]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
FIX: that time.h issue is different on POSIX systems and WINDOWS system and in C...
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
87a513aa 4// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
8ce3e4b4 5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// Implements a card only attack based on crypto text (encrypted nonces
10// received during a nested authentication) only. Unlike other card only
11// attacks this doesn't rely on implementation errors but only on the
12// inherent weaknesses of the crypto1 cypher. Described in
13// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15// Computer and Communications Security, 2015
16//-----------------------------------------------------------------------------
2dcf60f3 17#include "cmdhfmfhard.h"
4d812c13 18#include "cmdhw.h"
8ce3e4b4 19
f8ada309 20#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f 21#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
8e4a0b35 22#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
4d812c13 23#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
24#define MAX_BUCKETS 128
81ba7ee8 25
26#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 27
28static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
29 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0290 };
8ce3e4b4 62
63typedef struct noncelistentry {
64 uint32_t nonce_enc;
65 uint8_t par_enc;
66 void *next;
67} noncelistentry_t;
68
69typedef struct noncelist {
70 uint16_t num;
71 uint16_t Sum;
72 uint16_t Sum8_guess;
73 uint8_t BitFlip[2];
74 float Sum8_prob;
75 bool updated;
76 noncelistentry_t *first;
4d812c13 77 float score1;
78 uint_fast8_t score2;
8ce3e4b4 79} noncelist_t;
80
3130ba4b 81static size_t nonces_to_bruteforce = 0;
82static noncelistentry_t *brute_force_nonces[256];
810f5379 83static uint32_t cuid = 0;
8ce3e4b4 84static noncelist_t nonces[256];
fe8042f2 85static uint8_t best_first_bytes[256];
8ce3e4b4 86static uint16_t first_byte_Sum = 0;
87static uint16_t first_byte_num = 0;
88static uint16_t num_good_first_bytes = 0;
f8ada309 89static uint64_t maximum_states = 0;
90static uint64_t known_target_key;
0d5ee8e2 91static bool write_stats = false;
92static FILE *fstats = NULL;
8ce3e4b4 93
94
95typedef enum {
96 EVEN_STATE = 0,
97 ODD_STATE = 1
98} odd_even_t;
99
100#define STATELIST_INDEX_WIDTH 16
101#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
102
103typedef struct {
104 uint32_t *states[2];
105 uint32_t len[2];
106 uint32_t *index[2][STATELIST_INDEX_SIZE];
107} partial_indexed_statelist_t;
108
109typedef struct {
110 uint32_t *states[2];
111 uint32_t len[2];
112 void* next;
113} statelist_t;
114
115
f8ada309 116static partial_indexed_statelist_t partial_statelist[17];
117static partial_indexed_statelist_t statelist_bitflip;
f8ada309 118static statelist_t *candidates = NULL;
8ce3e4b4 119
383a1fb3
GG
120bool field_off = false;
121
4d812c13 122uint64_t foundkey = 0;
123size_t keys_found = 0;
124size_t bucket_count = 0;
125statelist_t* buckets[MAX_BUCKETS];
126static uint64_t total_states_tested = 0;
127size_t thread_count = 4;
128
129// these bitsliced states will hold identical states in all slices
130bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
131
132// arrays of bitsliced states with identical values in all slices
133bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
134bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
135
136#define EXACT_COUNT
137
057d2e91
GG
138static bool generate_candidates(uint16_t, uint16_t);
139static bool brute_force(void);
140
8ce3e4b4 141static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
142{
143 uint8_t first_byte = nonce_enc >> 24;
144 noncelistentry_t *p1 = nonces[first_byte].first;
145 noncelistentry_t *p2 = NULL;
146
147 if (p1 == NULL) { // first nonce with this 1st byte
148 first_byte_num++;
f8ada309 149 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 150 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
151 // nonce_enc,
152 // par_enc,
153 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 154 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 155 }
156
157 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
158 p2 = p1;
159 p1 = p1->next;
160 }
161
162 if (p1 == NULL) { // need to add at the end of the list
163 if (p2 == NULL) { // list is empty yet. Add first entry.
164 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
165 } else { // add new entry at end of existing list.
166 p2 = p2->next = malloc(sizeof(noncelistentry_t));
167 }
168 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
169 if (p2 == NULL) { // need to insert at start of list
170 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
171 } else {
172 p2 = p2->next = malloc(sizeof(noncelistentry_t));
173 }
174 } else { // we have seen this 2nd byte before. Nothing to add or insert.
175 return (0);
176 }
177
178 // add or insert new data
179 p2->next = p1;
180 p2->nonce_enc = nonce_enc;
181 p2->par_enc = par_enc;
182
3130ba4b 183 if(nonces_to_bruteforce < 256){
184 brute_force_nonces[nonces_to_bruteforce] = p2;
185 nonces_to_bruteforce++;
186 }
187
8ce3e4b4 188 nonces[first_byte].num++;
f8ada309 189 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 190 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
191
192 return (1); // new nonce added
193}
194
0d5ee8e2 195static void init_nonce_memory(void)
196{
197 for (uint16_t i = 0; i < 256; i++) {
198 nonces[i].num = 0;
199 nonces[i].Sum = 0;
200 nonces[i].Sum8_guess = 0;
201 nonces[i].Sum8_prob = 0.0;
202 nonces[i].updated = true;
203 nonces[i].first = NULL;
204 }
205 first_byte_num = 0;
206 first_byte_Sum = 0;
207 num_good_first_bytes = 0;
208}
209
0d5ee8e2 210static void free_nonce_list(noncelistentry_t *p)
211{
212 if (p == NULL) {
213 return;
214 } else {
215 free_nonce_list(p->next);
216 free(p);
217 }
218}
219
0d5ee8e2 220static void free_nonces_memory(void)
221{
222 for (uint16_t i = 0; i < 256; i++) {
223 free_nonce_list(nonces[i].first);
224 }
225}
226
8ce3e4b4 227static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
228{
229 uint16_t sum = 0;
230 for (uint16_t j = 0; j < 16; j++) {
231 uint32_t st = state;
232 uint16_t part_sum = 0;
233 if (odd_even == ODD_STATE) {
234 for (uint16_t i = 0; i < 5; i++) {
235 part_sum ^= filter(st);
236 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
237 }
f8ada309 238 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 239 } else {
240 for (uint16_t i = 0; i < 4; i++) {
241 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
242 part_sum ^= filter(st);
243 }
244 }
245 sum += part_sum;
246 }
247 return sum;
248}
249
fe8042f2 250// static uint16_t SumProperty(struct Crypto1State *s)
251// {
252 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
253 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
254 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
255// }
8ce3e4b4 256
8ce3e4b4 257static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
258{
259 // for efficient computation we are using the recursive definition
260 // (K-k+1) * (n-k+1)
261 // P(X=k) = P(X=k-1) * --------------------
262 // k * (N-K-n+k)
263 // and
264 // (N-K)*(N-K-1)*...*(N-K-n+1)
265 // P(X=0) = -----------------------------
266 // N*(N-1)*...*(N-n+1)
267
268 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
269 if (k == 0) {
270 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
271 double log_result = 0.0;
272 for (int16_t i = N-K; i >= N-K-n+1; i--) {
273 log_result += log(i);
274 }
275 for (int16_t i = N; i >= N-n+1; i--) {
276 log_result -= log(i);
277 }
8e4a0b35 278 return exp(log_result);
8ce3e4b4 279 } else {
280 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
281 double log_result = 0.0;
282 for (int16_t i = k+1; i <= n; i++) {
283 log_result += log(i);
284 }
285 for (int16_t i = K+1; i <= N; i++) {
286 log_result -= log(i);
287 }
8e4a0b35 288 return exp(log_result);
8ce3e4b4 289 } else { // recursion
290 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
291 }
292 }
293}
3130ba4b 294
8ce3e4b4 295static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
296{
297 const uint16_t N = 256;
8ce3e4b4 298
4b2e63be 299 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 300
4b2e63be 301 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
71ac327b 302 if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
303
4b2e63be 304 double p_S_is_K = p_K[K];
4d812c13 305 double p_T_is_k = 0.0;
4b2e63be 306 for (uint16_t i = 0; i <= 256; i++) {
307 if (p_K[i] != 0.0) {
71ac327b 308 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 309 }
4b2e63be 310 }
71ac327b 311 if (p_T_is_k == 0.0) return 0.0;
4b2e63be 312 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 313}
314
a531720a 315static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
316{
317 static const uint_fast8_t common_bits_LUT[256] = {
318 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
334 };
335
336 return common_bits_LUT[bytes_diff];
337}
338
8ce3e4b4 339static void Tests()
340{
fe8042f2 341 // printf("Tests: Partial Statelist sizes\n");
342 // for (uint16_t i = 0; i <= 16; i+=2) {
343 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
344 // }
345 // for (uint16_t i = 0; i <= 16; i+=2) {
346 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
347 // }
8ce3e4b4 348
349 // #define NUM_STATISTICS 100000
8ce3e4b4 350 // uint32_t statistics_odd[17];
f8ada309 351 // uint64_t statistics[257];
8ce3e4b4 352 // uint32_t statistics_even[17];
353 // struct Crypto1State cs;
354 // time_t time1 = clock();
355
356 // for (uint16_t i = 0; i < 257; i++) {
357 // statistics[i] = 0;
358 // }
359 // for (uint16_t i = 0; i < 17; i++) {
360 // statistics_odd[i] = 0;
361 // statistics_even[i] = 0;
362 // }
363
364 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
365 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
366 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
367 // uint16_t sum_property = SumProperty(&cs);
368 // statistics[sum_property] += 1;
369 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
370 // statistics_even[sum_property]++;
371 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
372 // statistics_odd[sum_property]++;
373 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
374 // }
375
376 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
377 // for (uint16_t i = 0; i < 257; i++) {
378 // if (statistics[i] != 0) {
379 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
380 // }
381 // }
382 // for (uint16_t i = 0; i <= 16; i++) {
383 // if (statistics_odd[i] != 0) {
384 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
385 // }
386 // }
387 // for (uint16_t i = 0; i <= 16; i++) {
388 // if (statistics_odd[i] != 0) {
389 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
390 // }
391 // }
392
393 // printf("Tests: Sum Probabilities based on Partial Sums\n");
394 // for (uint16_t i = 0; i < 257; i++) {
395 // statistics[i] = 0;
396 // }
397 // uint64_t num_states = 0;
398 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
399 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
400 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
401 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
402 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
403 // }
404 // }
405 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
406 // for (uint16_t i = 0; i < 257; i++) {
407 // if (statistics[i] != 0) {
408 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
409 // }
410 // }
411
412 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
413 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
414 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
415 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
416 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
417 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
418 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
419
fe8042f2 420 // struct Crypto1State *pcs;
421 // pcs = crypto1_create(0xffffffffffff);
422 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
423 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
424 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
425 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // best_first_bytes[0],
427 // SumProperty(pcs),
428 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
429 // //test_state_odd = pcs->odd & 0x00ffffff;
430 // //test_state_even = pcs->even & 0x00ffffff;
431 // crypto1_destroy(pcs);
432 // pcs = crypto1_create(0xa0a1a2a3a4a5);
433 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
434 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
435 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
436 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // best_first_bytes[0],
438 // SumProperty(pcs),
439 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
440 // //test_state_odd = pcs->odd & 0x00ffffff;
441 // //test_state_even = pcs->even & 0x00ffffff;
442 // crypto1_destroy(pcs);
443 // pcs = crypto1_create(0xa6b9aa97b955);
444 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
445 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
446 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
447 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
448 // best_first_bytes[0],
449 // SumProperty(pcs),
450 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 451 //test_state_odd = pcs->odd & 0x00ffffff;
452 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 453 // crypto1_destroy(pcs);
8ce3e4b4 454
455
fe8042f2 456 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 457
cd777a05 458 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
459 // for (uint16_t i = 0; i < 256; i++) {
460 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
461 // if (i % 8 == 7) {
462 // printf("\n");
463 // }
464 // }
8ce3e4b4 465
cd777a05 466 // printf("\nTests: Sorted First Bytes:\n");
467 // for (uint16_t i = 0; i < 256; i++) {
468 // uint8_t best_byte = best_first_bytes[i];
469 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
470 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
471 // i, best_byte,
472 // nonces[best_byte].num,
473 // nonces[best_byte].Sum,
474 // nonces[best_byte].Sum8_guess,
475 // nonces[best_byte].Sum8_prob * 100,
476 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
477 // //nonces[best_byte].score1,
478 // //nonces[best_byte].score2
479 // );
480 // }
f8ada309 481
482 // printf("\nTests: parity performance\n");
483 // time_t time1p = clock();
484 // uint32_t par_sum = 0;
485 // for (uint32_t i = 0; i < 100000000; i++) {
486 // par_sum += parity(i);
487 // }
488 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
489
490 // time1p = clock();
491 // par_sum = 0;
492 // for (uint32_t i = 0; i < 100000000; i++) {
493 // par_sum += evenparity32(i);
494 // }
495 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
496
8ce3e4b4 497
f8ada309 498}
499
4d812c13 500static uint16_t sort_best_first_bytes(void)
f8ada309 501{
fe8042f2 502 // sort based on probability for correct guess
8ce3e4b4 503 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 504 uint16_t j = 0;
8ce3e4b4 505 float prob1 = nonces[i].Sum8_prob;
f8ada309 506 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 507 while (prob1 < prob2 && j < i) {
8ce3e4b4 508 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
509 }
fe8042f2 510 if (j < i) {
511 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 512 best_first_bytes[k] = best_first_bytes[k-1];
513 }
fe8042f2 514 }
4d812c13 515 best_first_bytes[j] = i;
7fd676db 516 }
f8ada309 517
fe8042f2 518 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 519 uint16_t num_good_nonces = 0;
fe8042f2 520 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 521 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 522 ++num_good_nonces;
523 }
524 }
525
4d812c13 526 if (num_good_nonces == 0) return 0;
527
f8ada309 528 uint16_t best_first_byte = 0;
529
530 // select the best possible first byte based on number of common bits with all {b'}
531 // uint16_t max_common_bits = 0;
532 // for (uint16_t i = 0; i < num_good_nonces; i++) {
533 // uint16_t sum_common_bits = 0;
534 // for (uint16_t j = 0; j < num_good_nonces; j++) {
535 // if (i != j) {
536 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
537 // }
538 // }
539 // if (sum_common_bits > max_common_bits) {
540 // max_common_bits = sum_common_bits;
541 // best_first_byte = i;
542 // }
543 // }
544
545 // select best possible first byte {b} based on least likely sum/bitflip property
546 float min_p_K = 1.0;
547 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
548 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
549 float bitflip_prob = 1.0;
4d812c13 550
551 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
f8ada309 552 bitflip_prob = 0.09375;
4d812c13 553
a531720a 554 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
4d812c13 555
556 if (p_K[sum8] * bitflip_prob <= min_p_K)
f8ada309 557 min_p_K = p_K[sum8] * bitflip_prob;
4d812c13 558
f8ada309 559 }
560
a531720a 561
f8ada309 562 // use number of commmon bits as a tie breaker
4d812c13 563 uint_fast8_t max_common_bits = 0;
f8ada309 564 for (uint16_t i = 0; i < num_good_nonces; i++) {
4d812c13 565
f8ada309 566 float bitflip_prob = 1.0;
4d812c13 567 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
f8ada309 568 bitflip_prob = 0.09375;
4d812c13 569
f8ada309 570 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
4d812c13 571 uint_fast8_t sum_common_bits = 0;
f8ada309 572 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 573 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 574 }
a531720a 575 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 576 if (sum_common_bits > max_common_bits) {
577 max_common_bits = sum_common_bits;
578 best_first_byte = i;
579 }
580 }
581 }
582
a531720a 583 // swap best possible first byte to the pole position
8e4a0b35 584 if (best_first_byte != 0) {
4d812c13 585 uint16_t temp = best_first_bytes[0];
586 best_first_bytes[0] = best_first_bytes[best_first_byte];
587 best_first_bytes[best_first_byte] = temp;
8e4a0b35 588 }
f8ada309 589
4d812c13 590 return num_good_nonces;
8ce3e4b4 591}
592
8ce3e4b4 593static uint16_t estimate_second_byte_sum(void)
4d812c13 594{
8ce3e4b4 595 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
596 float Sum8_prob = 0.0;
597 uint16_t Sum8 = 0;
598 if (nonces[first_byte].updated) {
599 for (uint16_t sum = 0; sum <= 256; sum++) {
600 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
601 if (prob > Sum8_prob) {
602 Sum8_prob = prob;
603 Sum8 = sum;
604 }
605 }
606 nonces[first_byte].Sum8_guess = Sum8;
607 nonces[first_byte].Sum8_prob = Sum8_prob;
608 nonces[first_byte].updated = false;
609 }
610 }
4d812c13 611 return sort_best_first_bytes();
8ce3e4b4 612}
613
8ce3e4b4 614static int read_nonce_file(void)
615{
616 FILE *fnonces = NULL;
ddaecc08 617 uint8_t trgBlockNo = 0;
618 uint8_t trgKeyType = 0;
8ce3e4b4 619 uint8_t read_buf[9];
ddaecc08 620 uint32_t nt_enc1 = 0, nt_enc2 = 0;
621 uint8_t par_enc = 0;
8ce3e4b4 622 int total_num_nonces = 0;
623
624 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
625 PrintAndLog("Could not open file nonces.bin");
626 return 1;
627 }
628
629 PrintAndLog("Reading nonces from file nonces.bin...");
4d812c13 630 memset (read_buf, 0, sizeof (read_buf));
841d7af0 631 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
632 if ( bytes_read == 0) {
8ce3e4b4 633 PrintAndLog("File reading error.");
634 fclose(fnonces);
635 return 1;
636 }
637 cuid = bytes_to_num(read_buf, 4);
638 trgBlockNo = bytes_to_num(read_buf+4, 1);
639 trgKeyType = bytes_to_num(read_buf+5, 1);
4d812c13 640 size_t ret = 0;
641 do {
642 memset (read_buf, 0, sizeof (read_buf));
643 if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
8ce3e4b4 644 nt_enc1 = bytes_to_num(read_buf, 4);
645 nt_enc2 = bytes_to_num(read_buf+4, 4);
646 par_enc = bytes_to_num(read_buf+8, 1);
647 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
648 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
649 add_nonce(nt_enc1, par_enc >> 4);
650 add_nonce(nt_enc2, par_enc & 0x0f);
651 total_num_nonces += 2;
652 }
4d812c13 653 } while (ret == 9);
654
8ce3e4b4 655 fclose(fnonces);
656 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 657 return 0;
658}
659
a531720a 660static void Check_for_FilterFlipProperties(void)
661{
662 printf("Checking for Filter Flip Properties...\n");
0d5ee8e2 663 uint16_t num_bitflips = 0;
664
a531720a 665 for (uint16_t i = 0; i < 256; i++) {
666 nonces[i].BitFlip[ODD_STATE] = false;
667 nonces[i].BitFlip[EVEN_STATE] = false;
668 }
669
670 for (uint16_t i = 0; i < 256; i++) {
4d812c13 671 if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
672
a531720a 673 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
674 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
675 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
676
677 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
678 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 679 num_bitflips++;
a531720a 680 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
681 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 682 num_bitflips++;
a531720a 683 }
684 }
0d5ee8e2 685
4d812c13 686 if (write_stats)
0d5ee8e2 687 fprintf(fstats, "%d;", num_bitflips);
0d5ee8e2 688}
689
0d5ee8e2 690static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
691{
1f1929a4 692 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 693 // init cryptostate with key:
694 for(int8_t i = 47; i > 0; i -= 2) {
695 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
696 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
697 }
698
699 *par_enc = 0;
700 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
701 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
702 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
703 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
704 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
705 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
706 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
707 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
708 }
709
710}
711
0d5ee8e2 712static void simulate_acquire_nonces()
713{
714 clock_t time1 = clock();
715 bool filter_flip_checked = false;
716 uint32_t total_num_nonces = 0;
717 uint32_t next_fivehundred = 500;
718 uint32_t total_added_nonces = 0;
719
720 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
721 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
722
723 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
724 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
725
726 do {
727 uint32_t nt_enc = 0;
728 uint8_t par_enc = 0;
729
730 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
731 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
732 total_added_nonces += add_nonce(nt_enc, par_enc);
733 total_num_nonces++;
734
735 if (first_byte_num == 256 ) {
736 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
737 if (!filter_flip_checked) {
738 Check_for_FilterFlipProperties();
739 filter_flip_checked = true;
740 }
741 num_good_first_bytes = estimate_second_byte_sum();
742 if (total_num_nonces > next_fivehundred) {
743 next_fivehundred = (total_num_nonces/500+1) * 500;
4d812c13 744 printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 745 total_num_nonces,
0d5ee8e2 746 total_added_nonces,
747 CONFIDENCE_THRESHOLD * 100.0,
748 num_good_first_bytes);
749 }
750 }
751
752 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
753
b112787d 754 time1 = clock() - time1;
755 if ( time1 > 0 ) {
0d5ee8e2 756 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
757 total_num_nonces,
b112787d 758 ((float)time1)/CLOCKS_PER_SEC,
759 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
760 }
0d5ee8e2 761 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
762
a531720a 763}
764
06d09c98 765static void free_candidates_memory(statelist_t *sl)
766{
767 if (sl == NULL) {
768 return;
769 } else {
770 free_candidates_memory(sl->next);
771 free(sl);
772 }
773}
774
f8ada309 775static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 776{
06d09c98 777 uint8_t three_in_row = 0;
778 uint8_t prev_best = 0;
8ce3e4b4 779 clock_t time1 = clock();
780 bool initialize = true;
8ce3e4b4 781 bool finished = false;
a531720a 782 bool filter_flip_checked = false;
8ce3e4b4 783 uint32_t flags = 0;
784 uint8_t write_buf[9];
785 uint32_t total_num_nonces = 0;
786 uint32_t next_fivehundred = 500;
787 uint32_t total_added_nonces = 0;
057d2e91 788 uint32_t idx = 1;
8ce3e4b4 789 FILE *fnonces = NULL;
383a1fb3 790 field_off = false;
4d812c13 791 UsbCommand resp;
792 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
793 memcpy(c.d.asBytes, key, 6);
794 c.arg[0] = blockNo + (keyType * 0x100);
795 c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
06d09c98 796
8ce3e4b4 797 printf("Acquiring nonces...\n");
8ce3e4b4 798 do {
06d09c98 799
8ce3e4b4 800 flags = 0;
4d812c13 801 //flags |= initialize ? 0x0001 : 0;
802 flags |= 0x0001;
8ce3e4b4 803 flags |= slow ? 0x0002 : 0;
804 flags |= field_off ? 0x0004 : 0;
360caaba 805 c.arg[2] = flags;
4d812c13 806
7fd676db 807 clearCommandBuffer();
8ce3e4b4 808 SendCommand(&c);
809
87a513aa 810 if (field_off) break;
8ce3e4b4 811
06d09c98 812 if (!WaitForResponseTimeout(CMD_ACK, &resp, 6000)) {
360caaba 813 if (fnonces) fclose(fnonces);
814 return 1;
815 }
4d812c13 816
360caaba 817 if (resp.arg[0]) {
818 if (fnonces) fclose(fnonces);
819 return resp.arg[0]; // error during nested_hard
820 }
821
822 if (initialize) {
823 // global var CUID
8ce3e4b4 824 cuid = resp.arg[1];
8ce3e4b4 825 if (nonce_file_write && fnonces == NULL) {
826 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
827 PrintAndLog("Could not create file nonces.bin");
828 return 3;
829 }
830 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
4d812c13 831 memset (write_buf, 0, sizeof (write_buf));
8ce3e4b4 832 num_to_bytes(cuid, 4, write_buf);
833 fwrite(write_buf, 1, 4, fnonces);
834 fwrite(&trgBlockNo, 1, 1, fnonces);
835 fwrite(&trgKeyType, 1, 1, fnonces);
7fd676db 836 fflush(fnonces);
8ce3e4b4 837 }
360caaba 838 initialize = false;
8ce3e4b4 839 }
360caaba 840
841 uint32_t nt_enc1, nt_enc2;
842 uint8_t par_enc;
843 uint16_t num_acquired_nonces = resp.arg[2];
844 uint8_t *bufp = resp.d.asBytes;
4d812c13 845 for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
360caaba 846 nt_enc1 = bytes_to_num(bufp, 4);
847 nt_enc2 = bytes_to_num(bufp+4, 4);
848 par_enc = bytes_to_num(bufp+8, 1);
849
360caaba 850 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
360caaba 851 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
852
853 if (nonce_file_write && fnonces) {
854 fwrite(bufp, 1, 9, fnonces);
855 fflush(fnonces);
8ce3e4b4 856 }
360caaba 857 bufp += 9;
8ce3e4b4 858 }
360caaba 859 total_num_nonces += num_acquired_nonces;
860
861 if (first_byte_num == 256) {
7fd676db 862
a531720a 863 if (!filter_flip_checked) {
864 Check_for_FilterFlipProperties();
865 filter_flip_checked = true;
866 }
383a1fb3 867
8ce3e4b4 868 num_good_first_bytes = estimate_second_byte_sum();
06d09c98 869 if ( prev_best == best_first_bytes[0] ){
870 ++three_in_row;
871 } else {
872 three_in_row = 0;
873 }
874 prev_best = best_first_bytes[0];
360caaba 875
8ce3e4b4 876 if (total_num_nonces > next_fivehundred) {
877 next_fivehundred = (total_num_nonces/500+1) * 500;
4d812c13 878 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 879 total_num_nonces,
8ce3e4b4 880 total_added_nonces,
8e4a0b35 881 NONCES_THRESHOLD * idx,
8ce3e4b4 882 CONFIDENCE_THRESHOLD * 100.0,
06d09c98 883 num_good_first_bytes
884 );
383a1fb3 885 }
4d812c13 886
887 if ( num_good_first_bytes > 0 ) {
888 //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
06d09c98 889 if ( total_added_nonces >= (NONCES_THRESHOLD * idx) || three_in_row >= 3) {
890
4d812c13 891 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
892 if (cracking || known_target_key != -1) {
06d09c98 893
894 UsbCommand cOff = {CMD_FPGA_MAJOR_MODE_OFF, {0,0,0} };
895 SendCommand(&cOff);
896 field_off = brute_force();
4d812c13 897 }
06d09c98 898 free_candidates_memory(candidates);
bbcd41a6 899 }
1a4b6738 900 }
06d09c98 901
902 if ( total_added_nonces >= (NONCES_THRESHOLD * idx))
903 ++idx;
8ce3e4b4 904 }
8ce3e4b4 905 } while (!finished);
906
7fd676db 907 if (nonce_file_write && fnonces)
8ce3e4b4 908 fclose(fnonces);
8ce3e4b4 909
b112787d 910 time1 = clock() - time1;
911 if ( time1 > 0 ) {
81ba7ee8 912 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
913 total_num_nonces,
914 ((float)time1)/CLOCKS_PER_SEC,
915 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 916 );
917 }
8ce3e4b4 918 return 0;
919}
920
8ce3e4b4 921static int init_partial_statelists(void)
922{
f8ada309 923 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
924// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
925 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 926
927 printf("Allocating memory for partial statelists...\n");
928 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
929 for (uint16_t i = 0; i <= 16; i+=2) {
930 partial_statelist[i].len[odd_even] = 0;
931 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
932 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
933 if (partial_statelist[i].states[odd_even] == NULL) {
934 PrintAndLog("Cannot allocate enough memory. Aborting");
935 return 4;
936 }
937 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
938 partial_statelist[i].index[odd_even][j] = NULL;
939 }
940 }
941 }
942
943 printf("Generating partial statelists...\n");
944 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
945 uint32_t index = -1;
946 uint32_t num_of_states = 1<<20;
947 for (uint32_t state = 0; state < num_of_states; state++) {
948 uint16_t sum_property = PartialSumProperty(state, odd_even);
949 uint32_t *p = partial_statelist[sum_property].states[odd_even];
950 p += partial_statelist[sum_property].len[odd_even];
951 *p = state;
952 partial_statelist[sum_property].len[odd_even]++;
953 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
954 if ((state & index_mask) != index) {
955 index = state & index_mask;
956 }
957 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
958 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
959 }
960 }
961 // add End Of List markers
962 for (uint16_t i = 0; i <= 16; i += 2) {
963 uint32_t *p = partial_statelist[i].states[odd_even];
964 p += partial_statelist[i].len[odd_even];
81ba7ee8 965 *p = END_OF_LIST_MARKER;
8ce3e4b4 966 }
967 }
968
969 return 0;
970}
8ce3e4b4 971
972static void init_BitFlip_statelist(void)
973{
974 printf("Generating bitflip statelist...\n");
975 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
976 uint32_t index = -1;
977 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
978 for (uint32_t state = 0; state < (1 << 20); state++) {
979 if (filter(state) != filter(state^1)) {
980 if ((state & index_mask) != index) {
981 index = state & index_mask;
982 }
983 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
984 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
985 }
986 *p++ = state;
987 }
988 }
989 // set len and add End Of List marker
990 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 991 *p = END_OF_LIST_MARKER;
4d812c13 992 //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
8ce3e4b4 993}
8ce3e4b4 994
a531720a 995static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 996{
997 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
998
999 if (p == NULL) return NULL;
a531720a 1000 while (*p < (state & mask)) p++;
81ba7ee8 1001 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 1002 if ((*p & mask) == (state & mask)) return p; // found a match.
1003 return NULL; // no match
1004}
1005
a531720a 1006static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 1007{
a531720a 1008 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
1009 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
1010 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
1011 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
1012 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
1013 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
1014 return !all_diff;
1015}
1016
a531720a 1017static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
1018{
1019 uint_fast8_t j_bit_mask = 0x01 << bit;
1020 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
1021 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
1022 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
1023 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1024 return all_diff;
1025}
1026
a531720a 1027static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1028{
1029 if (odd_even) {
1030 // odd bits
1031 switch (num_common_bits) {
1032 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1033 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1034 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1035 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1036 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1037 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1038 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1039 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1040 }
a531720a 1041 } else {
1042 // even bits
1043 switch (num_common_bits) {
1044 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1045 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1046 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1047 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1048 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1049 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1050 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1051 }
8ce3e4b4 1052 }
1053
1054 return true; // valid state
1055}
1056
8ce3e4b4 1057static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1058{
1059 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1060 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1061 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1062 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1063 uint32_t mask = 0xfffffff0;
1064 if (odd_even == ODD_STATE) {
a531720a 1065 mask >>= j/2;
8ce3e4b4 1066 } else {
a531720a 1067 mask >>= (j+1)/2;
8ce3e4b4 1068 }
1069 mask &= 0x000fffff;
1070 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1071 bool found_match = false;
1072 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1073 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1074 if (r*(16-s) + (16-r)*s == sum_a8) {
1075 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1076 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1077 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1078 if (p != NULL) {
81ba7ee8 1079 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1080 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1081 found_match = true;
1082 // if ((odd_even == ODD_STATE && state == test_state_odd)
1083 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1084 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1085 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1086 // }
1087 break;
1088 } else {
1089 // if ((odd_even == ODD_STATE && state == test_state_odd)
1090 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1091 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1092 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1093 // }
1094 }
1095 p++;
1096 }
1097 } else {
1098 // if ((odd_even == ODD_STATE && state == test_state_odd)
1099 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1100 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1101 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1102 // }
1103 }
1104 }
1105 }
1106 }
1107
1108 if (!found_match) {
1109 // if ((odd_even == ODD_STATE && state == test_state_odd)
1110 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1111 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1112 // }
1113 return false;
1114 }
1115 }
1116
1117 return true;
1118}
1119
f8ada309 1120static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1121{
1122 for (uint16_t i = 0; i < 256; i++) {
1123 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1124 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1125 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1126 uint32_t mask = 0xfffffff0;
1127 if (odd_even == ODD_STATE) {
a531720a 1128 mask >>= j/2;
f8ada309 1129 } else {
a531720a 1130 mask >>= (j+1)/2;
f8ada309 1131 }
1132 mask &= 0x000fffff;
1133 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1134 bool found_match = false;
1135 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1136 if (p != NULL) {
81ba7ee8 1137 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1138 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1139 found_match = true;
1140 // if ((odd_even == ODD_STATE && state == test_state_odd)
1141 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1142 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1143 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1144 // }
1145 break;
1146 } else {
1147 // if ((odd_even == ODD_STATE && state == test_state_odd)
1148 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1149 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1150 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1151 // }
1152 }
1153 p++;
1154 }
1155 } else {
1156 // if ((odd_even == ODD_STATE && state == test_state_odd)
1157 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1158 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1159 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1160 // }
1161 }
1162 if (!found_match) {
1163 // if ((odd_even == ODD_STATE && state == test_state_odd)
1164 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1165 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1166 // }
1167 return false;
1168 }
1169 }
1170
1171 }
1172
1173 return true;
1174}
1175
a531720a 1176static struct sl_cache_entry {
1177 uint32_t *sl;
1178 uint32_t len;
1179 } sl_cache[17][17][2];
1180
a531720a 1181static void init_statelist_cache(void)
1182{
a531720a 1183 for (uint16_t i = 0; i < 17; i+=2) {
1184 for (uint16_t j = 0; j < 17; j+=2) {
1185 for (uint16_t k = 0; k < 2; k++) {
1186 sl_cache[i][j][k].sl = NULL;
1187 sl_cache[i][j][k].len = 0;
1188 }
1189 }
1190 }
1191}
1192
8ce3e4b4 1193static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1194{
1195 uint32_t worstcase_size = 1<<20;
1196
a531720a 1197 // check cache for existing results
1198 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1199 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1200 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1201 return 0;
1202 }
1203
8ce3e4b4 1204 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1205 if (candidates->states[odd_even] == NULL) {
1206 PrintAndLog("Out of memory error.\n");
1207 return 4;
1208 }
a531720a 1209 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1210 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1211 uint32_t search_mask = 0x000ffff0;
1212 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
71ac327b 1213 if (p1 != NULL && p2 != NULL) {
81ba7ee8 1214 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1215 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1216 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1217 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1218 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1219 *add_p++ = (*p1 << 4) | *p2;
1220 }
8ce3e4b4 1221 }
f8ada309 1222 }
8ce3e4b4 1223 p2++;
1224 }
1225 }
8ce3e4b4 1226 }
f8ada309 1227
a531720a 1228 // set end of list marker and len
81ba7ee8 1229 *add_p = END_OF_LIST_MARKER;
a531720a 1230 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1231
8ce3e4b4 1232 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1233
a531720a 1234 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1235 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1236
8ce3e4b4 1237 return 0;
1238}
1239
8ce3e4b4 1240static statelist_t *add_more_candidates(statelist_t *current_candidates)
1241{
1242 statelist_t *new_candidates = NULL;
1243 if (current_candidates == NULL) {
1244 if (candidates == NULL) {
1245 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1246 }
1247 new_candidates = candidates;
1248 } else {
1249 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1250 }
71ac327b 1251 if (!new_candidates) return NULL;
1252
8ce3e4b4 1253 new_candidates->next = NULL;
1254 new_candidates->len[ODD_STATE] = 0;
1255 new_candidates->len[EVEN_STATE] = 0;
1256 new_candidates->states[ODD_STATE] = NULL;
1257 new_candidates->states[EVEN_STATE] = NULL;
1258 return new_candidates;
1259}
1260
057d2e91 1261static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1262{
1263 struct Crypto1State *pcs;
1264 pcs = crypto1_create(key);
1265 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1266
1267 uint32_t state_odd = pcs->odd & 0x00ffffff;
1268 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1269 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
360caaba 1270 printf("Validating keysearch space\n");
06d09c98 1271 if ( candidates == NULL ) {
1272 printf("candidates list is NULL\n");
1273 return false;
1274 }
f8ada309 1275 uint64_t count = 0;
8ce3e4b4 1276 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1277 bool found_odd = false;
1278 bool found_even = false;
8ce3e4b4 1279 uint32_t *p_odd = p->states[ODD_STATE];
1280 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1281 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1282 if ((*p_odd & 0x00ffffff) == state_odd) {
1283 found_odd = true;
1284 break;
1285 }
8ce3e4b4 1286 p_odd++;
1287 }
81ba7ee8 1288 while (*p_even != END_OF_LIST_MARKER) {
06d09c98 1289 if ((*p_even & 0x00ffffff) == state_even)
f8ada309 1290 found_even = true;
06d09c98 1291
8ce3e4b4 1292 p_even++;
1293 }
f8ada309 1294 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1295 if (found_odd && found_even) {
4d812c13 1296 if (known_target_key != -1) {
06d09c98 1297 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
1298 count,
1299 log(count)/log(2),
1300 maximum_states,
1301 log(maximum_states)/log(2)
1302 );
1303 if (write_stats)
1304 fprintf(fstats, "1\n");
4d812c13 1305 }
f8ada309 1306 crypto1_destroy(pcs);
057d2e91 1307 return true;
f8ada309 1308 }
8ce3e4b4 1309 }
f8ada309 1310
4d812c13 1311 if (known_target_key != -1) {
06d09c98 1312 printf("Key NOT found!\n");
1313 if (write_stats)
1314 fprintf(fstats, "0\n");
4d812c13 1315 }
8ce3e4b4 1316 crypto1_destroy(pcs);
057d2e91 1317 return false;
8ce3e4b4 1318}
1319
057d2e91 1320static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1321{
1322 printf("Generating crypto1 state candidates... \n");
1323
1324 statelist_t *current_candidates = NULL;
1325 // estimate maximum candidate states
f8ada309 1326 maximum_states = 0;
8ce3e4b4 1327 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1328 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1329 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1330 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1331 }
1332 }
1333 }
057d2e91 1334
0325c12f 1335 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1336
ba39db37 1337 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
8ce3e4b4 1338
a531720a 1339 init_statelist_cache();
1340
8ce3e4b4 1341 for (uint16_t p = 0; p <= 16; p += 2) {
1342 for (uint16_t q = 0; q <= 16; q += 2) {
1343 if (p*(16-q) + (16-p)*q == sum_a0) {
2dcf60f3 1344 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1345 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
8ce3e4b4 1346 for (uint16_t r = 0; r <= 16; r += 2) {
1347 for (uint16_t s = 0; s <= 16; s += 2) {
1348 if (r*(16-s) + (16-r)*s == sum_a8) {
1349 current_candidates = add_more_candidates(current_candidates);
71ac327b 1350 if (current_candidates != NULL) {
a531720a 1351 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1352 // and eliminate the need to calculate the other part
1353 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1354 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
ba39db37 1355 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1356 if(current_candidates->len[ODD_STATE]) {
ba39db37 1357 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1358 } else {
1359 current_candidates->len[EVEN_STATE] = 0;
1360 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1361 *p = END_OF_LIST_MARKER;
a531720a 1362 }
1363 } else {
1364 add_matching_states(current_candidates, q, s, EVEN_STATE);
1365 if(current_candidates->len[EVEN_STATE]) {
1366 add_matching_states(current_candidates, p, r, ODD_STATE);
1367 } else {
1368 current_candidates->len[ODD_STATE] = 0;
1369 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1370 *p = END_OF_LIST_MARKER;
a531720a 1371 }
1372 }
1c38049b 1373 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1374 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1375 }
1376 }
1377 }
1378 }
1379 }
1380 }
8e4a0b35 1381 }
8ce3e4b4 1382
8ce3e4b4 1383 maximum_states = 0;
8e4a0b35 1384 unsigned int n = 0;
4d812c13 1385 for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
8ce3e4b4 1386 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1387 }
0325c12f
GG
1388
1389 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1390
ba39db37 1391 float kcalc = log(maximum_states)/log(2);
057d2e91 1392 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1393 if (write_stats) {
4d812c13 1394 fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
0d5ee8e2 1395 }
236e8f7c 1396 if (kcalc < CRACKING_THRESHOLD) return true;
057d2e91
GG
1397
1398 return false;
0d5ee8e2 1399}
1400
0d5ee8e2 1401static void free_statelist_cache(void)
1402{
1403 for (uint16_t i = 0; i < 17; i+=2) {
1404 for (uint16_t j = 0; j < 17; j+=2) {
1405 for (uint16_t k = 0; k < 2; k++) {
1406 free(sl_cache[i][j][k].sl);
1407 }
1408 }
1409 }
8ce3e4b4 1410}
1411
3130ba4b 1412static const uint64_t crack_states_bitsliced(statelist_t *p){
1413 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1414 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1415 uint64_t key = -1;
1416 uint8_t bSize = sizeof(bitslice_t);
1417
1418#ifdef EXACT_COUNT
1419 size_t bucket_states_tested = 0;
1420 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1421#else
1422 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1423#endif
1424
1425 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1426 size_t bitsliced_blocks = 0;
1427 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1428
1429 // bitslice all the even states
1430 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1431
1432#ifdef __WIN32
1433 #ifdef __MINGW32__
1434 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1435 #else
1436 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1437 #endif
1438#else
b01e7d20 1439 #ifdef __APPLE__
9d590832 1440 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1441 #else
3130ba4b 1442 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1443 #endif
3130ba4b 1444#endif
1445
1446 if ( !lstate_p ) {
1447 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1448 return key;
1449 }
1450
1451 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1452
1453 // bitslice even half-states
1454 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1455#ifdef EXACT_COUNT
1456 bucket_size[bitsliced_blocks] = max_slices;
1457#endif
1458 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1459 uint32_t e = *(p_even+slice_idx);
1460 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1461 // set even bits
1462 if(e&1){
1463 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1464 }
1465 }
1466 }
1467 // compute the rollback bits
1468 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1469 // inlined crypto1_bs_lfsr_rollback
1470 const bitslice_value_t feedout = lstate_p[0].value;
1471 ++lstate_p;
1472 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1473 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1474 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1475 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1476 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1477 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1478 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1479 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1480 }
1481 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1482 }
1483
1484 // bitslice every odd state to every block of even half-states with half-finished rollback
1485 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1486 // early abort
1487 if(keys_found){
1488 goto out;
1489 }
1490
1491 // set the odd bits and compute rollback
1492 uint64_t o = (uint64_t) *p_odd;
1493 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1494 // pre-compute part of the odd feedback bits (minus rollback)
1495 bool odd_feedback_bit = parity(o&0x9ce5c);
1496
1497 crypto1_bs_rewind_a0();
1498 // set odd bits
1499 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
4d812c13 1500 state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
3130ba4b 1501 }
1502 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1503
1504 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1505 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1506 size_t state_idx;
1507 // set even bits
1508 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1509 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1510 }
1511 // set rollback bits
1512 uint64_t lo = o;
1513 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1514 // set the odd bits and take in the odd rollback bits from the even states
1515 if(lo & 1){
1516 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1517 } else {
1518 state_p[state_idx] = bitsliced_even_state[state_idx];
1519 }
1520
1521 // set the even bits and take in the even rollback bits from the odd states
1522 if((lo >> 32) & 1){
1523 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1524 } else {
1525 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1526 }
1527 }
1528
1529#ifdef EXACT_COUNT
4d812c13 1530 bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
3130ba4b 1531#endif
1532 // pre-compute first keystream and feedback bit vectors
1533 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1534 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1535 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1536 state_p[47-24].value ^ state_p[47-42].value);
1537
1538 // vector to contain test results (1 = passed, 0 = failed)
1539 bitslice_t results = bs_ones;
1540
1541 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1542 size_t parity_bit_idx = 0;
1543 bitslice_value_t fb_bits = fbb;
1544 bitslice_value_t ks_bits = ksb;
1545 state_p = &states[KEYSTREAM_SIZE-1];
1546 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1547
1548 // highest bit is transmitted/received first
1549 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1550 // decrypt nonce bits
1551 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1552 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1553
1554 // compute real parity bits on the fly
1555 parity_bit_vector ^= decrypted_nonce_bit_vector;
1556
1557 // update state
1558 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1559
1560 // compute next keystream bit
1561 ks_bits = crypto1_bs_f20(state_p);
1562
1563 // for each byte:
1564 if((ks_idx&7) == 0){
1565 // get encrypted parity bits
1566 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1567
1568 // decrypt parity bits
1569 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1570
1571 // compare actual parity bits with decrypted parity bits and take count in results vector
1572 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1573
1574 // make sure we still have a match in our set
1575 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1576
1577 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1578 // the short-circuiting also helps
1579 if(results.bytes64[0] == 0
1580#if MAX_BITSLICES > 64
1581 && results.bytes64[1] == 0
1582#endif
1583#if MAX_BITSLICES > 128
1584 && results.bytes64[2] == 0
1585 && results.bytes64[3] == 0
1586#endif
1587 ){
1588 goto stop_tests;
1589 }
1590 // this is about as fast but less portable (requires -std=gnu99)
1591 // asm goto ("ptest %1, %0\n\t"
1592 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1593 parity_bit_vector = bs_zeroes.value;
1594 }
1595 // compute next feedback bit vector
1596 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1597 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1598 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1599 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1600 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1601 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1602 }
1603 }
1604 // all nonce tests were successful: we've found the key in this block!
1605 state_t keys[MAX_BITSLICES];
1606 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1607 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1608 if(get_vector_bit(results_idx, results)){
1609 key = keys[results_idx].value;
1610 goto out;
1611 }
1612 }
1613stop_tests:
1614 // prepare to set new states
1615 crypto1_bs_rewind_a0();
1616 continue;
1617 }
1618 }
1619
1620out:
1621 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1622
1623#ifdef __WIN32
1624 #ifdef __MINGW32__
1625 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1626 #else
1627 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1628 #endif
1629#else
2e350b19 1630 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1631#endif
1632
1633 }
1634 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1635 return key;
1636}
8ce3e4b4 1637
3130ba4b 1638static void* crack_states_thread(void* x){
1639 const size_t thread_id = (size_t)x;
1640 size_t current_bucket = thread_id;
4d812c13 1641 statelist_t *bucket = NULL;
1642
3130ba4b 1643 while(current_bucket < bucket_count){
4d812c13 1644 if (keys_found) break;
1645
1646 if ((bucket = buckets[current_bucket])) {
3130ba4b 1647 const uint64_t key = crack_states_bitsliced(bucket);
4d812c13 1648
1649 if (keys_found) break;
1650 else if(key != -1 && TestIfKeyExists(key)) {
3130ba4b 1651 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1652 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1653 break;
3130ba4b 1654 } else {
1655 printf(".");
1656 fflush(stdout);
1657 }
1658 }
4d812c13 1659
3130ba4b 1660 current_bucket += thread_count;
1661 }
4d812c13 1662
3130ba4b 1663 return NULL;
1664}
cd777a05 1665
360caaba 1666static bool brute_force(void) {
057d2e91 1667 bool ret = false;
f8ada309 1668 if (known_target_key != -1) {
1669 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1670 ret = TestIfKeyExists(known_target_key);
f8ada309 1671 } else {
4d812c13 1672 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1673
057d2e91 1674 PrintAndLog("Brute force phase starting.");
b403c300 1675
7fd676db 1676 clock_t time1 = clock();
057d2e91 1677 keys_found = 0;
ddaecc08 1678 foundkey = 0;
3130ba4b 1679
057d2e91 1680 crypto1_bs_init();
4d812c13 1681 memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
1682 memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
1683 memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
057d2e91
GG
1684
1685 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
ba39db37 1686 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
057d2e91 1687 // convert to 32 bit little-endian
ed69e099 1688 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1689
1690 PrintAndLog("Bitslicing nonces...");
1691 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1692 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1693 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1694 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1695 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1696 // convert to 32 bit little-endian
1697 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1698 }
057d2e91 1699 total_states_tested = 0;
3130ba4b 1700
057d2e91
GG
1701 // count number of states to go
1702 bucket_count = 0;
4d812c13 1703 buckets[MAX_BUCKETS-1] = NULL;
87a513aa 1704 for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
057d2e91
GG
1705 buckets[bucket_count] = p;
1706 bucket_count++;
1707 }
4d812c13 1708 if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
3130ba4b 1709
1710#ifndef __WIN32
057d2e91 1711 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1712 if ( thread_count < 1)
1713 thread_count = 1;
3130ba4b 1714#endif /* _WIN32 */
fd3be901 1715
057d2e91 1716 pthread_t threads[thread_count];
3130ba4b 1717
057d2e91
GG
1718 // enumerate states using all hardware threads, each thread handles one bucket
1719 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1720
057d2e91
GG
1721 for(size_t i = 0; i < thread_count; i++){
1722 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1723 }
1724 for(size_t i = 0; i < thread_count; i++){
1725 pthread_join(threads[i], 0);
1726 }
1727
7fd676db 1728 time1 = clock() - time1;
360caaba 1729 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
7fd676db 1730
4d812c13 1731 if (keys_found) {
45c0c48c 1732 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91 1733 ret = true;
360caaba 1734 }
057d2e91
GG
1735 // reset this counter for the next call
1736 nonces_to_bruteforce = 0;
f8ada309 1737 }
057d2e91 1738 return ret;
f8ada309 1739}
1740
0d5ee8e2 1741int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1742{
0d5ee8e2 1743 // initialize Random number generator
1744 time_t t;
1745 srand((unsigned) time(&t));
1746
f8ada309 1747 if (trgkey != NULL) {
1748 known_target_key = bytes_to_num(trgkey, 6);
1749 } else {
1750 known_target_key = -1;
1751 }
8ce3e4b4 1752
8ce3e4b4 1753 init_partial_statelists();
1754 init_BitFlip_statelist();
0d5ee8e2 1755 write_stats = false;
8ce3e4b4 1756
0d5ee8e2 1757 if (tests) {
1758 // set the correct locale for the stats printing
1759 setlocale(LC_ALL, "");
1760 write_stats = true;
1761 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1762 PrintAndLog("Could not create/open file hardnested_stats.txt");
1763 return 3;
1764 }
1765 for (uint32_t i = 0; i < tests; i++) {
1766 init_nonce_memory();
1767 simulate_acquire_nonces();
1768 Tests();
1769 printf("Sum(a0) = %d\n", first_byte_Sum);
1770 fprintf(fstats, "%d;", first_byte_Sum);
1771 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1772 brute_force();
1773 free_nonces_memory();
1774 free_statelist_cache();
1775 free_candidates_memory(candidates);
1776 candidates = NULL;
1777 }
1778 fclose(fstats);
0325c12f 1779 fstats = NULL;
0d5ee8e2 1780 } else {
1781 init_nonce_memory();
236e8f7c 1782 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
b112787d 1783 if (read_nonce_file() != 0) {
1784 return 3;
1785 }
1786 Check_for_FilterFlipProperties();
1787 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
236e8f7c
GG
1788 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1789
236e8f7c 1790 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
8e4a0b35 1791 if (cracking || known_target_key != -1) {
236e8f7c 1792 brute_force();
8e4a0b35 1793 }
1794
236e8f7c 1795 } else { // acquire nonces.
b112787d 1796 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1797 if (is_OK != 0) {
1798 return is_OK;
1799 }
8ce3e4b4 1800 }
8ce3e4b4 1801
45c0c48c 1802 //Tests();
b112787d 1803 free_nonces_memory();
1804 free_statelist_cache();
1805 free_candidates_memory(candidates);
1806 candidates = NULL;
057d2e91 1807 }
8ce3e4b4 1808 return 0;
7fd676db 1809}
Impressum, Datenschutz