tDemod Demod;
15c4dc5a 381
d7aa3739 382// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 383// We accept three or four "1" in any position
7bc95e2e 384const bool Mod_Manchester_LUT[] = {
d7aa3739 385 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 386 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 387};
388
389#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
390#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 391
91c7a7cc 392void DemodReset() {
7bc95e2e 393 Demod.state = DEMOD_UNSYNCD;
394 Demod.len = 0; // number of decoded data bytes
6a1f2d82 395 Demod.parityLen = 0;
7bc95e2e 396 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
397 Demod.parityBits = 0; //
398 Demod.collisionPos = 0; // Position of collision bit
399 Demod.twoBits = 0xffff; // buffer for 2 Bits
400 Demod.highCnt = 0;
401 Demod.startTime = 0;
91c7a7cc 402 Demod.endTime = 0;
46c65fed 403 Demod.bitCount = 0;
404 Demod.syncBit = 0xFFFF;
405 Demod.samples = 0;
e691fc45 406}
15c4dc5a 407
91c7a7cc 408void DemodInit(uint8_t *data, uint8_t *parity) {
6a1f2d82 409 Demod.output = data;
410 Demod.parity = parity;
411 DemodReset();
412}
413
7bc95e2e 414// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
91c7a7cc 415static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
7bc95e2e 416 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 417
7bc95e2e 418 if (Demod.state == DEMOD_UNSYNCD) {
419
420 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
421 if (Demod.twoBits == 0x0000) {
422 Demod.highCnt++;
423 } else {
424 Demod.highCnt = 0;
425 }
426 } else {
427 Demod.syncBit = 0xFFFF; // not set
428 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
429 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
430 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
431 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
432 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
433 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
434 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
435 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 436 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 437 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
438 Demod.startTime -= Demod.syncBit;
439 Demod.bitCount = offset; // number of decoded data bits
e691fc45 440 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 441 }
7bc95e2e 442 }
7bc95e2e 443 } else {
15c4dc5a 444
7bc95e2e 445 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
446 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 447 if (!Demod.collisionPos) {
448 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
449 }
450 } // modulation in first half only - Sequence D = 1
7bc95e2e 451 Demod.bitCount++;
452 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
453 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 454 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 455 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 456 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
457 Demod.bitCount = 0;
458 Demod.shiftReg = 0;
6a1f2d82 459 if((Demod.len&0x0007) == 0) { // every 8 data bytes
460 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
461 Demod.parityBits = 0;
462 }
15c4dc5a 463 }
7bc95e2e 464 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
465 } else { // no modulation in first half
466 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 467 Demod.bitCount++;
7bc95e2e 468 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 469 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 470 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 471 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 472 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
473 Demod.bitCount = 0;
474 Demod.shiftReg = 0;
6a1f2d82 475 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
476 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
477 Demod.parityBits = 0;
478 }
15c4dc5a 479 }
7bc95e2e 480 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 481 } else { // no modulation in both halves - End of communication
6a1f2d82 482 if(Demod.bitCount > 0) { // there are some remaining data bits
483 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
484 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
485 Demod.parityBits <<= 1; // add a (void) parity bit
486 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
487 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
488 return TRUE;
489 } else if (Demod.len & 0x0007) { // there are some parity bits to store
490 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
491 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 492 }
493 if (Demod.len) {
d7aa3739 494 return TRUE; // we are finished with decoding the raw data sequence
495 } else { // nothing received. Start over
496 DemodReset();
e691fc45 497 }
15c4dc5a 498 }
7bc95e2e 499 }
e691fc45 500 }
e691fc45 501 return FALSE; // not finished yet, need more data
15c4dc5a 502}
503
504//=============================================================================
505// Finally, a `sniffer' for ISO 14443 Type A
506// Both sides of communication!
507//=============================================================================
508
509//-----------------------------------------------------------------------------
510// Record the sequence of commands sent by the reader to the tag, with
511// triggering so that we start recording at the point that the tag is moved
512// near the reader.
bc939371 513// "hf 14a sniff"
15c4dc5a 514//-----------------------------------------------------------------------------
d26849d4 515void RAMFUNC SniffIso14443a(uint8_t param) {
5cd9ec01
M
516 // param:
517 // bit 0 - trigger from first card answer
518 // bit 1 - trigger from first reader 7-bit request
5cd9ec01 519 LEDsoff();
5cd9ec01 520
99cf19d9 521 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
7bc95e2e 522
f71f4deb 523 // Allocate memory from BigBuf for some buffers
524 // free all previous allocations first
aaa1a9a2 525 BigBuf_free(); BigBuf_Clear_ext(false);
7838f4be 526 clear_trace();
527 set_tracing(TRUE);
528
5cd9ec01 529 // The command (reader -> tag) that we're receiving.
f71f4deb 530 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
531 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
6a1f2d82 532
5cd9ec01 533 // The response (tag -> reader) that we're receiving.
f71f4deb 534 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
535 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
5cd9ec01
M
536
537 // The DMA buffer, used to stream samples from the FPGA
f71f4deb 538 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
539
7bc95e2e 540 uint8_t *data = dmaBuf;
541 uint8_t previous_data = 0;
5cd9ec01
M
542 int maxDataLen = 0;
543 int dataLen = 0;
7bc95e2e 544 bool TagIsActive = FALSE;
545 bool ReaderIsActive = FALSE;
546
5cd9ec01 547 // Set up the demodulator for tag -> reader responses.
6a1f2d82 548 DemodInit(receivedResponse, receivedResponsePar);
549
5cd9ec01 550 // Set up the demodulator for the reader -> tag commands
6a1f2d82 551 UartInit(receivedCmd, receivedCmdPar);
552
7bc95e2e 553 // Setup and start DMA.
57850d9d 554 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
555 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
556 return;
557 }
7bc95e2e 558
99cf19d9 559 // We won't start recording the frames that we acquire until we trigger;
560 // a good trigger condition to get started is probably when we see a
561 // response from the tag.
562 // triggered == FALSE -- to wait first for card
563 bool triggered = !(param & 0x03);
564
5cd9ec01 565 // And now we loop, receiving samples.
7bc95e2e 566 for(uint32_t rsamples = 0; TRUE; ) {
567
5cd9ec01
M
568 if(BUTTON_PRESS()) {
569 DbpString("cancelled by button");
7bc95e2e 570 break;
5cd9ec01 571 }
15c4dc5a 572
5cd9ec01
M
573 LED_A_ON();
574 WDT_HIT();
15c4dc5a 575
5cd9ec01
M
576 int register readBufDataP = data - dmaBuf;
577 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
578 if (readBufDataP <= dmaBufDataP){
579 dataLen = dmaBufDataP - readBufDataP;
580 } else {
7bc95e2e 581 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
582 }
583 // test for length of buffer
584 if(dataLen > maxDataLen) {
585 maxDataLen = dataLen;
f71f4deb 586 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
7bc95e2e 587 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
588 break;
5cd9ec01
M
589 }
590 }
591 if(dataLen < 1) continue;
592
593 // primary buffer was stopped( <-- we lost data!
594 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
595 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
596 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 597 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
598 }
599 // secondary buffer sets as primary, secondary buffer was stopped
600 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
601 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
602 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
603 }
604
605 LED_A_OFF();
7bc95e2e 606
607 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 608
7bc95e2e 609 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
610 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
611 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
612 LED_C_ON();
5cd9ec01 613
7bc95e2e 614 // check - if there is a short 7bit request from reader
615 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 616
7bc95e2e 617 if(triggered) {
6a1f2d82 618 if (!LogTrace(receivedCmd,
619 Uart.len,
620 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
621 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
622 Uart.parity,
623 TRUE)) break;
7bc95e2e 624 }
625 /* And ready to receive another command. */
626 UartReset();
627 /* And also reset the demod code, which might have been */
628 /* false-triggered by the commands from the reader. */
629 DemodReset();
630 LED_B_OFF();
631 }
632 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 633 }
3be2a5ae 634
7bc95e2e 635 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
636 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
637 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
638 LED_B_ON();
5cd9ec01 639
6a1f2d82 640 if (!LogTrace(receivedResponse,
641 Demod.len,
642 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
643 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
644 Demod.parity,
645 FALSE)) break;
5cd9ec01 646
7bc95e2e 647 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 648
7bc95e2e 649 // And ready to receive another response.
650 DemodReset();
0ec548dc 651 // And reset the Miller decoder including itS (now outdated) input buffer
652 UartInit(receivedCmd, receivedCmdPar);
7bc95e2e 653 LED_C_OFF();
654 }
655 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
656 }
5cd9ec01
M
657 }
658
7bc95e2e 659 previous_data = *data;
660 rsamples++;
5cd9ec01 661 data++;
d714d3ef 662 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
663 data = dmaBuf;
664 }
665 } // main cycle
666
bc939371 667 if (MF_DBGLEVEL >= 1) {
668 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
669 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
670 }
7bc95e2e 671 FpgaDisableSscDma();
91c7a7cc 672 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
bc939371 673 LEDsoff();
5ee53a0e 674 set_tracing(FALSE);
15c4dc5a 675}
676
15c4dc5a 677//-----------------------------------------------------------------------------
678// Prepare tag messages
679//-----------------------------------------------------------------------------
91c7a7cc 680static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) {
8f51ddb0 681 ToSendReset();
15c4dc5a 682
683 // Correction bit, might be removed when not needed
684 ToSendStuffBit(0);
685 ToSendStuffBit(0);
686 ToSendStuffBit(0);
687 ToSendStuffBit(0);
688 ToSendStuffBit(1); // 1
689 ToSendStuffBit(0);
690 ToSendStuffBit(0);
691 ToSendStuffBit(0);
8f51ddb0 692
15c4dc5a 693 // Send startbit
72934aa3 694 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 695 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 696
6a1f2d82 697 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 698 uint8_t b = cmd[i];
15c4dc5a 699
700 // Data bits
6a1f2d82 701 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 702 if(b & 1) {
72934aa3 703 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 704 } else {
72934aa3 705 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
706 }
707 b >>= 1;
708 }
15c4dc5a 709
0014cb46 710 // Get the parity bit
6a1f2d82 711 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 712 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 713 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 714 } else {
72934aa3 715 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 716 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 717 }
8f51ddb0 718 }
15c4dc5a 719
8f51ddb0
M
720 // Send stopbit
721 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 722
8f51ddb0 723 // Convert from last byte pos to length
6fc68747 724 ++ToSendMax;
8f51ddb0
M
725}
726
91c7a7cc 727static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) {
7504dc50 728 uint8_t par[MAX_PARITY_SIZE] = {0};
6a1f2d82 729 GetParity(cmd, len, par);
730 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 731}
732
91c7a7cc 733static void Code4bitAnswerAsTag(uint8_t cmd) {
91c7a7cc 734 uint8_t b = cmd;
8f51ddb0 735
5f6d6c90 736 ToSendReset();
8f51ddb0
M
737
738 // Correction bit, might be removed when not needed
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741 ToSendStuffBit(0);
742 ToSendStuffBit(0);
743 ToSendStuffBit(1); // 1
744 ToSendStuffBit(0);
745 ToSendStuffBit(0);
746 ToSendStuffBit(0);
747
748 // Send startbit
749 ToSend[++ToSendMax] = SEC_D;
750
0194ce8f 751 for(uint8_t i = 0; i < 4; i++) {
8f51ddb0
M
752 if(b & 1) {
753 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 754 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
755 } else {
756 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 757 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
758 }
759 b >>= 1;
760 }
761
762 // Send stopbit
763 ToSend[++ToSendMax] = SEC_F;
764
5f6d6c90 765 // Convert from last byte pos to length
766 ToSendMax++;
15c4dc5a 767}
768
769//-----------------------------------------------------------------------------
770// Wait for commands from reader
771// Stop when button is pressed
772// Or return TRUE when command is captured
773//-----------------------------------------------------------------------------
91c7a7cc 774static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) {
15c4dc5a 775 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
776 // only, since we are receiving, not transmitting).
777 // Signal field is off with the appropriate LED
778 LED_D_OFF();
779 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
780
ca5bad3d 781 // Now run a `software UART` on the stream of incoming samples.
6a1f2d82 782 UartInit(received, parity);
7bc95e2e 783
784 // clear RXRDY:
785 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 786
787 for(;;) {
788 WDT_HIT();
789
790 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 791
15c4dc5a 792 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 793 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
794 if(MillerDecoding(b, 0)) {
795 *len = Uart.len;
15c4dc5a 796 return TRUE;
797 }
7bc95e2e 798 }
15c4dc5a 799 }
800}
28afbd2b 801
ce02f6f9 802bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 803 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 804 // This will need the following byte array for a modulation sequence
805 // 144 data bits (18 * 8)
806 // 18 parity bits
807 // 2 Start and stop
808 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
809 // 1 just for the case
810 // ----------- +
811 // 166 bytes, since every bit that needs to be send costs us a byte
812 //
91c7a7cc 813 // Prepare the tag modulation bits from the message
814 CodeIso14443aAsTag(response_info->response,response_info->response_n);
815
816 // Make sure we do not exceed the free buffer space
817 if (ToSendMax > max_buffer_size) {
818 Dbprintf("Out of memory, when modulating bits for tag answer:");
819 Dbhexdump(response_info->response_n,response_info->response,false);
820 return FALSE;
821 }
822
823 // Copy the byte array, used for this modulation to the buffer position
824 memcpy(response_info->modulation,ToSend,ToSendMax);
825
826 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
827 response_info->modulation_n = ToSendMax;
828 response_info->ProxToAirDuration = LastProxToAirDuration;
829 return TRUE;
ce02f6f9 830}
831
f71f4deb 832// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
833// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
834// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
835// -> need 273 bytes buffer
c9216a92 836// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
837// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
838#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
f71f4deb 839
ce02f6f9 840bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
ca5bad3d 841 // Retrieve and store the current buffer index
842 response_info->modulation = free_buffer_pointer;
843
844 // Determine the maximum size we can use from our buffer
845 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
846
847 // Forward the prepare tag modulation function to the inner function
848 if (prepare_tag_modulation(response_info, max_buffer_size)) {
849 // Update the free buffer offset
850 free_buffer_pointer += ToSendMax;
851 return true;
852 } else {
853 return false;
854 }
ce02f6f9 855}
856
15c4dc5a 857//-----------------------------------------------------------------------------
858// Main loop of simulated tag: receive commands from reader, decide what
859// response to send, and send it.
0a856e29 860// 'hf 14a sim'
15c4dc5a 861//-----------------------------------------------------------------------------
91c7a7cc 862void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
0194ce8f 863
0a856e29 864 // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
865 // it should also collect block, keytype.
d26849d4 866 // This can be used in a reader-only attack.
d26849d4 867 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
868 uint8_t ar_nr_collected = 0;
0194ce8f 869 uint8_t sak = 0;
bc939371 870 uint32_t cuid = 0;
871 uint32_t nonce = 0;
872
32719adf 873 // PACK response to PWD AUTH for EV1/NTAG
0194ce8f 874 uint8_t response8[4] = {0,0,0,0};
875 // Counter for EV1/NTAG
876 uint32_t counters[] = {0,0,0};
32719adf 877
81cd0474 878 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
0194ce8f 879 uint8_t response1[] = {0,0};
81cd0474 880
881 switch (tagType) {
0194ce8f 882 case 1: { // MIFARE Classic 1k
81cd0474 883 response1[0] = 0x04;
81cd0474 884 sak = 0x08;
885 } break;
886 case 2: { // MIFARE Ultralight
32719adf 887 response1[0] = 0x44;
81cd0474 888 sak = 0x00;
889 } break;
890 case 3: { // MIFARE DESFire
81cd0474 891 response1[0] = 0x04;
892 response1[1] = 0x03;
893 sak = 0x20;
894 } break;
0194ce8f 895 case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
81cd0474 896 response1[0] = 0x04;
81cd0474 897 sak = 0x28;
898 } break;
3fe4ff4f 899 case 5: { // MIFARE TNP3XXX
3fe4ff4f 900 response1[0] = 0x01;
901 response1[1] = 0x0f;
902 sak = 0x01;
d26849d4 903 } break;
0194ce8f 904 case 6: { // MIFARE Mini 320b
d26849d4 905 response1[0] = 0x44;
d26849d4 906 sak = 0x09;
907 } break;
0194ce8f 908 case 7: { // NTAG
32719adf 909 response1[0] = 0x44;
32719adf 910 sak = 0x00;
911 // PACK
912 response8[0] = 0x80;
913 response8[1] = 0x80;
914 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
2b1f4228 915 // uid not supplied then get from emulator memory
916 if (data[0]==0) {
917 uint16_t start = 4 * (0+12);
918 uint8_t emdata[8];
919 emlGetMemBt( emdata, start, sizeof(emdata));
920 memcpy(data, emdata, 3); //uid bytes 0-2
921 memcpy(data+3, emdata+4, 4); //uid bytes 3-7
922 flags |= FLAG_7B_UID_IN_DATA;
923 }
32719adf 924 } break;
81cd0474 925 default: {
926 Dbprintf("Error: unkown tagtype (%d)",tagType);
927 return;
928 } break;
929 }
930
931 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 932 uint8_t response2[5] = {0x00};
81cd0474 933
0194ce8f 934 // For UID size 7,
c8b6da22 935 uint8_t response2a[5] = {0x00};
936
bc939371 937 if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) {
0194ce8f 938 response2[0] = 0x88; // Cascade Tag marker
d26849d4 939 response2[1] = data[0];
940 response2[2] = data[1];
941 response2[3] = data[2];
942
943 response2a[0] = data[3];
944 response2a[1] = data[4];
945 response2a[2] = data[5];
c3c241f3 946 response2a[3] = data[6]; //??
81cd0474 947 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
948
949 // Configure the ATQA and SAK accordingly
950 response1[0] |= 0x40;
951 sak |= 0x04;
bc939371 952
953 cuid = bytes_to_num(data+3, 4);
81cd0474 954 } else {
d26849d4 955 memcpy(response2, data, 4);
81cd0474 956 // Configure the ATQA and SAK accordingly
957 response1[0] &= 0xBF;
958 sak &= 0xFB;
bc939371 959 cuid = bytes_to_num(data, 4);
81cd0474 960 }
961
962 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
963 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
964
965 // Prepare the mandatory SAK (for 4 and 7 byte UID)
0194ce8f 966 uint8_t response3[3] = {sak, 0x00, 0x00};
81cd0474 967 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
968
969 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 970 uint8_t response3a[3] = {0x00};
81cd0474 971 response3a[0] = sak & 0xFB;
972 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
973
0194ce8f 974 uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
975 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
6a1f2d82 976 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
977 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
978 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
979 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 980 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
981
bc939371 982 // the randon nonce
983 nonce = bytes_to_num(response5, 4);
984
2b1f4228 985 // Prepare GET_VERSION (different for UL EV-1 / NTAG)
32719adf 986 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
0194ce8f 987 //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
c9216a92 988 // Prepare CHK_TEARING
2b1f4228 989 //uint8_t response9[] = {0xBD,0x90,0x3f};
c9216a92 990
991 #define TAG_RESPONSE_COUNT 10
7bc95e2e 992 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
993 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
994 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
995 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
996 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
997 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
998 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
999 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
4c0cf2d2 1000
495d7f13 1001 { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response
4c0cf2d2 1002 };
1003 //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
2b1f4228 1004 //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
4c0cf2d2 1005
7bc95e2e 1006
1007 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1008 // Such a response is less time critical, so we can prepare them on the fly
1009 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1010 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1011 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1012 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1013 tag_response_info_t dynamic_response_info = {
1014 .response = dynamic_response_buffer,
1015 .response_n = 0,
1016 .modulation = dynamic_modulation_buffer,
1017 .modulation_n = 0
1018 };
ce02f6f9 1019
99cf19d9 1020 // We need to listen to the high-frequency, peak-detected path.
1021 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1022
f71f4deb 1023 BigBuf_free_keep_EM();
0194ce8f 1024 clear_trace();
1025 set_tracing(TRUE);
f71f4deb 1026
1027 // allocate buffers:
1028 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1029 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1030 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1031
7bc95e2e 1032 // Prepare the responses of the anticollision phase
ce02f6f9 1033 // there will be not enough time to do this at the moment the reader sends it REQA
495d7f13 1034 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
7bc95e2e 1035 prepare_allocated_tag_modulation(&responses[i]);
15c4dc5a 1036
7bc95e2e 1037 int len = 0;
15c4dc5a 1038
1039 // To control where we are in the protocol
1040 int order = 0;
1041 int lastorder;
1042
1043 // Just to allow some checks
1044 int happened = 0;
1045 int happened2 = 0;
81cd0474 1046 int cmdsRecvd = 0;
7bc95e2e 1047 tag_response_info_t* p_response;
15c4dc5a 1048
254b70a4 1049 LED_A_ON();
0194ce8f 1050 for(;;) {
4c0cf2d2 1051 WDT_HIT();
1052
7bc95e2e 1053 // Clean receive command buffer
6a1f2d82 1054 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1055 DbpString("Button press");
254b70a4 1056 break;
1057 }
bc939371 1058
1059 // incease nonce at every command recieved
1060 nonce++;
1061 num_to_bytes(nonce, 4, response5);
1062
7bc95e2e 1063 p_response = NULL;
1064
254b70a4 1065 // Okay, look at the command now.
1066 lastorder = order;
0194ce8f 1067 if(receivedCmd[0] == ISO14443A_CMD_REQA) { // Received a REQUEST
ce02f6f9 1068 p_response = &responses[0]; order = 1;
0194ce8f 1069 } else if(receivedCmd[0] == ISO14443A_CMD_WUPA) { // Received a WAKEUP
ce02f6f9 1070 p_response = &responses[0]; order = 6;
0194ce8f 1071 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received request for UID (cascade 1)
ce02f6f9 1072 p_response = &responses[1]; order = 2;
0194ce8f 1073 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received request for UID (cascade 2)
ce02f6f9 1074 p_response = &responses[2]; order = 20;
0194ce8f 1075 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received a SELECT (cascade 1)
ce02f6f9 1076 p_response = &responses[3]; order = 3;
0194ce8f 1077 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received a SELECT (cascade 2)
1078 p_response = &responses[4]; order = 30;
1079 } else if(receivedCmd[0] == ISO14443A_CMD_READBLOCK) { // Received a (plain) READ
32719adf 1080 uint8_t block = receivedCmd[1];
2b1f4228 1081 // if Ultralight or NTAG (4 byte blocks)
1082 if ( tagType == 7 || tagType == 2 ) {
1083 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1084 uint16_t start = 4 * (block+12);
5e428463 1085 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1086 emlGetMemBt( emdata, start, 16);
1087 AppendCrc14443a(emdata, 16);
1088 EmSendCmdEx(emdata, sizeof(emdata), false);
2b1f4228 1089 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
32719adf 1090 p_response = NULL;
2b1f4228 1091 } else { // all other tags (16 byte block tags)
1092 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
32719adf 1093 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1094 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1095 p_response = NULL;
1096 }
0194ce8f 1097 } else if(receivedCmd[0] == MIFARE_ULEV1_FASTREAD) { // Received a FAST READ (ranged read)
91c7a7cc 1098 uint8_t emdata[MAX_FRAME_SIZE];
1099 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1100 int start = (receivedCmd[1]+12) * 4;
1101 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
1102 emlGetMemBt( emdata, start, len);
1103 AppendCrc14443a(emdata, len);
1104 EmSendCmdEx(emdata, len+2, false);
1105 p_response = NULL;
0194ce8f 1106 } else if(receivedCmd[0] == MIFARE_ULEV1_READSIG && tagType == 7) { // Received a READ SIGNATURE --
91c7a7cc 1107 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1108 uint16_t start = 4 * 4;
1109 uint8_t emdata[34];
1110 emlGetMemBt( emdata, start, 32);
1111 AppendCrc14443a(emdata, 32);
1112 EmSendCmdEx(emdata, sizeof(emdata), false);
1113 p_response = NULL;
0194ce8f 1114 } else if (receivedCmd[0] == MIFARE_ULEV1_READ_CNT && tagType == 7) { // Received a READ COUNTER --
e9a92fe2 1115 uint8_t index = receivedCmd[1];
a126332a 1116 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
e9a92fe2 1117 if ( counters[index] > 0) {
1118 num_to_bytes(counters[index], 3, data);
1119 AppendCrc14443a(data, sizeof(data)-2);
1120 }
a126332a 1121 EmSendCmdEx(data,sizeof(data),false);
1122 p_response = NULL;
0194ce8f 1123 } else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) { // Received a INC COUNTER --
ce3d6bd2 1124 // number of counter
a126332a 1125 uint8_t counter = receivedCmd[1];
1126 uint32_t val = bytes_to_num(receivedCmd+2,4);
1127 counters[counter] = val;
1128
ce3d6bd2 1129 // send ACK
1130 uint8_t ack[] = {0x0a};
1131 EmSendCmdEx(ack,sizeof(ack),false);
91c7a7cc 1132 p_response = NULL;
0194ce8f 1133 } else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) { // Received a CHECK_TEARING_EVENT --
2b1f4228 1134 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1135 uint8_t emdata[3];
1136 uint8_t counter=0;
1137 if (receivedCmd[1]<3) counter = receivedCmd[1];
1138 emlGetMemBt( emdata, 10+counter, 1);
1139 AppendCrc14443a(emdata, sizeof(emdata)-2);
1140 EmSendCmdEx(emdata, sizeof(emdata), false);
b0300679 1141 p_response = NULL;
0194ce8f 1142 } else if(receivedCmd[0] == ISO14443A_CMD_HALT) { // Received a HALT
810f5379 1143 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1144 p_response = NULL;
57850d9d 1145 } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request
32719adf 1146 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
2b1f4228 1147 uint8_t emdata[10];
1148 emlGetMemBt( emdata, 0, 8 );
1149 AppendCrc14443a(emdata, sizeof(emdata)-2);
1150 EmSendCmdEx(emdata, sizeof(emdata), false);
1151 p_response = NULL;
32719adf 1152 } else {
1153 p_response = &responses[5]; order = 7;
1154 }
0194ce8f 1155 } else if(receivedCmd[0] == ISO14443A_CMD_RATS) { // Received a RATS request
7bc95e2e 1156 if (tagType == 1 || tagType == 2) { // RATS not supported
1157 EmSend4bit(CARD_NACK_NA);
1158 p_response = NULL;
1159 } else {
1160 p_response = &responses[6]; order = 70;
1161 }
6a1f2d82 1162 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
810f5379 1163 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1164 uint32_t nr = bytes_to_num(receivedCmd,4);
1165 uint32_t ar = bytes_to_num(receivedCmd+4,4);
d26849d4 1166
bc939371 1167 if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
d26849d4 1168 if(ar_nr_collected < 2){
57850d9d 1169 ar_nr_responses[ar_nr_collected*4] = cuid;
1170 ar_nr_responses[ar_nr_collected*4+1] = nonce;
1171 ar_nr_responses[ar_nr_collected*4+2] = nr;
1172 ar_nr_responses[ar_nr_collected*4+3] = ar;
1173 ar_nr_collected++;
d26849d4 1174 }
0194ce8f 1175 if(ar_nr_collected > 1 ) {
bc939371 1176 if (MF_DBGLEVEL >= 2 && !(flags & FLAG_INTERACTIVE)) {
d26849d4 1177 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
0a856e29 1178 Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x",
0194ce8f 1179 ar_nr_responses[0], // CUID
0a856e29 1180 ar_nr_responses[1], // NT_1
1181 ar_nr_responses[2], // AR_1
1182 ar_nr_responses[3], // NR_1
1183 ar_nr_responses[5], // NT_2
1184 ar_nr_responses[6], // AR_2
1185 ar_nr_responses[7] // NR_2
d26849d4 1186 );
1187 }
bc939371 1188 uint8_t len = ar_nr_collected*4*4;
1189 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
d26849d4 1190 ar_nr_collected = 0;
1191 memset(ar_nr_responses, 0x00, len);
d26849d4 1192 }
1193 }
57850d9d 1194
0194ce8f 1195 } else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
1196 } else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
32719adf 1197 if ( tagType == 7 ) {
2b1f4228 1198 uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
1199 uint8_t emdata[4];
1200 emlGetMemBt( emdata, start, 2);
1201 AppendCrc14443a(emdata, 2);
1202 EmSendCmdEx(emdata, sizeof(emdata), false);
1203 p_response = NULL;
ce3d6bd2 1204 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
e98572a1 1205
91c7a7cc 1206 if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
32719adf 1207 }
2b1f4228 1208 } else {
7bc95e2e 1209 // Check for ISO 14443A-4 compliant commands, look at left nibble
1210 switch (receivedCmd[0]) {
7838f4be 1211 case 0x02:
1212 case 0x03: { // IBlock (command no CID)
1213 dynamic_response_info.response[0] = receivedCmd[0];
1214 dynamic_response_info.response[1] = 0x90;
1215 dynamic_response_info.response[2] = 0x00;
1216 dynamic_response_info.response_n = 3;
1217 } break;
7bc95e2e 1218 case 0x0B:
7838f4be 1219 case 0x0A: { // IBlock (command CID)
7bc95e2e 1220 dynamic_response_info.response[0] = receivedCmd[0];
1221 dynamic_response_info.response[1] = 0x00;
1222 dynamic_response_info.response[2] = 0x90;
1223 dynamic_response_info.response[3] = 0x00;
1224 dynamic_response_info.response_n = 4;
1225 } break;
1226
1227 case 0x1A:
1228 case 0x1B: { // Chaining command
1229 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1230 dynamic_response_info.response_n = 2;
1231 } break;
1232
1233 case 0xaa:
1234 case 0xbb: {
1235 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1236 dynamic_response_info.response_n = 2;
1237 } break;
1238
7838f4be 1239 case 0xBA: { // ping / pong
1240 dynamic_response_info.response[0] = 0xAB;
1241 dynamic_response_info.response[1] = 0x00;
1242 dynamic_response_info.response_n = 2;
7bc95e2e 1243 } break;
1244
1245 case 0xCA:
1246 case 0xC2: { // Readers sends deselect command
7838f4be 1247 dynamic_response_info.response[0] = 0xCA;
1248 dynamic_response_info.response[1] = 0x00;
1249 dynamic_response_info.response_n = 2;
7bc95e2e 1250 } break;
1251
1252 default: {
1253 // Never seen this command before
810f5379 1254 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1255 Dbprintf("Received unknown command (len=%d):",len);
1256 Dbhexdump(len,receivedCmd,false);
1257 // Do not respond
1258 dynamic_response_info.response_n = 0;
1259 } break;
1260 }
ce02f6f9 1261
7bc95e2e 1262 if (dynamic_response_info.response_n > 0) {
1263 // Copy the CID from the reader query
1264 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1265
7bc95e2e 1266 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1267 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1268 dynamic_response_info.response_n += 2;
ce02f6f9 1269
7bc95e2e 1270 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1271 Dbprintf("Error preparing tag response");
810f5379 1272 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1273 break;
1274 }
1275 p_response = &dynamic_response_info;
1276 }
81cd0474 1277 }
15c4dc5a 1278
1279 // Count number of wakeups received after a halt
1280 if(order == 6 && lastorder == 5) { happened++; }
1281
1282 // Count number of other messages after a halt
1283 if(order != 6 && lastorder == 5) { happened2++; }
1284
bc939371 1285 // comment this limit if you want to simulation longer
1286 if (!tracing) {
1287 Dbprintf("Trace Full. Simulation stopped.");
1288 break;
1289 }
91c7a7cc 1290 // comment this limit if you want to simulation longer
15c4dc5a 1291 if(cmdsRecvd > 999) {
1292 DbpString("1000 commands later...");
254b70a4 1293 break;
15c4dc5a 1294 }
ce02f6f9 1295 cmdsRecvd++;
1296
1297 if (p_response != NULL) {
7bc95e2e 1298 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1299 // do the tracing for the previous reader request and this tag answer:
810f5379 1300 uint8_t par[MAX_PARITY_SIZE] = {0x00};
6a1f2d82 1301 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1302
7bc95e2e 1303 EmLogTrace(Uart.output,
1304 Uart.len,
1305 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1306 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1307 Uart.parity,
7bc95e2e 1308 p_response->response,
1309 p_response->response_n,
1310 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1311 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1312 par);
7bc95e2e 1313 }
7bc95e2e 1314 }
15c4dc5a 1315
d26849d4 1316 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
5ee53a0e 1317 set_tracing(FALSE);
f71f4deb 1318 BigBuf_free_keep_EM();
c9216a92 1319 LED_A_OFF();
1320
0de8e387 1321 if (MF_DBGLEVEL >= 4){
5ee53a0e 1322 Dbprintf("-[ Wake ups after halt [%d]", happened);
1323 Dbprintf("-[ Messages after halt [%d]", happened2);
1324 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
0de8e387 1325 }
15c4dc5a 1326}
1327
9492e0b0 1328// prepare a delayed transfer. This simply shifts ToSend[] by a number
1329// of bits specified in the delay parameter.
0194ce8f 1330void PrepareDelayedTransfer(uint16_t delay) {
7504dc50 1331 delay &= 0x07;
1332 if (!delay) return;
1333
9492e0b0 1334 uint8_t bitmask = 0;
1335 uint8_t bits_to_shift = 0;
1336 uint8_t bits_shifted = 0;
7504dc50 1337 uint16_t i = 0;
1338
1339 for (i = 0; i < delay; ++i)
1340 bitmask |= (0x01 << i);
2285d9dd 1341
6fc68747 1342 ToSend[++ToSendMax] = 0x00;
7504dc50 1343
1344 for (i = 0; i < ToSendMax; ++i) {
9492e0b0 1345 bits_to_shift = ToSend[i] & bitmask;
1346 ToSend[i] = ToSend[i] >> delay;
1347 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1348 bits_shifted = bits_to_shift;
1349 }
1350 }
9492e0b0 1351
7bc95e2e 1352
1353//-------------------------------------------------------------------------------------
15c4dc5a 1354// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1355// Parameter timing:
7bc95e2e 1356// if NULL: transfer at next possible time, taking into account
1357// request guard time and frame delay time
1358// if == 0: transfer immediately and return time of transfer
9492e0b0 1359// if != 0: delay transfer until time specified
7bc95e2e 1360//-------------------------------------------------------------------------------------
0194ce8f 1361static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
9492e0b0 1362 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1363
7bc95e2e 1364 uint32_t ThisTransferTime = 0;
e30c654b 1365
9492e0b0 1366 if (timing) {
ca5bad3d 1367 if(*timing == 0) { // Measure time
7bc95e2e 1368 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
ca5bad3d 1369 } else {
1370 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1371 }
1372 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1373 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
7bc95e2e 1374 LastTimeProxToAirStart = *timing;
1375 } else {
1376 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
7504dc50 1377
7bc95e2e 1378 while(GetCountSspClk() < ThisTransferTime);
7504dc50 1379
7bc95e2e 1380 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1381 }
1382
7bc95e2e 1383 // clear TXRDY
1384 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1385
7bc95e2e 1386 uint16_t c = 0;
9492e0b0 1387 for(;;) {
1388 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1389 AT91C_BASE_SSC->SSC_THR = cmd[c];
4c0cf2d2 1390 ++c;
5ebcb867 1391 if(c >= len)
9492e0b0 1392 break;
9492e0b0 1393 }
1394 }
7bc95e2e 1395
1396 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1397}
1398
15c4dc5a 1399//-----------------------------------------------------------------------------
195af472 1400// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1401//-----------------------------------------------------------------------------
6a1f2d82 1402void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1403{
7bc95e2e 1404 int i, j;
5ebcb867 1405 int last = 0;
7bc95e2e 1406 uint8_t b;
e30c654b 1407
7bc95e2e 1408 ToSendReset();
e30c654b 1409
7bc95e2e 1410 // Start of Communication (Seq. Z)
1411 ToSend[++ToSendMax] = SEC_Z;
1412 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
7bc95e2e 1413
1414 size_t bytecount = nbytes(bits);
1415 // Generate send structure for the data bits
1416 for (i = 0; i < bytecount; i++) {
1417 // Get the current byte to send
1418 b = cmd[i];
1419 size_t bitsleft = MIN((bits-(i*8)),8);
1420
1421 for (j = 0; j < bitsleft; j++) {
1422 if (b & 1) {
1423 // Sequence X
1424 ToSend[++ToSendMax] = SEC_X;
1425 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1426 last = 1;
1427 } else {
1428 if (last == 0) {
1429 // Sequence Z
1430 ToSend[++ToSendMax] = SEC_Z;
1431 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1432 } else {
1433 // Sequence Y
1434 ToSend[++ToSendMax] = SEC_Y;
1435 last = 0;
1436 }
1437 }
1438 b >>= 1;
1439 }
1440
6a1f2d82 1441 // Only transmit parity bit if we transmitted a complete byte
0ec548dc 1442 if (j == 8 && parity != NULL) {
7bc95e2e 1443 // Get the parity bit
6a1f2d82 1444 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1445 // Sequence X
1446 ToSend[++ToSendMax] = SEC_X;
1447 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1448 last = 1;
1449 } else {
1450 if (last == 0) {
1451 // Sequence Z
1452 ToSend[++ToSendMax] = SEC_Z;
1453 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1454 } else {
1455 // Sequence Y
1456 ToSend[++ToSendMax] = SEC_Y;
1457 last = 0;
1458 }
1459 }
1460 }
1461 }
e30c654b 1462
7bc95e2e 1463 // End of Communication: Logic 0 followed by Sequence Y
1464 if (last == 0) {
1465 // Sequence Z
1466 ToSend[++ToSendMax] = SEC_Z;
1467 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1468 } else {
1469 // Sequence Y
1470 ToSend[++ToSendMax] = SEC_Y;
1471 last = 0;
1472 }
1473 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1474
7bc95e2e 1475 // Convert to length of command:
4b78d6b3 1476 ++ToSendMax;
15c4dc5a 1477}
1478
195af472 1479//-----------------------------------------------------------------------------
1480// Prepare reader command to send to FPGA
1481//-----------------------------------------------------------------------------
0194ce8f 1482void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) {
ca5bad3d 1483 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1484}
1485
9ca155ba
M
1486//-----------------------------------------------------------------------------
1487// Wait for commands from reader
1488// Stop when button is pressed (return 1) or field was gone (return 2)
1489// Or return 0 when command is captured
1490//-----------------------------------------------------------------------------
0194ce8f 1491static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) {
9ca155ba
M
1492 *len = 0;
1493
1494 uint32_t timer = 0, vtime = 0;
1495 int analogCnt = 0;
1496 int analogAVG = 0;
1497
1498 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1499 // only, since we are receiving, not transmitting).
1500 // Signal field is off with the appropriate LED
1501 LED_D_OFF();
1502 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1503
1504 // Set ADC to read field strength
1505 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1506 AT91C_BASE_ADC->ADC_MR =
0c8d25eb 1507 ADC_MODE_PRESCALE(63) |
1508 ADC_MODE_STARTUP_TIME(1) |
1509 ADC_MODE_SAMPLE_HOLD_TIME(15);
9ca155ba
M
1510 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1511 // start ADC
1512 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1513
1514 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1515 UartInit(received, parity);
7bc95e2e 1516
1517 // Clear RXRDY:
1518 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1519
9ca155ba
M
1520 for(;;) {
1521 WDT_HIT();
1522
1523 if (BUTTON_PRESS()) return 1;
1524
1525 // test if the field exists
1526 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1527 analogCnt++;
1528 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1529 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1530 if (analogCnt >= 32) {
0c8d25eb 1531 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
9ca155ba
M
1532 vtime = GetTickCount();
1533 if (!timer) timer = vtime;
1534 // 50ms no field --> card to idle state
1535 if (vtime - timer > 50) return 2;
1536 } else
1537 if (timer) timer = 0;
1538 analogCnt = 0;
1539 analogAVG = 0;
1540 }
1541 }
7bc95e2e 1542
9ca155ba 1543 // receive and test the miller decoding
7bc95e2e 1544 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1545 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1546 if(MillerDecoding(b, 0)) {
1547 *len = Uart.len;
9ca155ba
M
1548 return 0;
1549 }
7bc95e2e 1550 }
9ca155ba
M
1551 }
1552}
1553
0194ce8f 1554int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) {
7bc95e2e 1555 uint8_t b;
1556 uint16_t i = 0;
1557 uint32_t ThisTransferTime;
1558
9ca155ba
M
1559 // Modulate Manchester
1560 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1561
1562 // include correction bit if necessary
1563 if (Uart.parityBits & 0x01) {
1564 correctionNeeded = TRUE;
1565 }
0194ce8f 1566 // 1236, so correction bit needed
1567 i = (correctionNeeded) ? 0 : 1;
7bc95e2e 1568
d714d3ef 1569 // clear receiving shift register and holding register
7bc95e2e 1570 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1571 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1572 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1573 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1574
7bc95e2e 1575 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
b070f4e4 1576 for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
7bc95e2e 1577 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1578 if (AT91C_BASE_SSC->SSC_RHR) break;
1579 }
1580
1581 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1582
1583 // Clear TXRDY:
1584 AT91C_BASE_SSC->SSC_THR = SEC_F;
1585
9ca155ba 1586 // send cycle
bb42a03e 1587 for(; i < respLen; ) {
9ca155ba 1588 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1589 AT91C_BASE_SSC->SSC_THR = resp[i++];
1590 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1591 }
7bc95e2e 1592
17ad0e09 1593 if(BUTTON_PRESS()) break;
9ca155ba
M
1594 }
1595
7bc95e2e 1596 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
4b78d6b3 1597 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3,
0c8d25eb 1598 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
7bc95e2e 1599 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1600 AT91C_BASE_SSC->SSC_THR = SEC_F;
1601 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1602 i++;
1603 }
1604 }
7bc95e2e 1605 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
9ca155ba
M
1606 return 0;
1607}
1608
7bc95e2e 1609int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1610 Code4bitAnswerAsTag(resp);
0a39986e 1611 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1612 // do the tracing for the previous reader request and this tag answer:
5ebcb867 1613 uint8_t par[1] = {0x00};
6a1f2d82 1614 GetParity(&resp, 1, par);
7bc95e2e 1615 EmLogTrace(Uart.output,
1616 Uart.len,
1617 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1618 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1619 Uart.parity,
7bc95e2e 1620 &resp,
1621 1,
1622 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1623 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1624 par);
0a39986e 1625 return res;
9ca155ba
M
1626}
1627
8f51ddb0 1628int EmSend4bit(uint8_t resp){
7bc95e2e 1629 return EmSend4bitEx(resp, false);
8f51ddb0
M
1630}
1631
6a1f2d82 1632int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1633 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1634 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1635 // do the tracing for the previous reader request and this tag answer:
1636 EmLogTrace(Uart.output,
1637 Uart.len,
1638 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1639 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1640 Uart.parity,
7bc95e2e 1641 resp,
1642 respLen,
1643 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1644 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1645 par);
8f51ddb0
M
1646 return res;
1647}
1648
6a1f2d82 1649int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
5ebcb867 1650 uint8_t par[MAX_PARITY_SIZE] = {0x00};
6a1f2d82 1651 GetParity(resp, respLen, par);
1652 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1653}
1654
6a1f2d82 1655int EmSendCmd(uint8_t *resp, uint16_t respLen){
5ebcb867 1656 uint8_t par[MAX_PARITY_SIZE] = {0x00};
6a1f2d82 1657 GetParity(resp, respLen, par);
1658 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1659}
1660
6a1f2d82 1661int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1662 return EmSendCmdExPar(resp, respLen, false, par);
1663}
1664
6a1f2d82 1665bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1666 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1667{
810f5379 1668 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1669 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1670 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1671 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1672 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1673 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1674 reader_EndTime = tag_StartTime - exact_fdt;
1675 reader_StartTime = reader_EndTime - reader_modlen;
5ebcb867 1676
810f5379 1677 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
1678 return FALSE;
1679 else
1680 return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1681
9ca155ba
M
1682}
1683
15c4dc5a 1684//-----------------------------------------------------------------------------
1685// Wait a certain time for tag response
1686// If a response is captured return TRUE
e691fc45 1687// If it takes too long return FALSE
15c4dc5a 1688//-----------------------------------------------------------------------------
0194ce8f 1689static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
46c65fed 1690 uint32_t c = 0x00;
e691fc45 1691
15c4dc5a 1692 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1693 // only, since we are receiving, not transmitting).
1694 // Signal field is on with the appropriate LED
1695 LED_D_ON();
1696 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1697
534983d7 1698 // Now get the answer from the card
6a1f2d82 1699 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1700
7bc95e2e 1701 // clear RXRDY:
1702 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1703
15c4dc5a 1704 for(;;) {
534983d7 1705 WDT_HIT();
15c4dc5a 1706
534983d7 1707 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1708 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1709 if(ManchesterDecoding(b, offset, 0)) {
1710 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1711 return TRUE;
19a700a8 1712 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
7bc95e2e 1713 return FALSE;
15c4dc5a 1714 }
534983d7 1715 }
1716 }
15c4dc5a 1717}
1718
0194ce8f 1719void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
72e6d462 1720
6a1f2d82 1721 CodeIso14443aBitsAsReaderPar(frame, bits, par);
7bc95e2e 1722 // Send command to tag
1723 TransmitFor14443a(ToSend, ToSendMax, timing);
0194ce8f 1724 if(trigger) LED_A_ON();
dfc3c505 1725
4b78d6b3 1726 LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
15c4dc5a 1727}
1728
0194ce8f 1729void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) {
ca5bad3d 1730 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1731}
15c4dc5a 1732
0194ce8f 1733void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
72e6d462 1734 // Generate parity and redirect
1735 uint8_t par[MAX_PARITY_SIZE] = {0x00};
1736 GetParity(frame, len/8, par);
1737 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1738}
1739
0194ce8f 1740void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
72e6d462 1741 // Generate parity and redirect
1742 uint8_t par[MAX_PARITY_SIZE] = {0x00};
1743 GetParity(frame, len, par);
1744 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1745}
1746
0194ce8f 1747int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
1748 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
1749 return FALSE;
1750 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
e691fc45 1751 return Demod.len;
1752}
1753
91c7a7cc 1754int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
0194ce8f 1755 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
1756 return FALSE;
91c7a7cc 1757 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
e691fc45 1758 return Demod.len;
f89c7050
M
1759}
1760
c188b1b9 1761// performs iso14443a anticollision (optional) and card select procedure
1762// fills the uid and cuid pointer unless NULL
1763// fills the card info record unless NULL
1764// if anticollision is false, then the UID must be provided in uid_ptr[]
1765// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1766int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
6a1f2d82 1767 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1768 uint8_t sel_all[] = { 0x93,0x20 };
1769 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1770 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
4c0cf2d2 1771 uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
1772 uint8_t resp_par[MAX_PARITY_SIZE] = {0};
1773 byte_t uid_resp[4] = {0};
1774 size_t uid_resp_len = 0;
6a1f2d82 1775
1776 uint8_t sak = 0x04; // cascade uid
1777 int cascade_level = 0;
1778 int len;
1779
1780 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
c188b1b9 1781 ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
7bc95e2e 1782
6a1f2d82 1783 // Receive the ATQA
1784 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1785
1786 if(p_hi14a_card) {
1787 memcpy(p_hi14a_card->atqa, resp, 2);
1788 p_hi14a_card->uidlen = 0;
1789 memset(p_hi14a_card->uid,0,10);
1790 }
5f6d6c90 1791
c188b1b9 1792 if (anticollision) {
4c0cf2d2 1793 // clear uid
1794 if (uid_ptr)
1795 memset(uid_ptr,0,10);
c188b1b9 1796 }
79a73ab2 1797
0ec548dc 1798 // check for proprietary anticollision:
4c0cf2d2 1799 if ((resp[0] & 0x1F) == 0) return 3;
0ec548dc 1800
6a1f2d82 1801 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1802 // which case we need to make a cascade 2 request and select - this is a long UID
1803 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1804 for(; sak & 0x04; cascade_level++) {
1805 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1806 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1807
c188b1b9 1808 if (anticollision) {
6a1f2d82 1809 // SELECT_ALL
4c0cf2d2 1810 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1811 if (!ReaderReceive(resp, resp_par)) return 0;
1812
1813 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1814 memset(uid_resp, 0, 4);
1815 uint16_t uid_resp_bits = 0;
1816 uint16_t collision_answer_offset = 0;
1817 // anti-collision-loop:
1818 while (Demod.collisionPos) {
1819 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1820 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1821 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1822 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1823 }
1824 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1825 uid_resp_bits++;
1826 // construct anticollosion command:
1827 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1828 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1829 sel_uid[2+i] = uid_resp[i];
1830 }
1831 collision_answer_offset = uid_resp_bits%8;
1832 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1833 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
6a1f2d82 1834 }
4c0cf2d2 1835 // finally, add the last bits and BCC of the UID
1836 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1837 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1838 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1839 }
e691fc45 1840
4c0cf2d2 1841 } else { // no collision, use the response to SELECT_ALL as current uid
1842 memcpy(uid_resp, resp, 4);
1843 }
1844
c188b1b9 1845 } else {
1846 if (cascade_level < num_cascades - 1) {
1847 uid_resp[0] = 0x88;
1848 memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
1849 } else {
1850 memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
1851 }
1852 }
6a1f2d82 1853 uid_resp_len = 4;
5f6d6c90 1854
6a1f2d82 1855 // calculate crypto UID. Always use last 4 Bytes.
4c0cf2d2 1856 if(cuid_ptr)
6a1f2d82 1857 *cuid_ptr = bytes_to_num(uid_resp, 4);
e30c654b 1858
6a1f2d82 1859 // Construct SELECT UID command
1860 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
c188b1b9 1861 memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
6a1f2d82 1862 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1863 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1864 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1865
1866 // Receive the SAK
1867 if (!ReaderReceive(resp, resp_par)) return 0;
4c0cf2d2 1868
6a1f2d82 1869 sak = resp[0];
1870
810f5379 1871 // Test if more parts of the uid are coming
6a1f2d82 1872 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1873 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1874 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 1875 uid_resp[0] = uid_resp[1];
1876 uid_resp[1] = uid_resp[2];
1877 uid_resp[2] = uid_resp[3];
6a1f2d82 1878 uid_resp_len = 3;
1879 }
5f6d6c90 1880
4c0cf2d2 1881 if(uid_ptr && anticollision)
6a1f2d82 1882 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
5f6d6c90 1883
6a1f2d82 1884 if(p_hi14a_card) {
1885 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1886 p_hi14a_card->uidlen += uid_resp_len;
1887 }
1888 }
79a73ab2 1889
6a1f2d82 1890 if(p_hi14a_card) {
1891 p_hi14a_card->sak = sak;
1892 p_hi14a_card->ats_len = 0;
1893 }
534983d7 1894
3fe4ff4f 1895 // non iso14443a compliant tag
1896 if( (sak & 0x20) == 0) return 2;
534983d7 1897
6a1f2d82 1898 // Request for answer to select
1899 AppendCrc14443a(rats, 2);
1900 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1901
6a1f2d82 1902 if (!(len = ReaderReceive(resp, resp_par))) return 0;
3fe4ff4f 1903
6a1f2d82 1904 if(p_hi14a_card) {
1905 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1906 p_hi14a_card->ats_len = len;
1907 }
5f6d6c90 1908
6a1f2d82 1909 // reset the PCB block number
1910 iso14_pcb_blocknum = 0;
19a700a8 1911
1912 // set default timeout based on ATS
1913 iso14a_set_ATS_timeout(resp);
1914
6a1f2d82 1915 return 1;
7e758047 1916}
15c4dc5a 1917
7bc95e2e 1918void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1919 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1920 // Set up the synchronous serial port
1921 FpgaSetupSsc();
7bc95e2e 1922 // connect Demodulated Signal to ADC:
7e758047 1923 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
91c7a7cc 1924
1925 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
ca5bad3d 1926
1927 LED_D_OFF();
7e758047 1928 // Signal field is on with the appropriate LED
ca5bad3d 1929 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD ||
1930 fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
7bc95e2e 1931 LED_D_ON();
6fc68747 1932
91c7a7cc 1933 // Prepare the demodulation functions
7bc95e2e 1934 DemodReset();
1935 UartReset();
6fc68747 1936
46c65fed 1937 iso14a_set_timeout(10*106); // 10ms default
91c7a7cc 1938
1939 //NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
1940 NextTransferTime = DELAY_ARM2AIR_AS_READER << 1;
6fc68747 1941
1942 // Start the timer
1943 StartCountSspClk();
7e758047 1944}
15c4dc5a 1945
6a1f2d82 1946int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
810f5379 1947 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
534983d7 1948 uint8_t real_cmd[cmd_len+4];
1949 real_cmd[0] = 0x0a; //I-Block
b0127e65 1950 // put block number into the PCB
1951 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1952 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1953 memcpy(real_cmd+2, cmd, cmd_len);
1954 AppendCrc14443a(real_cmd,cmd_len+2);
1955
9492e0b0 1956 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 1957 size_t len = ReaderReceive(data, parity);
ca5bad3d 1958 //DATA LINK ERROR
1959 if (!len) return 0;
1960
6a1f2d82 1961 uint8_t *data_bytes = (uint8_t *) data;
ca5bad3d 1962
b0127e65 1963 // if we received an I- or R(ACK)-Block with a block number equal to the
1964 // current block number, toggle the current block number
ca5bad3d 1965 if (len >= 4 // PCB+CID+CRC = 4 bytes
b0127e65 1966 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1967 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1968 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1969 {
1970 iso14_pcb_blocknum ^= 1;
1971 }
1972
534983d7 1973 return len;
1974}
1975
7e758047 1976//-----------------------------------------------------------------------------
1977// Read an ISO 14443a tag. Send out commands and store answers.
1978//
1979//-----------------------------------------------------------------------------
91c7a7cc 1980void ReaderIso14443a(UsbCommand *c) {
534983d7 1981 iso14a_command_t param = c->arg[0];
04bc1c66 1982 size_t len = c->arg[1] & 0xffff;
1983 size_t lenbits = c->arg[1] >> 16;
1984 uint32_t timeout = c->arg[2];
91c7a7cc 1985 uint8_t *cmd = c->d.asBytes;
9492e0b0 1986 uint32_t arg0 = 0;
810f5379 1987 byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
1988 uint8_t par[MAX_PARITY_SIZE] = {0x00};
902cb3c0 1989
810f5379 1990 if (param & ISO14A_CONNECT)
3000dc4e 1991 clear_trace();
e691fc45 1992
3000dc4e 1993 set_tracing(TRUE);
e30c654b 1994
810f5379 1995 if (param & ISO14A_REQUEST_TRIGGER)
7bc95e2e 1996 iso14a_set_trigger(TRUE);
15c4dc5a 1997
810f5379 1998 if (param & ISO14A_CONNECT) {
7bc95e2e 1999 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 2000 if(!(param & ISO14A_NO_SELECT)) {
2001 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
c188b1b9 2002 arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
91c7a7cc 2003 cmd_send(CMD_ACK, arg0, card->uidlen, 0, buf, sizeof(iso14a_card_select_t));
6fc68747 2004 // if it fails, the cmdhf14a.c client quites.. however this one still executes.
2005 if ( arg0 == 0 ) return;
5f6d6c90 2006 }
534983d7 2007 }
e30c654b 2008
810f5379 2009 if (param & ISO14A_SET_TIMEOUT)
04bc1c66 2010 iso14a_set_timeout(timeout);
e30c654b 2011
810f5379 2012 if (param & ISO14A_APDU) {
902cb3c0 2013 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 2014 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2015 }
e30c654b 2016
810f5379 2017 if (param & ISO14A_RAW) {
534983d7 2018 if(param & ISO14A_APPEND_CRC) {
0ec548dc 2019 if(param & ISO14A_TOPAZMODE) {
2020 AppendCrc14443b(cmd,len);
2021 } else {
d26849d4 2022 AppendCrc14443a(cmd,len);
0ec548dc 2023 }
534983d7 2024 len += 2;
c7324bef 2025 if (lenbits) lenbits += 16;
15c4dc5a 2026 }
0ec548dc 2027 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2028 if(param & ISO14A_TOPAZMODE) {
2029 int bits_to_send = lenbits;
2030 uint16_t i = 0;
2031 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2032 bits_to_send -= 7;
2033 while (bits_to_send > 0) {
2034 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2035 bits_to_send -= 8;
2036 }
2037 } else {
6a1f2d82 2038 GetParity(cmd, lenbits/8, par);
0ec548dc 2039 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2040 }
2041 } else { // want to send complete bytes only
2042 if(param & ISO14A_TOPAZMODE) {
2043 uint16_t i = 0;
2044 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2045 while (i < len) {
2046 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2047 }
5f6d6c90 2048 } else {
0ec548dc 2049 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2050 }
5f6d6c90 2051 }
6a1f2d82 2052 arg0 = ReaderReceive(buf, par);
9492e0b0 2053 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2054 }
15c4dc5a 2055
810f5379 2056 if (param & ISO14A_REQUEST_TRIGGER)
7bc95e2e 2057 iso14a_set_trigger(FALSE);
15c4dc5a 2058
810f5379 2059 if (param & ISO14A_NO_DISCONNECT)
534983d7 2060 return;
15c4dc5a 2061
15c4dc5a 2062 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
5ee53a0e 2063 set_tracing(FALSE);
15c4dc5a 2064 LEDsoff();
15c4dc5a 2065}
b0127e65 2066
1c611bbd 2067// Determine the distance between two nonces.
2068// Assume that the difference is small, but we don't know which is first.
2069// Therefore try in alternating directions.
2070int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2071
ca5bad3d 2072 if (nt1 == nt2) return 0;
ca5bad3d 2073
91c7a7cc 2074 uint16_t i;
2075 uint32_t nttmp1 = nt1;
2076 uint32_t nttmp2 = nt2;
2077
0194ce8f 2078 for (i = 1; i < (32768/8); ++i) {
bc939371 2079 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i;
2080 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i;
0194ce8f 2081
2082 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1;
2083 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1);
2084 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+2;
2085 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+2);
2086 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+3;
2087 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+3);
2088 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+4;
2089 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+4);
2090 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+5;
2091 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+5);
2092 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+6;
2093 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+6);
2094 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+7;
2095 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7);
91c7a7cc 2096 }
2097 // either nt1 or nt2 are invalid nonces
2098 return(-99999);
e772353f 2099}
2100
1c611bbd 2101//-----------------------------------------------------------------------------
2102// Recover several bits of the cypher stream. This implements (first stages of)
2103// the algorithm described in "The Dark Side of Security by Obscurity and
2104// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2105// (article by Nicolas T. Courtois, 2009)
2106//-----------------------------------------------------------------------------
91c7a7cc 2107void ReaderMifare(bool first_try, uint8_t block ) {
91c7a7cc 2108 uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 };
b0300679 2109 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2110 uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
2111 uint8_t par_list[8] = {0,0,0,0,0,0,0,0};
2112 uint8_t ks_list[8] = {0,0,0,0,0,0,0,0};
495d7f13 2113 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
2114 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
b0300679 2115 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2116 byte_t nt_diff = 0;
6a1f2d82 2117 uint32_t nt = 0;
b0300679 2118 uint32_t previous_nt = 0;
b0300679 2119 uint32_t cuid = 0;
2120
91c7a7cc 2121 int32_t catch_up_cycles = 0;
2122 int32_t last_catch_up = 0;
2123 int32_t isOK = 0;
2124 int32_t nt_distance = 0;
b0300679 2125
4c0cf2d2 2126 uint16_t elapsed_prng_sequences = 1;
1c611bbd 2127 uint16_t consecutive_resyncs = 0;
0de8e387 2128 uint16_t unexpected_random = 0;
2129 uint16_t sync_tries = 0;
b0300679 2130
bc939371 2131 // static variables here, is re-used in the next call
b0300679 2132 static uint32_t nt_attacked = 0;
2133 static uint32_t sync_time = 0;
91c7a7cc 2134 static uint32_t sync_cycles = 0;
b0300679 2135 static uint8_t par_low = 0;
2136 static uint8_t mf_nr_ar3 = 0;
91c7a7cc 2137
b0300679 2138 #define PRNG_SEQUENCE_LENGTH (1 << 16)
2139 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2140 #define MAX_SYNC_TRIES 32
4c0cf2d2 2141
91c7a7cc 2142 BigBuf_free(); BigBuf_Clear_ext(false);
4b78d6b3 2143 clear_trace();
91c7a7cc 2144 set_tracing(TRUE);
2145 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
4c0cf2d2 2146
91c7a7cc 2147 AppendCrc14443a(mf_auth, 2);
2148
4c0cf2d2 2149 if (first_try) {
2150 sync_time = GetCountSspClk() & 0xfffffff8;
91c7a7cc 2151 sync_cycles = PRNG_SEQUENCE_LENGTH + 1130; //65536; //0x10000 // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
4c0cf2d2 2152 mf_nr_ar3 = 0;
2153 nt_attacked = 0;
91c7a7cc 2154 par_low = 0;
4c0cf2d2 2155 } else {
b0300679 2156 // we were unsuccessful on a previous call.
2157 // Try another READER nonce (first 3 parity bits remain the same)
2158 ++mf_nr_ar3;
4c0cf2d2 2159 mf_nr_ar[3] = mf_nr_ar3;
2160 par[0] = par_low;
2161 }
91c7a7cc 2162
2163 bool have_uid = FALSE;
2164 uint8_t cascade_levels = 0;
2165
4c0cf2d2 2166 LED_C_ON();
91c7a7cc 2167 uint16_t i;
2168 for(i = 0; TRUE; ++i) {
4c0cf2d2 2169
1c611bbd 2170 WDT_HIT();
e30c654b 2171
1c611bbd 2172 // Test if the action was cancelled
c830303d 2173 if(BUTTON_PRESS()) {
2174 isOK = -1;
1c611bbd 2175 break;
2176 }
2177
91c7a7cc 2178 // this part is from Piwi's faster nonce collecting part in Hardnested.
2179 if (!have_uid) { // need a full select cycle to get the uid first
2180 iso14a_card_select_t card_info;
2181 if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0)) {
2182 if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (ALL)");
2183 break;
2184 }
2185 switch (card_info.uidlen) {
2186 case 4 : cascade_levels = 1; break;
2187 case 7 : cascade_levels = 2; break;
2188 case 10: cascade_levels = 3; break;
2189 default: break;
2190 }
2191 have_uid = TRUE;
2192 } else { // no need for anticollision. We can directly select the card
2193 if(!iso14443a_select_card(uid, NULL, &cuid, false, cascade_levels)) {
2194 if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (UID)");
2195 continue;
2196 }
1c611bbd 2197 }
4c0cf2d2 2198
91c7a7cc 2199 // Sending timeslot of ISO14443a frame
2200 sync_time = (sync_time & 0xfffffff8 ) + sync_cycles + catch_up_cycles;
4b78d6b3 2201 catch_up_cycles = 0;
2202
2203 // if we missed the sync time already, advance to the next nonce repeat
91c7a7cc 2204 while( GetCountSspClk() > sync_time) {
4b78d6b3 2205 ++elapsed_prng_sequences;
91c7a7cc 2206 sync_time = (sync_time & 0xfffffff8 ) + sync_cycles;
2207 }
2208
2209 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2210 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2211
91c7a7cc 2212 // Receive the (4 Byte) "random" nonce from TAG
4c0cf2d2 2213 if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2214 continue;
1c611bbd 2215
4b78d6b3 2216 previous_nt = nt;
2217 nt = bytes_to_num(receivedAnswer, 4);
2218
91c7a7cc 2219 // Transmit reader nonce with fake par
2220 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2221
2222 WDT_HIT();
2223 LED_B_ON();
1c611bbd 2224 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
91c7a7cc 2225
2226 nt_distance = dist_nt(previous_nt, nt);
2227
2228 // if no distance between, then we are in sync.
1c611bbd 2229 if (nt_distance == 0) {
2230 nt_attacked = nt;
0de8e387 2231 } else {
c830303d 2232 if (nt_distance == -99999) { // invalid nonce received
91c7a7cc 2233 ++unexpected_random;
3bc7b13d 2234 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
c830303d 2235 isOK = -3; // Card has an unpredictable PRNG. Give up
2236 break;
91c7a7cc 2237 } else {
2238 if (sync_cycles <= 0) sync_cycles += PRNG_SEQUENCE_LENGTH;
2239 LED_B_OFF();
c830303d 2240 continue; // continue trying...
2241 }
1c611bbd 2242 }
4c0cf2d2 2243
0de8e387 2244 if (++sync_tries > MAX_SYNC_TRIES) {
91c7a7cc 2245 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2246 break;
0de8e387 2247 }
4c0cf2d2 2248
4b78d6b3 2249 sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
91c7a7cc 2250
4c0cf2d2 2251 if (sync_cycles <= 0)
0de8e387 2252 sync_cycles += PRNG_SEQUENCE_LENGTH;
4c0cf2d2 2253
91c7a7cc 2254 if (MF_DBGLEVEL >= 4)
3bc7b13d 2255 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
4c0cf2d2 2256
91c7a7cc 2257 LED_B_OFF();
1c611bbd 2258 continue;
2259 }
2260 }
91c7a7cc 2261 LED_B_OFF();
1c611bbd 2262
2263 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
4c0cf2d2 2264
91c7a7cc 2265 catch_up_cycles = ABS(dist_nt(nt_attacked, nt));
c830303d 2266 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
1c611bbd 2267 catch_up_cycles = 0;
2268 continue;
91c7a7cc 2269 }
4c0cf2d2 2270 // average?
3bc7b13d 2271 catch_up_cycles /= elapsed_prng_sequences;
4c0cf2d2 2272
1c611bbd 2273 if (catch_up_cycles == last_catch_up) {
4a71da5a 2274 ++consecutive_resyncs;
4c0cf2d2 2275 } else {
1c611bbd 2276 last_catch_up = catch_up_cycles;
2277 consecutive_resyncs = 0;
4b78d6b3 2278 }
4c0cf2d2 2279
1c611bbd 2280 if (consecutive_resyncs < 3) {
91c7a7cc 2281 if (MF_DBGLEVEL >= 4)
2282 Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs);
4c0cf2d2 2283 } else {
2284 sync_cycles += catch_up_cycles;
2285
91c7a7cc 2286 if (MF_DBGLEVEL >= 4)
2287 Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles);
4c0cf2d2 2288
3bc7b13d 2289 last_catch_up = 0;
2290 catch_up_cycles = 0;
2291 consecutive_resyncs = 0;
1c611bbd 2292 }
2293 continue;
2294 }
2295
1c611bbd 2296 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
91c7a7cc 2297 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2298 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2299
495d7f13 2300 if (nt_diff == 0)
6a1f2d82 2301 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2302
6a1f2d82 2303 par_list[nt_diff] = SwapBits(par[0], 8);
91c7a7cc 2304 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // xor with NACK value to get keystream
1c611bbd 2305
2306 // Test if the information is complete
2307 if (nt_diff == 0x07) {
2308 isOK = 1;
2309 break;
2310 }
2311
2312 nt_diff = (nt_diff + 1) & 0x07;
2313 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2314 par[0] = par_low;
4b78d6b3 2315
1c611bbd 2316 } else {
b0300679 2317 // No NACK.
495d7f13 2318 if (nt_diff == 0 && first_try) {
6a1f2d82 2319 par[0]++;
5ebcb867 2320 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
c830303d 2321 isOK = -2;
2322 break;
2323 }
1c611bbd 2324 } else {
b0300679 2325 // Why this?
6a1f2d82 2326 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2327 }
2328 }
4b78d6b3 2329
91c7a7cc 2330 // reset the resyncs since we got a complete transaction on right time.
4b78d6b3 2331 consecutive_resyncs = 0;
91c7a7cc 2332 } // end for loop
1c611bbd 2333
1c611bbd 2334 mf_nr_ar[3] &= 0x1F;
5ebcb867 2335
bc939371 2336 if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i);
d26849d4 2337
b0300679 2338 uint8_t buf[28] = {0x00};
91c7a7cc 2339 memset(buf, 0x00, sizeof(buf));
b0300679 2340 num_to_bytes(cuid, 4, buf);
1c611bbd 2341 num_to_bytes(nt, 4, buf + 4);
2342 memcpy(buf + 8, par_list, 8);
2343 memcpy(buf + 16, ks_list, 8);
2344 memcpy(buf + 24, mf_nr_ar, 4);
2345
91c7a7cc 2346 cmd_send(CMD_ACK, isOK, 0, 0, buf, sizeof(buf) );
1c611bbd 2347
1c611bbd 2348 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2349 LEDsoff();
99cf19d9 2350 set_tracing(FALSE);
20f9a2a1 2351}
1c611bbd 2352
0de8e387 2353/**
d2f487af 2354 *MIFARE 1K simulate.
2355 *
2356 *@param flags :
0194ce8f 2357 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2358 * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section
2359 * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section
2360 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section
2361 * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory
2362 * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later
d2f487af 2363 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2364 */
91c7a7cc 2365void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) {
50193c1e 2366 int cardSTATE = MFEMUL_NOFIELD;
0194ce8f 2367 int _UID_LEN = 0; // 4, 7, 10
9ca155ba 2368 int vHf = 0; // in mV
0194ce8f 2369 int res = 0;
0a39986e
M
2370 uint32_t selTimer = 0;
2371 uint32_t authTimer = 0;
6a1f2d82 2372 uint16_t len = 0;
8f51ddb0 2373 uint8_t cardWRBL = 0;
9ca155ba
M
2374 uint8_t cardAUTHSC = 0;
2375 uint8_t cardAUTHKEY = 0xff; // no authentication
2376 uint32_t cuid = 0;
51969283 2377 uint32_t ans = 0;
0014cb46
M
2378 uint32_t cardINTREG = 0;
2379 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2380 struct Crypto1State mpcs = {0, 0};
2381 struct Crypto1State *pcs;
2382 pcs = &mpcs;
0194ce8f 2383 uint32_t numReads = 0; //Counts numer of times reader read a block
5ebcb867 2384 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
2385 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
2386 uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
2387 uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
9ca155ba 2388
bc939371 2389 uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k
2390 uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
2391 uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
2392 uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
0194ce8f 2393 //uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2394
2395 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2396 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2397 uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2398
2399 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; // very random nonce
2400 //uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
d2f487af 2401 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2402
bc939371 2403 // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
d2f487af 2404 // This can be used in a reader-only attack.
bc939371 2405 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0};
d2f487af 2406 uint8_t ar_nr_collected = 0;
0014cb46 2407
7bc95e2e 2408 // Authenticate response - nonce
51969283 2409 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
bc939371 2410 ar_nr_responses[1] = nonce;
7bc95e2e 2411
d2f487af 2412 //-- Determine the UID
0194ce8f 2413 // Can be set from emulator memory or incoming data
2414 // Length: 4,7,or 10 bytes
bc939371 2415 if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
2416 emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
2417
2418 if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
0194ce8f 2419 memcpy(rUIDBCC1, datain, 4);
2420 _UID_LEN = 4;
bc939371 2421 } else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
0194ce8f 2422 memcpy(&rUIDBCC1[1], datain, 3);
2423 memcpy( rUIDBCC2, datain+3, 4);
2424 _UID_LEN = 7;
bc939371 2425 } else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
0194ce8f 2426 memcpy(&rUIDBCC1[1], datain, 3);
bc939371 2427 memcpy(&rUIDBCC2[1], datain+3, 3);
2428 memcpy( rUIDBCC3, datain+6, 4);
0194ce8f 2429 _UID_LEN = 10;
d2f487af 2430 }
7bc95e2e 2431
0194ce8f 2432 switch (_UID_LEN) {
2433 case 4:
bc939371 2434 sak_4[0] &= 0xFB;
0194ce8f 2435 // save CUID
2436 ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4);
2437 // BCC
2438 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
bc939371 2439 if (MF_DBGLEVEL >= 2) {
0194ce8f 2440 Dbprintf("4B UID: %02x%02x%02x%02x",
2441 rUIDBCC1[0],
2442 rUIDBCC1[1],
2443 rUIDBCC1[2],
2444 rUIDBCC1[3]
2445 );
2446 }
2447 break;
2448 case 7:
2449 atqa[0] |= 0x40;
bc939371 2450 sak_7[0] &= 0xFB;
0194ce8f 2451 // save CUID
bc939371 2452 ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4);
2453 // CascadeTag, CT
2454 rUIDBCC1[0] = 0x88;
0194ce8f 2455 // BCC
2456 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2457 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
bc939371 2458 if (MF_DBGLEVEL >= 2) {
0194ce8f 2459 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
0194ce8f 2460 rUIDBCC1[1],
2461 rUIDBCC1[2],
2462 rUIDBCC1[3],
2463 rUIDBCC2[0],
2464 rUIDBCC2[1],
2465 rUIDBCC2[2],
2466 rUIDBCC2[3]
2467 );
2468 }
2469 break;
2470 case 10:
bc939371 2471 atqa[0] |= 0x80;
2472 sak_10[0] &= 0xFB;
0194ce8f 2473 // save CUID
2474 ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4);
bc939371 2475 // CascadeTag, CT
2476 rUIDBCC1[0] = 0x88;
2477 rUIDBCC2[0] = 0x88;
0194ce8f 2478 // BCC
2479 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
0194ce8f 2480 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2481 rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
bc939371 2482
2483 if (MF_DBGLEVEL >= 2) {
0194ce8f 2484 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
0194ce8f 2485 rUIDBCC1[1],
2486 rUIDBCC1[2],
2487 rUIDBCC1[3],
0194ce8f 2488 rUIDBCC2[1],
2489 rUIDBCC2[2],
2490 rUIDBCC2[3],
2491 rUIDBCC3[0],
2492 rUIDBCC3[1],
2493 rUIDBCC3[2],
2494 rUIDBCC3[3]
2495 );
2496 }
2497 break;
2498 default:
2499 break;
d2f487af 2500 }
bc939371 2501 // calc some crcs
2502 ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
2503 ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
2504 ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
2505
99cf19d9 2506 // We need to listen to the high-frequency, peak-detected path.
2507 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2508
2509 // free eventually allocated BigBuf memory but keep Emulator Memory
2510 BigBuf_free_keep_EM();
99cf19d9 2511 clear_trace();
2512 set_tracing(TRUE);
2513
7bc95e2e 2514 bool finished = FALSE;
2b1f4228 2515 while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
9ca155ba 2516 WDT_HIT();
9ca155ba
M
2517
2518 // find reader field
9ca155ba 2519 if (cardSTATE == MFEMUL_NOFIELD) {
0c8d25eb 2520 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
9ca155ba 2521 if (vHf > MF_MINFIELDV) {
0014cb46 2522 cardSTATE_TO_IDLE();
9ca155ba
M
2523 LED_A_ON();
2524 }
2525 }
0194ce8f 2526 if (cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2527
d2f487af 2528 //Now, get data
6a1f2d82 2529 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2530 if (res == 2) { //Field is off!
2531 cardSTATE = MFEMUL_NOFIELD;
2532 LEDsoff();
2533 continue;
7bc95e2e 2534 } else if (res == 1) {
2535 break; //return value 1 means button press
2536 }
2537
d2f487af 2538 // REQ or WUP request in ANY state and WUP in HALTED state
57850d9d 2539 // this if-statement doesn't match the specification above. (iceman)
0194ce8f 2540 if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
d2f487af 2541 selTimer = GetTickCount();
0194ce8f 2542 EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA));
d2f487af 2543 cardSTATE = MFEMUL_SELECT1;
d2f487af 2544 crypto1_destroy(pcs);
2545 cardAUTHKEY = 0xff;
0194ce8f 2546 LEDsoff();
bc939371 2547 nonce++;
d2f487af 2548 continue;
0a39986e 2549 }
7bc95e2e 2550
50193c1e 2551 switch (cardSTATE) {
d2f487af 2552 case MFEMUL_NOFIELD:
2553 case MFEMUL_HALTED:
50193c1e 2554 case MFEMUL_IDLE:{
6a1f2d82 2555 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2556 break;
2557 }
2558 case MFEMUL_SELECT1:{
0194ce8f 2559 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
d2f487af 2560 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2561 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2562 break;
9ca155ba 2563 }
9ca155ba 2564 // select card
0a39986e 2565 if (len == 9 &&
0194ce8f 2566 ( receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT &&
2567 receivedCmd[1] == 0x70 &&
2568 memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2569
2570 // SAK 4b
2571 EmSendCmd(sak_4, sizeof(sak_4));
2572 switch(_UID_LEN){
2573 case 4:
2574 cardSTATE = MFEMUL_WORK;
2575 LED_B_ON();
2576 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2577 continue;
2578 case 7:
2579 case 10:
2580 cardSTATE = MFEMUL_SELECT2;
2581 continue;
2582 default:break;
8556b852 2583 }
0194ce8f 2584 } else {
2585 cardSTATE_TO_IDLE();
2586 }
2587 break;
2588 }
2589 case MFEMUL_SELECT2:{
2590 if (!len) {
2591 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2592 break;
2593 }
2594 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
2595 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2596 break;
2597 }
2598 if (len == 9 &&
2599 (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 &&
2600 receivedCmd[1] == 0x70 &&
2601 memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
2602
2603 EmSendCmd(sak_7, sizeof(sak_7));
2604 switch(_UID_LEN){
2605 case 7:
2606 cardSTATE = MFEMUL_WORK;
2607 LED_B_ON();
2608 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2609 continue;
2610 case 10:
2611 cardSTATE = MFEMUL_SELECT3;
2612 continue;
2613 default:break;
2614 }
bc939371 2615 }
2616 cardSTATE_TO_IDLE();
0194ce8f 2617 break;
2618 }
2619 case MFEMUL_SELECT3:{
2620 if (!len) {
2621 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2622 break;
2623 }
2624 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
2625 EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
2626 break;
2627 }
2628 if (len == 9 &&
2629 (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
2630 receivedCmd[1] == 0x70 &&
2631 memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
2632
2633 EmSendCmd(sak_10, sizeof(sak_10));
2634 cardSTATE = MFEMUL_WORK;
2635 LED_B_ON();
2636 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
2637 break;
9ca155ba 2638 }
bc939371 2639 cardSTATE_TO_IDLE();
50193c1e
M
2640 break;
2641 }
d2f487af 2642 case MFEMUL_AUTH1:{
495d7f13 2643 if( len != 8) {
d2f487af 2644 cardSTATE_TO_IDLE();
6a1f2d82 2645 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2646 break;
2647 }
0c8d25eb 2648
bc939371 2649 uint32_t nr = bytes_to_num(receivedCmd, 4);
2650 uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2651
2652 //Collect AR/NR
46cd801c 2653 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
bc939371 2654 if(ar_nr_collected < 2) {
2655 //if(ar_nr_responses[2] != nr) {
2656 ar_nr_responses[ar_nr_collected*4] = cuid;
2657 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2658 ar_nr_responses[ar_nr_collected*4+2] = nr;
2659 ar_nr_responses[ar_nr_collected*4+3] = ar;
273b57a7 2660 ar_nr_collected++;
bc939371 2661 //}
2662
12d708fe 2663 // Interactive mode flag, means we need to send ACK
bc939371 2664 finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)&& ar_nr_collected == 2);
d2f487af 2665 }
0194ce8f 2666 /*
2667 crypto1_word(pcs, ar , 1);
2668 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2669
2670 test if auth OK
2671 if (cardRr != prng_successor(nonce, 64)){
c3c241f3 2672
0194ce8f 2673 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2674 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2675 cardRr, prng_successor(nonce, 64));
2676 Shouldn't we respond anything here?
2677 Right now, we don't nack or anything, which causes the
2678 reader to do a WUPA after a while. /Martin
2679 -- which is the correct response. /piwi
2680 cardSTATE_TO_IDLE();
2681 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2682 break;
2683 }
2684 */
2685
d2f487af 2686 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
d2f487af 2687 num_to_bytes(ans, 4, rAUTH_AT);
d2f487af 2688 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2689 LED_C_ON();
bc939371 2690
495d7f13 2691 if (MF_DBGLEVEL >= 4) {
2692 Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2693 cardAUTHSC,
2694 cardAUTHKEY == 0 ? 'A' : 'B',
2695 GetTickCount() - authTimer
2696 );
2697 }
0014cb46 2698 cardSTATE = MFEMUL_WORK;
0194ce8f 2699 break;
50193c1e 2700 }
7bc95e2e 2701 case MFEMUL_WORK:{
2702 if (len == 0) {
6a1f2d82 2703 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2704 break;
0194ce8f 2705 }
d2f487af 2706 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2707
495d7f13 2708 if(encrypted_data)
51969283 2709 mf_crypto1_decrypt(pcs, receivedCmd, len);
7bc95e2e 2710
0194ce8f 2711 if (len == 4 && (receivedCmd[0] == MIFARE_AUTH_KEYA ||
2712 receivedCmd[0] == MIFARE_AUTH_KEYB) ) {
2713
d2f487af 2714 authTimer = GetTickCount();
2715 cardAUTHSC = receivedCmd[1] / 4; // received block num
0194ce8f 2716 cardAUTHKEY = receivedCmd[0] - 0x60; // & 1
2717 crypto1_destroy(pcs);
d2f487af 2718 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2719
0194ce8f 2720 if (!encrypted_data) {
2721 // first authentication
d2f487af 2722 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2723 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
0194ce8f 2724
2725 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2726
2727 } else {
2728 // nested authentication
7bc95e2e 2729 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2730 num_to_bytes(ans, 4, rAUTH_AT);
0194ce8f 2731
2732 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
d2f487af 2733 }
0c8d25eb 2734
d2f487af 2735 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
d2f487af 2736 cardSTATE = MFEMUL_AUTH1;
2737 break;
51969283 2738 }
7bc95e2e 2739
8f51ddb0
M
2740 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2741 // BUT... ACK --> NACK
2742 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2743 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2744 break;
2745 }
2746
2747 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2748 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2749 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2750 break;
0a39986e
M
2751 }
2752
7bc95e2e 2753 if(len != 4) {
6a1f2d82 2754 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2755 break;
2756 }
d2f487af 2757
0194ce8f 2758 if ( receivedCmd[0] == ISO14443A_CMD_READBLOCK ||
2759 receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK ||
2760 receivedCmd[0] == MIFARE_CMD_INC ||
2761 receivedCmd[0] == MIFARE_CMD_DEC ||
2762 receivedCmd[0] == MIFARE_CMD_RESTORE ||
2763 receivedCmd[0] == MIFARE_CMD_TRANSFER ) {
2764
7bc95e2e 2765 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2766 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2767 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2768 break;
2769 }
2770
7bc95e2e 2771 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2772 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2773 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2774 break;
2775 }
d2f487af 2776 }
2777 // read block
0194ce8f 2778 if (receivedCmd[0] == ISO14443A_CMD_READBLOCK) {
2779 if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd[1], receivedCmd[1]);
495d7f13 2780
8f51ddb0
M
2781 emlGetMem(response, receivedCmd[1], 1);
2782 AppendCrc14443a(response, 16);
6a1f2d82 2783 mf_crypto1_encrypt(pcs, response, 18, response_par);
2784 EmSendCmdPar(response, 18, response_par);
d2f487af 2785 numReads++;
12d708fe 2786 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
d2f487af 2787 Dbprintf("%d reads done, exiting", numReads);
2788 finished = true;
2789 }
0a39986e
M
2790 break;
2791 }
0a39986e 2792 // write block
0194ce8f 2793 if (receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK) {
2794 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd[1], receivedCmd[1]);
8f51ddb0 2795 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2796 cardSTATE = MFEMUL_WRITEBL2;
2797 cardWRBL = receivedCmd[1];
0a39986e 2798 break;
7bc95e2e 2799 }
0014cb46 2800 // increment, decrement, restore
0194ce8f 2801 if ( receivedCmd[0] == MIFARE_CMD_INC ||
2802 receivedCmd[0] == MIFARE_CMD_DEC ||
2803 receivedCmd[0] == MIFARE_CMD_RESTORE) {
2804
2805 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0], receivedCmd[1], receivedCmd[1]);
2806
d2f487af 2807 if (emlCheckValBl(receivedCmd[1])) {
c3c241f3 2808 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2809 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2810 break;
2811 }
2812 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0194ce8f 2813 if (receivedCmd[0] == MIFARE_CMD_INC) cardSTATE = MFEMUL_INTREG_INC;
2814 if (receivedCmd[0] == MIFARE_CMD_DEC) cardSTATE = MFEMUL_INTREG_DEC;
2815 if (receivedCmd[0] == MIFARE_CMD_RESTORE) cardSTATE = MFEMUL_INTREG_REST;
0014cb46 2816 cardWRBL = receivedCmd[1];
0014cb46
M
2817 break;
2818 }
0014cb46 2819 // transfer
0194ce8f 2820 if (receivedCmd[0] == MIFARE_CMD_TRANSFER) {
2821 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd[0], receivedCmd[1], receivedCmd[1]);
0014cb46
M
2822 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2823 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2824 else
2825 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2826 break;
2827 }
9ca155ba 2828 // halt
0194ce8f 2829 if (receivedCmd[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) {
9ca155ba 2830 LED_B_OFF();
0a39986e 2831 LED_C_OFF();
0014cb46
M
2832 cardSTATE = MFEMUL_HALTED;
2833 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2834 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2835 break;
9ca155ba 2836 }
d2f487af 2837 // RATS
0194ce8f 2838 if (receivedCmd[0] == ISO14443A_CMD_RATS) {
8f51ddb0
M
2839 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2840 break;
2841 }
d2f487af 2842 // command not allowed
2843 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2844 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2845 break;
8f51ddb0
M
2846 }
2847 case MFEMUL_WRITEBL2:{
495d7f13 2848 if (len == 18) {
8f51ddb0
M
2849 mf_crypto1_decrypt(pcs, receivedCmd, len);
2850 emlSetMem(receivedCmd, cardWRBL, 1);
2851 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2852 cardSTATE = MFEMUL_WORK;
51969283 2853 } else {
0014cb46 2854 cardSTATE_TO_IDLE();
6a1f2d82 2855 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2856 }
8f51ddb0 2857 break;
50193c1e 2858 }
0014cb46
M
2859 case MFEMUL_INTREG_INC:{
2860 mf_crypto1_decrypt(pcs, receivedCmd, len);
2861 memcpy(&ans, receivedCmd, 4);
2862 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2863 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2864 cardSTATE_TO_IDLE();
2865 break;
7bc95e2e 2866 }
6a1f2d82 2867 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2868 cardINTREG = cardINTREG + ans;
2869 cardSTATE = MFEMUL_WORK;
2870 break;
2871 }
2872 case MFEMUL_INTREG_DEC:{
2873 mf_crypto1_decrypt(pcs, receivedCmd, len);
2874 memcpy(&ans, receivedCmd, 4);
2875 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2876 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2877 cardSTATE_TO_IDLE();
2878 break;
2879 }
6a1f2d82 2880 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2881 cardINTREG = cardINTREG - ans;
2882 cardSTATE = MFEMUL_WORK;
2883 break;
2884 }
2885 case MFEMUL_INTREG_REST:{
2886 mf_crypto1_decrypt(pcs, receivedCmd, len);
2887 memcpy(&ans, receivedCmd, 4);
2888 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2889 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2890 cardSTATE_TO_IDLE();
2891 break;
2892 }
6a1f2d82 2893 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2894 cardSTATE = MFEMUL_WORK;
2895 break;
2896 }
50193c1e 2897 }
50193c1e
M
2898 }
2899
810f5379 2900 // Interactive mode flag, means we need to send ACK
bc939371 2901 if((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) {
d2f487af 2902 //May just aswell send the collected ar_nr in the response aswell
bc939371 2903 uint8_t len = ar_nr_collected * 4 * 4;
c3c241f3 2904 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
d2f487af 2905 }
d714d3ef 2906
bc939371 2907 if( ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) && MF_DBGLEVEL >= 1 ) {
12d708fe 2908 if(ar_nr_collected > 1 ) {
d2f487af 2909 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
bc939371 2910 Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x",
0194ce8f 2911 ar_nr_responses[0], // CUID
bc939371 2912 ar_nr_responses[1], // NT1
2913 ar_nr_responses[2], // NR1
2914 ar_nr_responses[3], // AR1
2915 //ar_nr_responses[4], // CUID2
2916 ar_nr_responses[5], // NT2
2917 ar_nr_responses[6], // NR2
2918 ar_nr_responses[7] // AR2
0194ce8f 2919 );
7bc95e2e 2920 } else {
d2f487af 2921 Dbprintf("Failed to obtain two AR/NR pairs!");
bc939371 2922 if(ar_nr_collected == 1 ) {
2923 Dbprintf("Only got these: UID=%08x, nonce=%08x, NR1=%08x, AR1=%08x",
0194ce8f 2924 ar_nr_responses[0], // CUID
2925 ar_nr_responses[1], // NT
bc939371 2926 ar_nr_responses[2], // NR1
2927 ar_nr_responses[3] // AR1
0194ce8f 2928 );
d2f487af 2929 }
2930 }
2931 }
0194ce8f 2932 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
5ee53a0e 2933
91c7a7cc 2934 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2935 LEDsoff();
5ee53a0e 2936 set_tracing(FALSE);
15c4dc5a 2937}
b62a5a84 2938
d2f487af 2939
b62a5a84
M
2940//-----------------------------------------------------------------------------
2941// MIFARE sniffer.
2942//
0194ce8f 2943// if no activity for 2sec, it sends the collected data to the client.
b62a5a84 2944//-----------------------------------------------------------------------------
bc939371 2945// "hf mf sniff"
5cd9ec01 2946void RAMFUNC SniffMifare(uint8_t param) {
bc939371 2947
b62a5a84 2948 LEDsoff();
810f5379 2949
aaa1a9a2 2950 // free eventually allocated BigBuf memory
2951 BigBuf_free(); BigBuf_Clear_ext(false);
3000dc4e
MHS
2952 clear_trace();
2953 set_tracing(TRUE);
b62a5a84 2954
b62a5a84 2955 // The command (reader -> tag) that we're receiving.
810f5379 2956 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
495d7f13 2957 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
810f5379 2958
b62a5a84 2959 // The response (tag -> reader) that we're receiving.
495d7f13 2960 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
2961 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
b62a5a84 2962
99cf19d9 2963 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2964
f71f4deb 2965 // allocate the DMA buffer, used to stream samples from the FPGA
0194ce8f 2966 // [iceman] is this sniffed data unsigned?
f71f4deb 2967 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
7bc95e2e 2968 uint8_t *data = dmaBuf;
2969 uint8_t previous_data = 0;
5cd9ec01
M
2970 int maxDataLen = 0;
2971 int dataLen = 0;
7bc95e2e 2972 bool ReaderIsActive = FALSE;
2973 bool TagIsActive = FALSE;
2974
b62a5a84 2975 // Set up the demodulator for tag -> reader responses.
6a1f2d82 2976 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2977
2978 // Set up the demodulator for the reader -> tag commands
6a1f2d82 2979 UartInit(receivedCmd, receivedCmdPar);
b62a5a84 2980
57850d9d 2981 // Setup and start DMA.
2982 // set transfer address and number of bytes. Start transfer.
2983 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
2984 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
2985 return;
2986 }
b62a5a84 2987
b62a5a84 2988 LED_D_OFF();
0194ce8f 2989
39864b0b 2990 MfSniffInit();
b62a5a84 2991
b62a5a84 2992 // And now we loop, receiving samples.
0194ce8f 2993 for(uint32_t sniffCounter = 0;; ) {
91c7a7cc 2994
2995 LED_A_ON();
2996 WDT_HIT();
7bc95e2e 2997
5cd9ec01
M
2998 if(BUTTON_PRESS()) {
2999 DbpString("cancelled by button");
7bc95e2e 3000 break;
5cd9ec01 3001 }
91c7a7cc 3002
7bc95e2e 3003 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
3004 // check if a transaction is completed (timeout after 2000ms).
3005 // if yes, stop the DMA transfer and send what we have so far to the client
3006 if (MfSniffSend(2000)) {
3007 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3008 sniffCounter = 0;
3009 data = dmaBuf;
3010 maxDataLen = 0;
3011 ReaderIsActive = FALSE;
3012 TagIsActive = FALSE;
57850d9d 3013 // Setup and start DMA. set transfer address and number of bytes. Start transfer.
3014 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
3015 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
3016 return;
3017 }
39864b0b 3018 }
39864b0b 3019 }
7bc95e2e 3020
3021 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3022 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
495d7f13 3023
3024 if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
7bc95e2e 3025 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
495d7f13 3026 else
7bc95e2e 3027 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
495d7f13 3028
5cd9ec01 3029 // test for length of buffer
7bc95e2e 3030 if(dataLen > maxDataLen) { // we are more behind than ever...
3031 maxDataLen = dataLen;
f71f4deb 3032 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
5cd9ec01 3033 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 3034 break;
b62a5a84
M
3035 }
3036 }
5cd9ec01 3037 if(dataLen < 1) continue;
b62a5a84 3038
7bc95e2e 3039 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
3040 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3041 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3042 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
91c7a7cc 3043 Dbprintf("RxEmpty ERROR, data length:%d", dataLen); // temporary
5cd9ec01
M
3044 }
3045 // secondary buffer sets as primary, secondary buffer was stopped
3046 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3047 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
3048 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3049 }
5cd9ec01
M
3050
3051 LED_A_OFF();
b62a5a84 3052
7bc95e2e 3053 if (sniffCounter & 0x01) {
b62a5a84 3054
495d7f13 3055 // no need to try decoding tag data if the reader is sending
3056 if(!TagIsActive) {
7bc95e2e 3057 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3058 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3059 LED_C_INV();
495d7f13 3060
6a1f2d82 3061 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 3062
f8ada309 3063 UartInit(receivedCmd, receivedCmdPar);
7bc95e2e 3064 DemodReset();
3065 }
3066 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3067 }
3068
495d7f13 3069 // no need to try decoding tag data if the reader is sending
3070 if(!ReaderIsActive) {
7bc95e2e 3071 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3072 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3073 LED_C_INV();
b62a5a84 3074
6a1f2d82 3075 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 3076
7bc95e2e 3077 DemodReset();
0ec548dc 3078 UartInit(receivedCmd, receivedCmdPar);
7bc95e2e 3079 }
3080 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3081 }
b62a5a84
M
3082 }
3083
7bc95e2e 3084 previous_data = *data;
3085 sniffCounter++;
5cd9ec01 3086 data++;
495d7f13 3087
3088 if(data == dmaBuf + DMA_BUFFER_SIZE)
5cd9ec01 3089 data = dmaBuf;
7bc95e2e 3090
b62a5a84 3091 } // main cycle
bc939371 3092
3093 if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3094
55acbb2a 3095 FpgaDisableSscDma();
39864b0b 3096 MfSniffEnd();
91c7a7cc 3097 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
3098 LEDsoff();
5ee53a0e 3099 set_tracing(FALSE);
3803d529 3100}
Impressum, Datenschutz