]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
ADD: "analyse hid" - new function that implements the 'heart of darkness' hid/iclas...
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
87a513aa 4// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
8ce3e4b4 5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// Implements a card only attack based on crypto text (encrypted nonces
10// received during a nested authentication) only. Unlike other card only
11// attacks this doesn't rely on implementation errors but only on the
12// inherent weaknesses of the crypto1 cypher. Described in
13// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15// Computer and Communications Security, 2015
16//-----------------------------------------------------------------------------
2dcf60f3 17#include "cmdhfmfhard.h"
4d812c13 18#include "cmdhw.h"
8ce3e4b4 19
f8ada309 20#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f 21#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
8e4a0b35 22#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
4d812c13 23#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
24#define MAX_BUCKETS 128
81ba7ee8 25
26#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 27
28static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
29 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0290 };
8ce3e4b4 62
63typedef struct noncelistentry {
64 uint32_t nonce_enc;
65 uint8_t par_enc;
66 void *next;
67} noncelistentry_t;
68
69typedef struct noncelist {
70 uint16_t num;
71 uint16_t Sum;
72 uint16_t Sum8_guess;
73 uint8_t BitFlip[2];
74 float Sum8_prob;
75 bool updated;
76 noncelistentry_t *first;
4d812c13 77 float score1;
78 uint_fast8_t score2;
8ce3e4b4 79} noncelist_t;
80
3130ba4b 81static size_t nonces_to_bruteforce = 0;
82static noncelistentry_t *brute_force_nonces[256];
810f5379 83static uint32_t cuid = 0;
8ce3e4b4 84static noncelist_t nonces[256];
fe8042f2 85static uint8_t best_first_bytes[256];
8ce3e4b4 86static uint16_t first_byte_Sum = 0;
87static uint16_t first_byte_num = 0;
88static uint16_t num_good_first_bytes = 0;
f8ada309 89static uint64_t maximum_states = 0;
90static uint64_t known_target_key;
0d5ee8e2 91static bool write_stats = false;
92static FILE *fstats = NULL;
8ce3e4b4 93
94
95typedef enum {
96 EVEN_STATE = 0,
97 ODD_STATE = 1
98} odd_even_t;
99
100#define STATELIST_INDEX_WIDTH 16
101#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
102
103typedef struct {
104 uint32_t *states[2];
105 uint32_t len[2];
106 uint32_t *index[2][STATELIST_INDEX_SIZE];
107} partial_indexed_statelist_t;
108
109typedef struct {
110 uint32_t *states[2];
111 uint32_t len[2];
112 void* next;
113} statelist_t;
114
115
f8ada309 116static partial_indexed_statelist_t partial_statelist[17];
117static partial_indexed_statelist_t statelist_bitflip;
f8ada309 118static statelist_t *candidates = NULL;
8ce3e4b4 119
383a1fb3
GG
120bool field_off = false;
121
4d812c13 122uint64_t foundkey = 0;
123size_t keys_found = 0;
124size_t bucket_count = 0;
125statelist_t* buckets[MAX_BUCKETS];
126static uint64_t total_states_tested = 0;
127size_t thread_count = 4;
128
129// these bitsliced states will hold identical states in all slices
130bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
131
132// arrays of bitsliced states with identical values in all slices
133bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
134bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
135
136#define EXACT_COUNT
137
057d2e91
GG
138static bool generate_candidates(uint16_t, uint16_t);
139static bool brute_force(void);
140
8ce3e4b4 141static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
142{
143 uint8_t first_byte = nonce_enc >> 24;
144 noncelistentry_t *p1 = nonces[first_byte].first;
145 noncelistentry_t *p2 = NULL;
146
147 if (p1 == NULL) { // first nonce with this 1st byte
148 first_byte_num++;
f8ada309 149 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 150 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
151 // nonce_enc,
152 // par_enc,
153 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 154 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 155 }
156
157 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
158 p2 = p1;
159 p1 = p1->next;
160 }
161
162 if (p1 == NULL) { // need to add at the end of the list
163 if (p2 == NULL) { // list is empty yet. Add first entry.
164 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
165 } else { // add new entry at end of existing list.
166 p2 = p2->next = malloc(sizeof(noncelistentry_t));
167 }
fa5974bb 168 if (p2 == NULL) return 0; // memory allocation failed
169 }
170 else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
8ce3e4b4 171 if (p2 == NULL) { // need to insert at start of list
172 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
173 } else {
174 p2 = p2->next = malloc(sizeof(noncelistentry_t));
175 }
fa5974bb 176 if (p2 == NULL) return 0; // memory allocation failed
177 } else {
178 return 0; // we have seen this 2nd byte before. Nothing to add or insert.
8ce3e4b4 179 }
180
181 // add or insert new data
182 p2->next = p1;
183 p2->nonce_enc = nonce_enc;
184 p2->par_enc = par_enc;
185
3130ba4b 186 if(nonces_to_bruteforce < 256){
187 brute_force_nonces[nonces_to_bruteforce] = p2;
188 nonces_to_bruteforce++;
189 }
190
8ce3e4b4 191 nonces[first_byte].num++;
f8ada309 192 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 193 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
194
fa5974bb 195 return 1; // new nonce added
8ce3e4b4 196}
197
0d5ee8e2 198static void init_nonce_memory(void)
199{
200 for (uint16_t i = 0; i < 256; i++) {
201 nonces[i].num = 0;
202 nonces[i].Sum = 0;
203 nonces[i].Sum8_guess = 0;
204 nonces[i].Sum8_prob = 0.0;
205 nonces[i].updated = true;
206 nonces[i].first = NULL;
207 }
208 first_byte_num = 0;
209 first_byte_Sum = 0;
210 num_good_first_bytes = 0;
211}
212
0d5ee8e2 213static void free_nonce_list(noncelistentry_t *p)
214{
215 if (p == NULL) {
216 return;
217 } else {
218 free_nonce_list(p->next);
219 free(p);
220 }
221}
222
0d5ee8e2 223static void free_nonces_memory(void)
224{
225 for (uint16_t i = 0; i < 256; i++) {
226 free_nonce_list(nonces[i].first);
227 }
228}
229
8ce3e4b4 230static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
231{
232 uint16_t sum = 0;
233 for (uint16_t j = 0; j < 16; j++) {
234 uint32_t st = state;
235 uint16_t part_sum = 0;
236 if (odd_even == ODD_STATE) {
237 for (uint16_t i = 0; i < 5; i++) {
238 part_sum ^= filter(st);
239 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
240 }
f8ada309 241 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 242 } else {
243 for (uint16_t i = 0; i < 4; i++) {
244 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
245 part_sum ^= filter(st);
246 }
247 }
248 sum += part_sum;
249 }
250 return sum;
251}
252
fe8042f2 253// static uint16_t SumProperty(struct Crypto1State *s)
254// {
255 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
256 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
257 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
258// }
8ce3e4b4 259
8ce3e4b4 260static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
261{
262 // for efficient computation we are using the recursive definition
263 // (K-k+1) * (n-k+1)
264 // P(X=k) = P(X=k-1) * --------------------
265 // k * (N-K-n+k)
266 // and
267 // (N-K)*(N-K-1)*...*(N-K-n+1)
268 // P(X=0) = -----------------------------
269 // N*(N-1)*...*(N-n+1)
270
271 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
272 if (k == 0) {
273 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
274 double log_result = 0.0;
275 for (int16_t i = N-K; i >= N-K-n+1; i--) {
276 log_result += log(i);
277 }
278 for (int16_t i = N; i >= N-n+1; i--) {
279 log_result -= log(i);
280 }
8e4a0b35 281 return exp(log_result);
8ce3e4b4 282 } else {
283 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
284 double log_result = 0.0;
285 for (int16_t i = k+1; i <= n; i++) {
286 log_result += log(i);
287 }
288 for (int16_t i = K+1; i <= N; i++) {
289 log_result -= log(i);
290 }
8e4a0b35 291 return exp(log_result);
8ce3e4b4 292 } else { // recursion
293 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
294 }
295 }
296}
3130ba4b 297
8ce3e4b4 298static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
299{
300 const uint16_t N = 256;
8ce3e4b4 301
4b2e63be 302 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 303
4b2e63be 304 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
71ac327b 305 if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
306
4b2e63be 307 double p_S_is_K = p_K[K];
4d812c13 308 double p_T_is_k = 0.0;
4b2e63be 309 for (uint16_t i = 0; i <= 256; i++) {
310 if (p_K[i] != 0.0) {
71ac327b 311 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 312 }
4b2e63be 313 }
71ac327b 314 if (p_T_is_k == 0.0) return 0.0;
4b2e63be 315 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 316}
317
a531720a 318static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
319{
320 static const uint_fast8_t common_bits_LUT[256] = {
321 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
334 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
335 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
336 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
337 };
338
339 return common_bits_LUT[bytes_diff];
340}
341
8ce3e4b4 342static void Tests()
343{
fe8042f2 344 // printf("Tests: Partial Statelist sizes\n");
345 // for (uint16_t i = 0; i <= 16; i+=2) {
346 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
347 // }
348 // for (uint16_t i = 0; i <= 16; i+=2) {
349 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
350 // }
8ce3e4b4 351
352 // #define NUM_STATISTICS 100000
8ce3e4b4 353 // uint32_t statistics_odd[17];
f8ada309 354 // uint64_t statistics[257];
8ce3e4b4 355 // uint32_t statistics_even[17];
356 // struct Crypto1State cs;
357 // time_t time1 = clock();
358
359 // for (uint16_t i = 0; i < 257; i++) {
360 // statistics[i] = 0;
361 // }
362 // for (uint16_t i = 0; i < 17; i++) {
363 // statistics_odd[i] = 0;
364 // statistics_even[i] = 0;
365 // }
366
367 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
368 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
369 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
370 // uint16_t sum_property = SumProperty(&cs);
371 // statistics[sum_property] += 1;
372 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
373 // statistics_even[sum_property]++;
374 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
375 // statistics_odd[sum_property]++;
376 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
377 // }
378
379 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
380 // for (uint16_t i = 0; i < 257; i++) {
381 // if (statistics[i] != 0) {
382 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
383 // }
384 // }
385 // for (uint16_t i = 0; i <= 16; i++) {
386 // if (statistics_odd[i] != 0) {
387 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
388 // }
389 // }
390 // for (uint16_t i = 0; i <= 16; i++) {
391 // if (statistics_odd[i] != 0) {
392 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
393 // }
394 // }
395
396 // printf("Tests: Sum Probabilities based on Partial Sums\n");
397 // for (uint16_t i = 0; i < 257; i++) {
398 // statistics[i] = 0;
399 // }
400 // uint64_t num_states = 0;
401 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
402 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
403 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
404 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
405 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
406 // }
407 // }
408 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
409 // for (uint16_t i = 0; i < 257; i++) {
410 // if (statistics[i] != 0) {
411 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
412 // }
413 // }
414
415 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
416 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
417 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
418 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
419 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
420 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
421 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
422
fe8042f2 423 // struct Crypto1State *pcs;
424 // pcs = crypto1_create(0xffffffffffff);
425 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
427 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
428 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // best_first_bytes[0],
430 // SumProperty(pcs),
431 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
432 // //test_state_odd = pcs->odd & 0x00ffffff;
433 // //test_state_even = pcs->even & 0x00ffffff;
434 // crypto1_destroy(pcs);
435 // pcs = crypto1_create(0xa0a1a2a3a4a5);
436 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
438 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
439 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
440 // best_first_bytes[0],
441 // SumProperty(pcs),
442 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
443 // //test_state_odd = pcs->odd & 0x00ffffff;
444 // //test_state_even = pcs->even & 0x00ffffff;
445 // crypto1_destroy(pcs);
446 // pcs = crypto1_create(0xa6b9aa97b955);
447 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
448 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
449 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
450 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
451 // best_first_bytes[0],
452 // SumProperty(pcs),
453 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 454 //test_state_odd = pcs->odd & 0x00ffffff;
455 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 456 // crypto1_destroy(pcs);
8ce3e4b4 457
458
fe8042f2 459 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 460
cd777a05 461 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
462 // for (uint16_t i = 0; i < 256; i++) {
463 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
464 // if (i % 8 == 7) {
465 // printf("\n");
466 // }
467 // }
8ce3e4b4 468
cd777a05 469 // printf("\nTests: Sorted First Bytes:\n");
470 // for (uint16_t i = 0; i < 256; i++) {
471 // uint8_t best_byte = best_first_bytes[i];
472 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
473 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
474 // i, best_byte,
475 // nonces[best_byte].num,
476 // nonces[best_byte].Sum,
477 // nonces[best_byte].Sum8_guess,
478 // nonces[best_byte].Sum8_prob * 100,
479 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
480 // //nonces[best_byte].score1,
481 // //nonces[best_byte].score2
482 // );
483 // }
f8ada309 484
485 // printf("\nTests: parity performance\n");
486 // time_t time1p = clock();
487 // uint32_t par_sum = 0;
488 // for (uint32_t i = 0; i < 100000000; i++) {
489 // par_sum += parity(i);
490 // }
491 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
492
493 // time1p = clock();
494 // par_sum = 0;
495 // for (uint32_t i = 0; i < 100000000; i++) {
496 // par_sum += evenparity32(i);
497 // }
498 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
499
8ce3e4b4 500
f8ada309 501}
502
4d812c13 503static uint16_t sort_best_first_bytes(void)
f8ada309 504{
fe8042f2 505 // sort based on probability for correct guess
8ce3e4b4 506 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 507 uint16_t j = 0;
8ce3e4b4 508 float prob1 = nonces[i].Sum8_prob;
f8ada309 509 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 510 while (prob1 < prob2 && j < i) {
8ce3e4b4 511 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
512 }
fe8042f2 513 if (j < i) {
514 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 515 best_first_bytes[k] = best_first_bytes[k-1];
516 }
fe8042f2 517 }
4d812c13 518 best_first_bytes[j] = i;
7fd676db 519 }
f8ada309 520
fe8042f2 521 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 522 uint16_t num_good_nonces = 0;
fe8042f2 523 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 524 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 525 ++num_good_nonces;
526 }
527 }
528
4d812c13 529 if (num_good_nonces == 0) return 0;
530
f8ada309 531 uint16_t best_first_byte = 0;
532
533 // select the best possible first byte based on number of common bits with all {b'}
534 // uint16_t max_common_bits = 0;
535 // for (uint16_t i = 0; i < num_good_nonces; i++) {
536 // uint16_t sum_common_bits = 0;
537 // for (uint16_t j = 0; j < num_good_nonces; j++) {
538 // if (i != j) {
539 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
540 // }
541 // }
542 // if (sum_common_bits > max_common_bits) {
543 // max_common_bits = sum_common_bits;
544 // best_first_byte = i;
545 // }
546 // }
547
548 // select best possible first byte {b} based on least likely sum/bitflip property
549 float min_p_K = 1.0;
550 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
551 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
552 float bitflip_prob = 1.0;
4d812c13 553
554 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
f8ada309 555 bitflip_prob = 0.09375;
4d812c13 556
a531720a 557 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
4d812c13 558
559 if (p_K[sum8] * bitflip_prob <= min_p_K)
f8ada309 560 min_p_K = p_K[sum8] * bitflip_prob;
4d812c13 561
f8ada309 562 }
563
a531720a 564
f8ada309 565 // use number of commmon bits as a tie breaker
4d812c13 566 uint_fast8_t max_common_bits = 0;
f8ada309 567 for (uint16_t i = 0; i < num_good_nonces; i++) {
4d812c13 568
f8ada309 569 float bitflip_prob = 1.0;
4d812c13 570 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
f8ada309 571 bitflip_prob = 0.09375;
4d812c13 572
f8ada309 573 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
4d812c13 574 uint_fast8_t sum_common_bits = 0;
f8ada309 575 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 576 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 577 }
a531720a 578 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 579 if (sum_common_bits > max_common_bits) {
580 max_common_bits = sum_common_bits;
581 best_first_byte = i;
582 }
583 }
584 }
585
a531720a 586 // swap best possible first byte to the pole position
8e4a0b35 587 if (best_first_byte != 0) {
4d812c13 588 uint16_t temp = best_first_bytes[0];
589 best_first_bytes[0] = best_first_bytes[best_first_byte];
590 best_first_bytes[best_first_byte] = temp;
8e4a0b35 591 }
f8ada309 592
4d812c13 593 return num_good_nonces;
8ce3e4b4 594}
595
8ce3e4b4 596static uint16_t estimate_second_byte_sum(void)
4d812c13 597{
8ce3e4b4 598 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
599 float Sum8_prob = 0.0;
600 uint16_t Sum8 = 0;
601 if (nonces[first_byte].updated) {
602 for (uint16_t sum = 0; sum <= 256; sum++) {
603 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
604 if (prob > Sum8_prob) {
605 Sum8_prob = prob;
606 Sum8 = sum;
607 }
608 }
609 nonces[first_byte].Sum8_guess = Sum8;
610 nonces[first_byte].Sum8_prob = Sum8_prob;
611 nonces[first_byte].updated = false;
612 }
613 }
4d812c13 614 return sort_best_first_bytes();
8ce3e4b4 615}
616
8ce3e4b4 617static int read_nonce_file(void)
618{
619 FILE *fnonces = NULL;
ddaecc08 620 uint8_t trgBlockNo = 0;
621 uint8_t trgKeyType = 0;
8ce3e4b4 622 uint8_t read_buf[9];
ddaecc08 623 uint32_t nt_enc1 = 0, nt_enc2 = 0;
624 uint8_t par_enc = 0;
8ce3e4b4 625 int total_num_nonces = 0;
626
627 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
628 PrintAndLog("Could not open file nonces.bin");
629 return 1;
630 }
631
632 PrintAndLog("Reading nonces from file nonces.bin...");
4d812c13 633 memset (read_buf, 0, sizeof (read_buf));
841d7af0 634 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
635 if ( bytes_read == 0) {
8ce3e4b4 636 PrintAndLog("File reading error.");
637 fclose(fnonces);
638 return 1;
639 }
640 cuid = bytes_to_num(read_buf, 4);
641 trgBlockNo = bytes_to_num(read_buf+4, 1);
642 trgKeyType = bytes_to_num(read_buf+5, 1);
4d812c13 643 size_t ret = 0;
644 do {
645 memset (read_buf, 0, sizeof (read_buf));
646 if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
8ce3e4b4 647 nt_enc1 = bytes_to_num(read_buf, 4);
648 nt_enc2 = bytes_to_num(read_buf+4, 4);
649 par_enc = bytes_to_num(read_buf+8, 1);
650 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
651 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
652 add_nonce(nt_enc1, par_enc >> 4);
653 add_nonce(nt_enc2, par_enc & 0x0f);
654 total_num_nonces += 2;
655 }
4d812c13 656 } while (ret == 9);
657
8ce3e4b4 658 fclose(fnonces);
659 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 660 return 0;
661}
662
a531720a 663static void Check_for_FilterFlipProperties(void)
664{
665 printf("Checking for Filter Flip Properties...\n");
0d5ee8e2 666 uint16_t num_bitflips = 0;
667
a531720a 668 for (uint16_t i = 0; i < 256; i++) {
669 nonces[i].BitFlip[ODD_STATE] = false;
670 nonces[i].BitFlip[EVEN_STATE] = false;
671 }
672
673 for (uint16_t i = 0; i < 256; i++) {
4d812c13 674 if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
675
a531720a 676 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
677 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
678 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
679
680 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
681 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 682 num_bitflips++;
a531720a 683 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
684 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 685 num_bitflips++;
a531720a 686 }
687 }
0d5ee8e2 688
4d812c13 689 if (write_stats)
0d5ee8e2 690 fprintf(fstats, "%d;", num_bitflips);
0d5ee8e2 691}
692
0d5ee8e2 693static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
694{
1f1929a4 695 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 696 // init cryptostate with key:
697 for(int8_t i = 47; i > 0; i -= 2) {
698 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
699 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
700 }
701
702 *par_enc = 0;
703 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
704 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
705 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
706 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
707 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
708 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
709 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
710 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
711 }
712
713}
714
0d5ee8e2 715static void simulate_acquire_nonces()
716{
717 clock_t time1 = clock();
718 bool filter_flip_checked = false;
719 uint32_t total_num_nonces = 0;
720 uint32_t next_fivehundred = 500;
721 uint32_t total_added_nonces = 0;
722
723 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
724 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
725
726 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
727 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
728
729 do {
730 uint32_t nt_enc = 0;
731 uint8_t par_enc = 0;
732
733 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
734 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
735 total_added_nonces += add_nonce(nt_enc, par_enc);
736 total_num_nonces++;
737
738 if (first_byte_num == 256 ) {
739 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
740 if (!filter_flip_checked) {
741 Check_for_FilterFlipProperties();
742 filter_flip_checked = true;
743 }
744 num_good_first_bytes = estimate_second_byte_sum();
745 if (total_num_nonces > next_fivehundred) {
746 next_fivehundred = (total_num_nonces/500+1) * 500;
4d812c13 747 printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 748 total_num_nonces,
0d5ee8e2 749 total_added_nonces,
750 CONFIDENCE_THRESHOLD * 100.0,
751 num_good_first_bytes);
752 }
753 }
754
755 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
756
b112787d 757 time1 = clock() - time1;
758 if ( time1 > 0 ) {
0d5ee8e2 759 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
760 total_num_nonces,
b112787d 761 ((float)time1)/CLOCKS_PER_SEC,
762 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
763 }
0d5ee8e2 764 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
765
a531720a 766}
767
f8ada309 768static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 769{
06d09c98 770 uint8_t three_in_row = 0;
771 uint8_t prev_best = 0;
8ce3e4b4 772 clock_t time1 = clock();
773 bool initialize = true;
8ce3e4b4 774 bool finished = false;
a531720a 775 bool filter_flip_checked = false;
8ce3e4b4 776 uint32_t flags = 0;
777 uint8_t write_buf[9];
778 uint32_t total_num_nonces = 0;
779 uint32_t next_fivehundred = 500;
780 uint32_t total_added_nonces = 0;
057d2e91 781 uint32_t idx = 1;
8ce3e4b4 782 FILE *fnonces = NULL;
383a1fb3 783 field_off = false;
4d812c13 784 UsbCommand resp;
785 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
786 memcpy(c.d.asBytes, key, 6);
787 c.arg[0] = blockNo + (keyType * 0x100);
788 c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
06d09c98 789
8ce3e4b4 790 printf("Acquiring nonces...\n");
8ce3e4b4 791 do {
06d09c98 792
8ce3e4b4 793 flags = 0;
4d812c13 794 //flags |= initialize ? 0x0001 : 0;
795 flags |= 0x0001;
8ce3e4b4 796 flags |= slow ? 0x0002 : 0;
797 flags |= field_off ? 0x0004 : 0;
360caaba 798 c.arg[2] = flags;
4d812c13 799
7fd676db 800 clearCommandBuffer();
8ce3e4b4 801 SendCommand(&c);
802
87a513aa 803 if (field_off) break;
8ce3e4b4 804
06d09c98 805 if (!WaitForResponseTimeout(CMD_ACK, &resp, 6000)) {
360caaba 806 if (fnonces) fclose(fnonces);
807 return 1;
808 }
4d812c13 809
360caaba 810 if (resp.arg[0]) {
811 if (fnonces) fclose(fnonces);
812 return resp.arg[0]; // error during nested_hard
813 }
814
815 if (initialize) {
816 // global var CUID
8ce3e4b4 817 cuid = resp.arg[1];
8ce3e4b4 818 if (nonce_file_write && fnonces == NULL) {
819 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
820 PrintAndLog("Could not create file nonces.bin");
821 return 3;
822 }
823 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
4d812c13 824 memset (write_buf, 0, sizeof (write_buf));
8ce3e4b4 825 num_to_bytes(cuid, 4, write_buf);
826 fwrite(write_buf, 1, 4, fnonces);
827 fwrite(&trgBlockNo, 1, 1, fnonces);
828 fwrite(&trgKeyType, 1, 1, fnonces);
7fd676db 829 fflush(fnonces);
8ce3e4b4 830 }
360caaba 831 initialize = false;
8ce3e4b4 832 }
360caaba 833
834 uint32_t nt_enc1, nt_enc2;
835 uint8_t par_enc;
836 uint16_t num_acquired_nonces = resp.arg[2];
837 uint8_t *bufp = resp.d.asBytes;
4d812c13 838 for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
360caaba 839 nt_enc1 = bytes_to_num(bufp, 4);
840 nt_enc2 = bytes_to_num(bufp+4, 4);
841 par_enc = bytes_to_num(bufp+8, 1);
842
360caaba 843 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
360caaba 844 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
845
846 if (nonce_file_write && fnonces) {
847 fwrite(bufp, 1, 9, fnonces);
848 fflush(fnonces);
8ce3e4b4 849 }
360caaba 850 bufp += 9;
8ce3e4b4 851 }
360caaba 852 total_num_nonces += num_acquired_nonces;
853
854 if (first_byte_num == 256) {
7fd676db 855
a531720a 856 if (!filter_flip_checked) {
857 Check_for_FilterFlipProperties();
858 filter_flip_checked = true;
859 }
383a1fb3 860
8ce3e4b4 861 num_good_first_bytes = estimate_second_byte_sum();
360caaba 862
8ce3e4b4 863 if (total_num_nonces > next_fivehundred) {
864 next_fivehundred = (total_num_nonces/500+1) * 500;
4d812c13 865 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
7fd676db 866 total_num_nonces,
8ce3e4b4 867 total_added_nonces,
8e4a0b35 868 NONCES_THRESHOLD * idx,
8ce3e4b4 869 CONFIDENCE_THRESHOLD * 100.0,
06d09c98 870 num_good_first_bytes
f07ffa76 871 );
383a1fb3 872 }
4d812c13 873
874 if ( num_good_first_bytes > 0 ) {
f07ffa76 875
876 if ( prev_best == best_first_bytes[0] ){
877 ++three_in_row;
878 } else {
879 three_in_row = 0;
880 }
881 prev_best = best_first_bytes[0];
882
4d812c13 883 //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
06d09c98 884 if ( total_added_nonces >= (NONCES_THRESHOLD * idx) || three_in_row >= 3) {
885
4d812c13 886 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
887 if (cracking || known_target_key != -1) {
06d09c98 888
889 UsbCommand cOff = {CMD_FPGA_MAJOR_MODE_OFF, {0,0,0} };
890 SendCommand(&cOff);
891 field_off = brute_force();
4d812c13 892 }
f07ffa76 893 three_in_row = 0;
bbcd41a6 894 }
1a4b6738 895 }
06d09c98 896
897 if ( total_added_nonces >= (NONCES_THRESHOLD * idx))
898 ++idx;
8ce3e4b4 899 }
8ce3e4b4 900 } while (!finished);
901
7fd676db 902 if (nonce_file_write && fnonces)
8ce3e4b4 903 fclose(fnonces);
8ce3e4b4 904
b112787d 905 time1 = clock() - time1;
906 if ( time1 > 0 ) {
81ba7ee8 907 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
908 total_num_nonces,
909 ((float)time1)/CLOCKS_PER_SEC,
910 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 911 );
912 }
8ce3e4b4 913 return 0;
914}
915
8ce3e4b4 916static int init_partial_statelists(void)
917{
f8ada309 918 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
919// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
920 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 921
922 printf("Allocating memory for partial statelists...\n");
923 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
924 for (uint16_t i = 0; i <= 16; i+=2) {
925 partial_statelist[i].len[odd_even] = 0;
926 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
927 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
928 if (partial_statelist[i].states[odd_even] == NULL) {
929 PrintAndLog("Cannot allocate enough memory. Aborting");
930 return 4;
931 }
932 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
933 partial_statelist[i].index[odd_even][j] = NULL;
934 }
935 }
936 }
937
938 printf("Generating partial statelists...\n");
939 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
940 uint32_t index = -1;
941 uint32_t num_of_states = 1<<20;
942 for (uint32_t state = 0; state < num_of_states; state++) {
943 uint16_t sum_property = PartialSumProperty(state, odd_even);
944 uint32_t *p = partial_statelist[sum_property].states[odd_even];
945 p += partial_statelist[sum_property].len[odd_even];
946 *p = state;
947 partial_statelist[sum_property].len[odd_even]++;
948 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
949 if ((state & index_mask) != index) {
950 index = state & index_mask;
951 }
952 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
953 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
954 }
955 }
956 // add End Of List markers
957 for (uint16_t i = 0; i <= 16; i += 2) {
958 uint32_t *p = partial_statelist[i].states[odd_even];
959 p += partial_statelist[i].len[odd_even];
81ba7ee8 960 *p = END_OF_LIST_MARKER;
8ce3e4b4 961 }
962 }
963
964 return 0;
965}
8ce3e4b4 966
967static void init_BitFlip_statelist(void)
968{
969 printf("Generating bitflip statelist...\n");
970 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
971 uint32_t index = -1;
972 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
973 for (uint32_t state = 0; state < (1 << 20); state++) {
974 if (filter(state) != filter(state^1)) {
975 if ((state & index_mask) != index) {
976 index = state & index_mask;
977 }
978 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
979 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
980 }
981 *p++ = state;
982 }
983 }
984 // set len and add End Of List marker
985 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 986 *p = END_OF_LIST_MARKER;
4d812c13 987 //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
8ce3e4b4 988}
8ce3e4b4 989
a531720a 990static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 991{
992 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
993
994 if (p == NULL) return NULL;
a531720a 995 while (*p < (state & mask)) p++;
81ba7ee8 996 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 997 if ((*p & mask) == (state & mask)) return p; // found a match.
998 return NULL; // no match
999}
1000
a531720a 1001static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 1002{
a531720a 1003 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
1004 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
1005 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
1006 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
1007 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
1008 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
1009 return !all_diff;
1010}
1011
a531720a 1012static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
1013{
1014 uint_fast8_t j_bit_mask = 0x01 << bit;
1015 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
1016 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
1017 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
1018 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1019 return all_diff;
1020}
1021
a531720a 1022static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1023{
1024 if (odd_even) {
1025 // odd bits
1026 switch (num_common_bits) {
1027 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1028 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1029 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1030 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1031 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1032 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1033 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1034 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1035 }
a531720a 1036 } else {
1037 // even bits
1038 switch (num_common_bits) {
1039 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1040 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1041 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1042 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1043 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1044 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1045 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1046 }
8ce3e4b4 1047 }
1048
1049 return true; // valid state
1050}
1051
8ce3e4b4 1052static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1053{
1054 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1055 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1056 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1057 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1058 uint32_t mask = 0xfffffff0;
1059 if (odd_even == ODD_STATE) {
a531720a 1060 mask >>= j/2;
8ce3e4b4 1061 } else {
a531720a 1062 mask >>= (j+1)/2;
8ce3e4b4 1063 }
1064 mask &= 0x000fffff;
1065 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1066 bool found_match = false;
1067 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1068 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1069 if (r*(16-s) + (16-r)*s == sum_a8) {
1070 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1071 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1072 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1073 if (p != NULL) {
81ba7ee8 1074 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1075 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1076 found_match = true;
1077 // if ((odd_even == ODD_STATE && state == test_state_odd)
1078 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1079 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1080 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1081 // }
1082 break;
1083 } else {
1084 // if ((odd_even == ODD_STATE && state == test_state_odd)
1085 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1086 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1087 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1088 // }
1089 }
1090 p++;
1091 }
1092 } else {
1093 // if ((odd_even == ODD_STATE && state == test_state_odd)
1094 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1095 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1096 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1097 // }
1098 }
1099 }
1100 }
1101 }
1102
1103 if (!found_match) {
1104 // if ((odd_even == ODD_STATE && state == test_state_odd)
1105 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1106 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1107 // }
1108 return false;
1109 }
1110 }
1111
1112 return true;
1113}
1114
f8ada309 1115static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1116{
1117 for (uint16_t i = 0; i < 256; i++) {
1118 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1119 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1120 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1121 uint32_t mask = 0xfffffff0;
1122 if (odd_even == ODD_STATE) {
a531720a 1123 mask >>= j/2;
f8ada309 1124 } else {
a531720a 1125 mask >>= (j+1)/2;
f8ada309 1126 }
1127 mask &= 0x000fffff;
1128 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1129 bool found_match = false;
1130 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1131 if (p != NULL) {
81ba7ee8 1132 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1133 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1134 found_match = true;
1135 // if ((odd_even == ODD_STATE && state == test_state_odd)
1136 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1137 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1138 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1139 // }
1140 break;
1141 } else {
1142 // if ((odd_even == ODD_STATE && state == test_state_odd)
1143 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1144 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1145 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1146 // }
1147 }
1148 p++;
1149 }
1150 } else {
1151 // if ((odd_even == ODD_STATE && state == test_state_odd)
1152 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1153 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1154 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1155 // }
1156 }
1157 if (!found_match) {
1158 // if ((odd_even == ODD_STATE && state == test_state_odd)
1159 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1160 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1161 // }
1162 return false;
1163 }
1164 }
1165
1166 }
1167
1168 return true;
1169}
1170
a531720a 1171static struct sl_cache_entry {
1172 uint32_t *sl;
1173 uint32_t len;
1174 } sl_cache[17][17][2];
1175
a531720a 1176static void init_statelist_cache(void)
1177{
a531720a 1178 for (uint16_t i = 0; i < 17; i+=2) {
1179 for (uint16_t j = 0; j < 17; j+=2) {
1180 for (uint16_t k = 0; k < 2; k++) {
1181 sl_cache[i][j][k].sl = NULL;
1182 sl_cache[i][j][k].len = 0;
1183 }
1184 }
1185 }
1186}
1187
8ce3e4b4 1188static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1189{
1190 uint32_t worstcase_size = 1<<20;
1191
a531720a 1192 // check cache for existing results
1193 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1194 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1195 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1196 return 0;
1197 }
1198
8ce3e4b4 1199 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1200 if (candidates->states[odd_even] == NULL) {
1201 PrintAndLog("Out of memory error.\n");
1202 return 4;
1203 }
a531720a 1204 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1205 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1206 uint32_t search_mask = 0x000ffff0;
1207 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
71ac327b 1208 if (p1 != NULL && p2 != NULL) {
81ba7ee8 1209 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1210 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1211 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1212 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1213 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1214 *add_p++ = (*p1 << 4) | *p2;
1215 }
8ce3e4b4 1216 }
f8ada309 1217 }
8ce3e4b4 1218 p2++;
1219 }
1220 }
8ce3e4b4 1221 }
f8ada309 1222
a531720a 1223 // set end of list marker and len
81ba7ee8 1224 *add_p = END_OF_LIST_MARKER;
a531720a 1225 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1226
8ce3e4b4 1227 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1228
a531720a 1229 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1230 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1231
8ce3e4b4 1232 return 0;
1233}
1234
8ce3e4b4 1235static statelist_t *add_more_candidates(statelist_t *current_candidates)
1236{
1237 statelist_t *new_candidates = NULL;
1238 if (current_candidates == NULL) {
1239 if (candidates == NULL) {
1240 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1241 }
1242 new_candidates = candidates;
1243 } else {
1244 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1245 }
71ac327b 1246 if (!new_candidates) return NULL;
1247
8ce3e4b4 1248 new_candidates->next = NULL;
1249 new_candidates->len[ODD_STATE] = 0;
1250 new_candidates->len[EVEN_STATE] = 0;
1251 new_candidates->states[ODD_STATE] = NULL;
1252 new_candidates->states[EVEN_STATE] = NULL;
1253 return new_candidates;
1254}
1255
057d2e91 1256static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1257{
1258 struct Crypto1State *pcs;
1259 pcs = crypto1_create(key);
1260 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1261
1262 uint32_t state_odd = pcs->odd & 0x00ffffff;
1263 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1264 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
fa5974bb 1265 printf("Validating key search space\n");
f8ada309 1266 uint64_t count = 0;
8ce3e4b4 1267 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1268 bool found_odd = false;
1269 bool found_even = false;
8ce3e4b4 1270 uint32_t *p_odd = p->states[ODD_STATE];
1271 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1272 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1273 if ((*p_odd & 0x00ffffff) == state_odd) {
1274 found_odd = true;
1275 break;
1276 }
8ce3e4b4 1277 p_odd++;
1278 }
81ba7ee8 1279 while (*p_even != END_OF_LIST_MARKER) {
06d09c98 1280 if ((*p_even & 0x00ffffff) == state_even)
f8ada309 1281 found_even = true;
06d09c98 1282
8ce3e4b4 1283 p_even++;
1284 }
f8ada309 1285 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1286 if (found_odd && found_even) {
4d812c13 1287 if (known_target_key != -1) {
06d09c98 1288 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
1289 count,
1290 log(count)/log(2),
1291 maximum_states,
1292 log(maximum_states)/log(2)
1293 );
1294 if (write_stats)
1295 fprintf(fstats, "1\n");
4d812c13 1296 }
f8ada309 1297 crypto1_destroy(pcs);
057d2e91 1298 return true;
f8ada309 1299 }
8ce3e4b4 1300 }
f8ada309 1301
4d812c13 1302 if (known_target_key != -1) {
06d09c98 1303 printf("Key NOT found!\n");
1304 if (write_stats)
1305 fprintf(fstats, "0\n");
4d812c13 1306 }
8ce3e4b4 1307 crypto1_destroy(pcs);
057d2e91 1308 return false;
8ce3e4b4 1309}
1310
057d2e91 1311static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1312{
1313 printf("Generating crypto1 state candidates... \n");
1314
1315 statelist_t *current_candidates = NULL;
1316 // estimate maximum candidate states
f8ada309 1317 maximum_states = 0;
8ce3e4b4 1318 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1319 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1320 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1321 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1322 }
1323 }
1324 }
057d2e91 1325
0325c12f 1326 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1327
ba39db37 1328 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
8ce3e4b4 1329
a531720a 1330 init_statelist_cache();
1331
8ce3e4b4 1332 for (uint16_t p = 0; p <= 16; p += 2) {
1333 for (uint16_t q = 0; q <= 16; q += 2) {
1334 if (p*(16-q) + (16-p)*q == sum_a0) {
2dcf60f3 1335 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1336 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
8ce3e4b4 1337 for (uint16_t r = 0; r <= 16; r += 2) {
1338 for (uint16_t s = 0; s <= 16; s += 2) {
1339 if (r*(16-s) + (16-r)*s == sum_a8) {
1340 current_candidates = add_more_candidates(current_candidates);
71ac327b 1341 if (current_candidates != NULL) {
a531720a 1342 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1343 // and eliminate the need to calculate the other part
1344 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1345 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
ba39db37 1346 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1347 if(current_candidates->len[ODD_STATE]) {
ba39db37 1348 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1349 } else {
1350 current_candidates->len[EVEN_STATE] = 0;
1351 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1352 *p = END_OF_LIST_MARKER;
a531720a 1353 }
1354 } else {
1355 add_matching_states(current_candidates, q, s, EVEN_STATE);
1356 if(current_candidates->len[EVEN_STATE]) {
1357 add_matching_states(current_candidates, p, r, ODD_STATE);
1358 } else {
1359 current_candidates->len[ODD_STATE] = 0;
1360 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1361 *p = END_OF_LIST_MARKER;
a531720a 1362 }
1363 }
1c38049b 1364 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1365 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1366 }
1367 }
1368 }
1369 }
1370 }
1371 }
8e4a0b35 1372 }
8ce3e4b4 1373
8ce3e4b4 1374 maximum_states = 0;
8e4a0b35 1375 unsigned int n = 0;
4d812c13 1376 for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
8ce3e4b4 1377 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1378 }
0325c12f
GG
1379
1380 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1381
ba39db37 1382 float kcalc = log(maximum_states)/log(2);
057d2e91 1383 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1384 if (write_stats) {
4d812c13 1385 fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
0d5ee8e2 1386 }
236e8f7c 1387 if (kcalc < CRACKING_THRESHOLD) return true;
057d2e91
GG
1388
1389 return false;
0d5ee8e2 1390}
1391
fa5974bb 1392static void free_candidates_memory(statelist_t *sl)
1393{
1394 if (sl == NULL) {
1395 return;
1396 } else {
1397 free_candidates_memory(sl->next);
1398 free(sl);
1399 }
1400}
1401
0d5ee8e2 1402static void free_statelist_cache(void)
1403{
1404 for (uint16_t i = 0; i < 17; i+=2) {
1405 for (uint16_t j = 0; j < 17; j+=2) {
1406 for (uint16_t k = 0; k < 2; k++) {
1407 free(sl_cache[i][j][k].sl);
1408 }
1409 }
1410 }
8ce3e4b4 1411}
1412
3130ba4b 1413static const uint64_t crack_states_bitsliced(statelist_t *p){
1414 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1415 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1416 uint64_t key = -1;
1417 uint8_t bSize = sizeof(bitslice_t);
1418
1419#ifdef EXACT_COUNT
1420 size_t bucket_states_tested = 0;
1421 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1422#else
1423 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1424#endif
1425
1426 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1427 size_t bitsliced_blocks = 0;
1428 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1429
1430 // bitslice all the even states
1431 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1432
1433#ifdef __WIN32
1434 #ifdef __MINGW32__
1435 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1436 #else
1437 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1438 #endif
1439#else
b01e7d20 1440 #ifdef __APPLE__
9d590832 1441 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1442 #else
3130ba4b 1443 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1444 #endif
3130ba4b 1445#endif
1446
1447 if ( !lstate_p ) {
1448 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1449 return key;
1450 }
1451
1452 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1453
1454 // bitslice even half-states
1455 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1456#ifdef EXACT_COUNT
1457 bucket_size[bitsliced_blocks] = max_slices;
1458#endif
1459 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1460 uint32_t e = *(p_even+slice_idx);
1461 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1462 // set even bits
1463 if(e&1){
1464 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1465 }
1466 }
1467 }
1468 // compute the rollback bits
1469 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1470 // inlined crypto1_bs_lfsr_rollback
1471 const bitslice_value_t feedout = lstate_p[0].value;
1472 ++lstate_p;
1473 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1474 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1475 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1476 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1477 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1478 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1479 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1480 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1481 }
1482 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1483 }
1484
1485 // bitslice every odd state to every block of even half-states with half-finished rollback
1486 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1487 // early abort
1488 if(keys_found){
1489 goto out;
1490 }
1491
1492 // set the odd bits and compute rollback
1493 uint64_t o = (uint64_t) *p_odd;
1494 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1495 // pre-compute part of the odd feedback bits (minus rollback)
1496 bool odd_feedback_bit = parity(o&0x9ce5c);
1497
1498 crypto1_bs_rewind_a0();
1499 // set odd bits
1500 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
4d812c13 1501 state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
3130ba4b 1502 }
1503 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1504
1505 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1506 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1507 size_t state_idx;
1508 // set even bits
1509 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1510 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1511 }
1512 // set rollback bits
1513 uint64_t lo = o;
1514 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1515 // set the odd bits and take in the odd rollback bits from the even states
1516 if(lo & 1){
1517 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1518 } else {
1519 state_p[state_idx] = bitsliced_even_state[state_idx];
1520 }
1521
1522 // set the even bits and take in the even rollback bits from the odd states
1523 if((lo >> 32) & 1){
1524 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1525 } else {
1526 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1527 }
1528 }
1529
1530#ifdef EXACT_COUNT
4d812c13 1531 bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
3130ba4b 1532#endif
1533 // pre-compute first keystream and feedback bit vectors
1534 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1535 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1536 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1537 state_p[47-24].value ^ state_p[47-42].value);
1538
1539 // vector to contain test results (1 = passed, 0 = failed)
1540 bitslice_t results = bs_ones;
1541
1542 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1543 size_t parity_bit_idx = 0;
1544 bitslice_value_t fb_bits = fbb;
1545 bitslice_value_t ks_bits = ksb;
1546 state_p = &states[KEYSTREAM_SIZE-1];
1547 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1548
1549 // highest bit is transmitted/received first
1550 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1551 // decrypt nonce bits
1552 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1553 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1554
1555 // compute real parity bits on the fly
1556 parity_bit_vector ^= decrypted_nonce_bit_vector;
1557
1558 // update state
1559 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1560
1561 // compute next keystream bit
1562 ks_bits = crypto1_bs_f20(state_p);
1563
1564 // for each byte:
1565 if((ks_idx&7) == 0){
1566 // get encrypted parity bits
1567 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1568
1569 // decrypt parity bits
1570 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1571
1572 // compare actual parity bits with decrypted parity bits and take count in results vector
1573 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1574
1575 // make sure we still have a match in our set
1576 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1577
1578 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1579 // the short-circuiting also helps
1580 if(results.bytes64[0] == 0
1581#if MAX_BITSLICES > 64
1582 && results.bytes64[1] == 0
1583#endif
1584#if MAX_BITSLICES > 128
1585 && results.bytes64[2] == 0
1586 && results.bytes64[3] == 0
1587#endif
1588 ){
1589 goto stop_tests;
1590 }
1591 // this is about as fast but less portable (requires -std=gnu99)
1592 // asm goto ("ptest %1, %0\n\t"
1593 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1594 parity_bit_vector = bs_zeroes.value;
1595 }
1596 // compute next feedback bit vector
1597 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1598 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1599 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1600 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1601 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1602 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1603 }
1604 }
1605 // all nonce tests were successful: we've found the key in this block!
1606 state_t keys[MAX_BITSLICES];
1607 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1608 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1609 if(get_vector_bit(results_idx, results)){
1610 key = keys[results_idx].value;
1611 goto out;
1612 }
1613 }
1614stop_tests:
1615 // prepare to set new states
1616 crypto1_bs_rewind_a0();
1617 continue;
1618 }
1619 }
1620
1621out:
1622 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1623
1624#ifdef __WIN32
1625 #ifdef __MINGW32__
1626 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1627 #else
1628 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1629 #endif
1630#else
2e350b19 1631 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1632#endif
1633
1634 }
1635 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1636 return key;
1637}
8ce3e4b4 1638
3130ba4b 1639static void* crack_states_thread(void* x){
1640 const size_t thread_id = (size_t)x;
1641 size_t current_bucket = thread_id;
4d812c13 1642 statelist_t *bucket = NULL;
1643
3130ba4b 1644 while(current_bucket < bucket_count){
4d812c13 1645 if (keys_found) break;
1646
1647 if ((bucket = buckets[current_bucket])) {
3130ba4b 1648 const uint64_t key = crack_states_bitsliced(bucket);
4d812c13 1649
1650 if (keys_found) break;
fa5974bb 1651 else if(key != -1) {
1652 if (TestIfKeyExists(key)) {
3130ba4b 1653 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1654 __sync_fetch_and_add(&foundkey, key);
fa5974bb 1655 printf("*");
1656 fflush(stdout);
3130ba4b 1657 break;
fa5974bb 1658 }
1659 printf("!");
1660 fflush(stdout);
3130ba4b 1661 } else {
1662 printf(".");
1663 fflush(stdout);
1664 }
1665 }
1666 current_bucket += thread_count;
1667 }
1668 return NULL;
1669}
cd777a05 1670
360caaba 1671static bool brute_force(void) {
057d2e91 1672 bool ret = false;
f8ada309 1673 if (known_target_key != -1) {
1674 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1675 ret = TestIfKeyExists(known_target_key);
f8ada309 1676 } else {
4d812c13 1677 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1678
057d2e91 1679 PrintAndLog("Brute force phase starting.");
b403c300 1680
7fd676db 1681 clock_t time1 = clock();
057d2e91 1682 keys_found = 0;
ddaecc08 1683 foundkey = 0;
3130ba4b 1684
057d2e91 1685 crypto1_bs_init();
4d812c13 1686 memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
1687 memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
1688 memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
057d2e91
GG
1689
1690 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
ba39db37 1691 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
057d2e91 1692 // convert to 32 bit little-endian
ed69e099 1693 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1694
1695 PrintAndLog("Bitslicing nonces...");
1696 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1697 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1698 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1699 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1700 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1701 // convert to 32 bit little-endian
1702 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1703 }
057d2e91 1704 total_states_tested = 0;
3130ba4b 1705
057d2e91
GG
1706 // count number of states to go
1707 bucket_count = 0;
4d812c13 1708 buckets[MAX_BUCKETS-1] = NULL;
87a513aa 1709 for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
057d2e91
GG
1710 buckets[bucket_count] = p;
1711 bucket_count++;
1712 }
4d812c13 1713 if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
3130ba4b 1714
1715#ifndef __WIN32
057d2e91 1716 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1717 if ( thread_count < 1)
1718 thread_count = 1;
3130ba4b 1719#endif /* _WIN32 */
fd3be901 1720
057d2e91 1721 pthread_t threads[thread_count];
3130ba4b 1722
057d2e91
GG
1723 // enumerate states using all hardware threads, each thread handles one bucket
1724 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1725
057d2e91
GG
1726 for(size_t i = 0; i < thread_count; i++){
1727 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1728 }
1729 for(size_t i = 0; i < thread_count; i++){
1730 pthread_join(threads[i], 0);
1731 }
1732
7fd676db 1733 time1 = clock() - time1;
360caaba 1734 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
7fd676db 1735
4d812c13 1736 if (keys_found) {
45c0c48c 1737 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91 1738 ret = true;
360caaba 1739 }
057d2e91
GG
1740 // reset this counter for the next call
1741 nonces_to_bruteforce = 0;
f8ada309 1742 }
057d2e91 1743 return ret;
f8ada309 1744}
1745
0d5ee8e2 1746int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1747{
0d5ee8e2 1748 // initialize Random number generator
1749 time_t t;
1750 srand((unsigned) time(&t));
1751
f8ada309 1752 if (trgkey != NULL) {
1753 known_target_key = bytes_to_num(trgkey, 6);
1754 } else {
1755 known_target_key = -1;
1756 }
8ce3e4b4 1757
8ce3e4b4 1758 init_partial_statelists();
1759 init_BitFlip_statelist();
0d5ee8e2 1760 write_stats = false;
8ce3e4b4 1761
0d5ee8e2 1762 if (tests) {
1763 // set the correct locale for the stats printing
1764 setlocale(LC_ALL, "");
1765 write_stats = true;
1766 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1767 PrintAndLog("Could not create/open file hardnested_stats.txt");
1768 return 3;
1769 }
1770 for (uint32_t i = 0; i < tests; i++) {
1771 init_nonce_memory();
1772 simulate_acquire_nonces();
1773 Tests();
1774 printf("Sum(a0) = %d\n", first_byte_Sum);
1775 fprintf(fstats, "%d;", first_byte_Sum);
1776 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1777 brute_force();
1778 free_nonces_memory();
1779 free_statelist_cache();
1780 free_candidates_memory(candidates);
1781 candidates = NULL;
1782 }
1783 fclose(fstats);
0325c12f 1784 fstats = NULL;
0d5ee8e2 1785 } else {
1786 init_nonce_memory();
236e8f7c 1787 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
b112787d 1788 if (read_nonce_file() != 0) {
1789 return 3;
1790 }
1791 Check_for_FilterFlipProperties();
1792 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
236e8f7c
GG
1793 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1794
236e8f7c 1795 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
8e4a0b35 1796 if (cracking || known_target_key != -1) {
236e8f7c 1797 brute_force();
8e4a0b35 1798 }
1799
236e8f7c 1800 } else { // acquire nonces.
b112787d 1801 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1802 if (is_OK != 0) {
1803 return is_OK;
1804 }
8ce3e4b4 1805 }
8ce3e4b4 1806
45c0c48c 1807 //Tests();
b112787d 1808 free_nonces_memory();
1809 free_statelist_cache();
1810 free_candidates_memory(candidates);
1811 candidates = NULL;
057d2e91 1812 }
8ce3e4b4 1813 return 0;
7fd676db 1814}
Impressum, Datenschutz